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Abstract: An original technique to transform functional rep-

resentation of the design into a structural representation in

form of a data flow graph (DFG) is described. A canonical,

word-level data structure, Taylor Expansion Diagram (TED),

is used as a vehicle to effect this transformation. The problem

is formulated as that of applying a sequence of decomposition

cuts to a TED that transforms it into a DFG optimized for a

particular objective. A systematic approach to arrive at such

a decomposition is described. Experimental results show that

such constructed DFG provides a better starting point for

architectural synthesis than those extracted directly from HDL

specifications.

I. INTRODUCTION

Although considerable progress has been made in behav-

ioral and high-level synthesis over the past two decades,

new solutions are needed for advanced algorithm-oriented

designs, such as multi-media and signal processing applica-

tions. Traditional high-level synthesis tools are effective at

capturing the HDL specification by extracting a data flow

graph (DFG) and mapping it directly into an architecture

using structural optimization techniques, such as scheduling,

resource allocation and binding [1]. However, these tools are

less effective at the higher levels of abstraction. Most of these

systems rely on a fixed data flow graph (DFG), extracted from

the initial HDL specification, and provide limited means for

modifying the initial data flow structure. In an attempt to

explore other solutions the user often needs to rewrite the

original specification, from which another DFG is derived

and synthesized. This approach seriously limits the scope of

the ensuing architectural synthesis and the quality of final

hardware implementation.

Several attempts have been made to provide optimizing trans-

formations in high-level synthesis [2], [3], [4], [5], [6], [7],

[8]. Behavioral transformations have been also used in other

areas, such as optimizing compilers [9] and logic synthesis

[1]. With the exception for a few specialized systems for

DSP code generation, such as SPIRAL [7], these methods

rely on simple manipulations of algebraic expressions based

on term rewriting and algebraic properties of associativity,

commutativity, and distributivity. Several high-level synthesis

systems, such as Cyber [10], Spark [11] and others, use

a host of methods for code optimization (such as kernel-

based algebraic factorization, branch balancing, speculative

code motion methods, dead code elimination, etc.) but without

relying on any canonical representation that would guarantee

local optimality of the transformations. To the best of our

knowledge no systematic method for DFG modification for

the purpose of behavioral optimization and synthesis has been

presented to date.

In contrast, this paper presents a systematic method to perform

behavioral transformations, based on a canonical represen-

tation of the computation, called Taylor Expansion Diagram

(TED) [12]. Being a canonical representation, TED can capture

an entire class of structural solutions, rather than a single

DFG. Through a unique decomposition procedure proposed

in this paper, this functional representation is converted into

a structural representations (DFG), optimized for a particular

design objective. This approach provides means for fast design

space exploration directly from behavioral specifications.

A. Canonical TED Representation

Taylor Expansion Diagram [12] is a canonical, word-level data

structure that offers an efficient way to represent computation

in a compact, factored form. It is particularly suitable for

algorithm-oriented applications, such as signal and image

processing, with computations modeled as polynomial expres-

sions.

An algebraic, multi-variate expression, f(x, y, ...), can be

represented using Taylor series expansion, w.r.t. variable x as

follows:

f(x, y, . . .) = f(x = 0) + xf ′(x = 0) +
1

2
x2f”(x = 0) + . . .

where f ′(x), f ′′(x), etc, are the successive derivatives of f

w.r.t. x. The terms of the decomposition are then decomposed

with respect to the remaining variables (y, .., etc.), one vari-

able at a time. The resulting decomposition is stored as a

directed acyclic graph whose nodes represent the terms of the

expansion. The number of children at each node depends on

the order of the polynomial expression (w.r.t its decomposing

variable) rooted at that node. The resulting graph is reduced,

normalized and canonical for a fixed ordering of variables. The



expression represented by the graph is computed as a sum of

the expressions of all the paths of the graph, from root to

terminal 1.

Figure 1(a) shows one-level decomposition of function

f(x, y, . . .) at variable x. The nodes f(x = 0, y, . . .), f ′(x =
0, y, . . .), etc, represent subsequent derivative functions that

depend only on the remaining variables: y, etc.
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Fig. 1. TED: a) Decomposition principle; b) TED example for F = A2 +
AB + 2AC + 2BC

Figure 1(b) shows TED for function F = A2 + AB + 2AC +
2BC. Additive edges, corresponding to F (0) are represented

in the graph as dotted lines. Linear (first order) edges, as-

sociated with F ′(0) are shown as solid lines. The second

order edges, associated with F ′′(0) are shown and double

lines. For the ordering of variables (A, B, C), the reduced and

normalized TED is constructed as follows. The decomposition

is performed first with respect to variable A, producing the

following terms: F (A = 0) = 2BC, F ′(A = 0) = B + 2C,

and 1

2
· F ′′(A = 0) = 1. Next the expansion is applied to the

resulting non-trivial terms F (0), F ′(0) with respect to variable

B, and subsequently with respect to variable C. Note the

multiplicative weights assigned to the edges (default weight

is 1).

In summary, TED is a multiplicative diagram which maps

word-level (integer) inputs into integer, word-level (integer)

outputs. The function encoded in the TED is computed as a

sum of the expressions of all the paths from root to terminal

node 1. (For this reason, TED can be viewed as a graph without

edges leading to terminal 0, and containing only terminal node

1.) The expression of each path is computed as a product of the

expressions of all the edges in the path; the expression of each

edge is in turn a product of the variable in its respective power,

weighted by the numerical label (coefficient) assigned to the

edge. For example, the expression for the function encoded in

the TED in Figure 2(a) is computed as a sum of two paths from

root to terminal node 1: F = A·B+A·B0 ·C = A·B+A·C, or

equivalently F = A·(B+C). The latter form illustrates the fact

that TED encodes useful factorization of the expression. This

can be seen by noting that subexpression A, corresponding to

the linear edge spanning out of variable A, is common to the

two paths, A ·B and A ·C, and can be factored out from the

expression. This factorization is manifested in the graph by

the presence of a subexpression (B + C), rooted at node B,

which can be extracted from the graph. This is an important

feature of the TED representation, explored in factorization

and common subexpression extraction [13].

In this context TED can serve as a canonical view of the com-

putation, regardless of the specific data flow or architectural

implementation. Several structural, data flow solutions can be

derived from such a representation using the transformation

process described here, guided by the desired objective (area,

latency or power), resulting in an efficient hardware imple-

mentations.

B. Motivation

Consider a simple computation, F = A · B + A · C, where

variables A, B, C are word level signals. The TED represen-

tation for this computation is shown in Figure 2(a). Figure

2(b) and (c) show two architectural solutions that can be

obtained using state-of-the art commercial synthesis tools. The

solution shown in Figure 2(b) minimizes latency (L = 2)

and requires two multipliers and one adder, while the one

in Figure 2(c) minimizes the number of operators at a cost

of increased latency (L = 3). The two solutions correspond

to different scheduling of the same DFG. However, another,

better solution can be obtained by transforming the original

specification F = A · B + A · C into F = A · (B + C). The

modified expression corresponds to a different DFG, which

uses only one adder and one multiplier, and which can be

scheduled in two control steps (L = 2), as shown in Figure

2(d). The existing commercial tools do not perform such

transformations; they only derive a single, fixed data flow graph

(DFG) for the given computation and have no capability to

transform it into another DFG (better from a given objective

point of view) prior to the architectural synthesis. In order to

obtain an optimum solution (or to explore other solutions),

the user must rewrite the original specification, from which

another fixed DFG is derived and subjected to the architectural

optimization.

To address this problem we propose a systematic way to

transform the initial design specification into a data flow

graph, optimized for a given objective. Figure 2 shows the

initial HDL specification represented as a canonical TED

along with all the solutions that can be obtained from this

canonical representation. In particular, Figure 2(d) shows the

solution with minimum latency subject to the imposed resource

constraint.

II. BEHAVIORAL TRANSFORMATIONS

A. System Flow

The basic idea behind the proposed system is to transform the

functional TED representation of the design into a structural

DFG representation. A partially scheduled DFG is obtained

from TED by performing successive decomposition of the
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Fig. 2. Behavioral transformations: a) Canonical TED representation; b,c,d) Functionally-equivalent DFGs.

TED by means of cuts. The cut-based decomposition is guided

in such a way as to optimize the DFG for a given objective.

Input to the system is an algorithmic description of the design

in C or behavioral HDL. The system flow, shown in Figure 3, is

composed of the following steps. High-level synthesis system,

GAUT [14], is used for front-end compilation and architectural

synthesis, while the selection of best DFG is performed by

cut-based TED decomposition.

1) Compilation: Compile the design to generate functional

representation (TED). Minimize TED using variable

ordering [15]. This phase is intended to minimize the

number of ADD/MULT operations in the resulting DFG.

2) TED Factorization and Extraction: Generate hier-

archical TED representation by performing TED fac-

torization and common subexpression extraction using

techniques described in [13]. Hierarchical TED is a

graph, whose nodes represent TEDs of local functions.

3) Transformation of TED into DFG: Perform decom-

position of local TEDs using sequence of cuts to create

a partially scheduled DFG. The decomposition process

is guided by the desired objective, such as latency,

operators area, etc.

This paper concentrates on step 3 of the flow, using latency

as a primary objective.
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Fig. 3. System flow: behavioral transformation and DFG generation provided
on top of architectural synthesis

B. Transforming TED into DFG

The proposed TED-DFG transformation is achieved by per-

forming iterative cut-based TED decomposition. It is based

on: (a) identifying additive and multiplicative cuts in the graph

that will separate the expression encoded in the TED into

smaller subexpressions, and (b) selecting a cut sequence that

will produce a DFG with desired properties (min latency,

balanced structure, etc.). Each cut partitions the original TED

into subexpressions, which are subsequently partitioned into

smaller TEDs by applying new cuts.

An additive cut, denoted by Ai, partitions the expression dis-

junctively into two sub-expressions. Additive cuts are shown

as vertical bars in the diagrams. A multiplicative cut, denoted

by Mi, partitions the expression conjunctively, and represents

the multiplication of two expressions, above and below the

cut. These cuts are shown as horizontal bars in the TED.

Figure 4 shows a TED for function P = (G + H) + F (I +
J). (To simplify the explanation, TED is represented with

a single terminal 1, with all the edges leading to terminal

node 0 removed.) Cut A3 in the figure partitions function P

disjunctively into (G+H) and F (I +J). This is shown as the

top level decomposition in Figure 5. Cut M1 is an example

of a multiplicative cut. It breakes the right TED subgraph,

Q = F (I + J), generated by applying cut A3, into two

expressions: F and (I+J) to be composed conjunctively (refer

to Figure 5).
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Fig. 4. Cuts in TED for P = G + H + F (I + J).



Each time an additive or multiplicative cut is applied to a TED,

a hardware operator (ADD or MULT) is introduced in the DFG

to perform the required operation on the two subexpressions.

This way, a functional TED representation (composed of al-

gebraic operations) is eventually transformed into a structural

representation (composed of hardware operators), a data flow

graph (DFG).

C. Decomposition Algorithm

The additive (multiplicative) cut is called admissible if it

partitions the TED expression into exactly two subexpressions

in an additive (multiplicative) way, and it does not increase

the number of operations determined by the original TED

representation. Otherwise the cut is called inadmissible. Note

that admissibility is a dynamic property; a cut may be in-

admissible for a TED(k) in step k, and become admissible

for one of the subgraphs of TED(j), at some step j > k.

For example, cut M1 in Figure 4 is admissible only after

the cut A3 has been applied. Subsequent application of M1
makes cut A2 admissible, etc. Finding an admissible cut

sequence is one of the main tasks of this work. A cut-based

decomposition is illustrated in Figure 5 for an admissible

sequence (A3, M1, A2, A1).
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Fig. 5. Decomposition based on cut sequence (A3, M1, A2, A1) on TED
for P in Figure 4.

Figure 6 shows two DFGs derived from two different cut

sequences, (A3, A1, M1, A2) and (A1, A3, M1, A2), applied

to the TED in Figure 4.

The following lemma is an obvious consequence of the cut-

based procedure described above.

*

G H F
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M1

A2

A3

A1

*

G
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H

F

I J
a) b)

Fig. 6. Data flow graphs obtained from different cut sequences for TED of
P in Figure 4: a) DFG for sequences (A3, A1, M1, A2), (A3, M1, A1, A2),
or (A3, M1, A2, A1); b) DFG for sequence (A1, A3, M1, A2).

Lemma: Each admissible cut sequence generates a unique

DFG.

Proof: Each sequence, being admissible, produces a legal

DFG. Furthermore only one such DFG can be obtained for

a given sequence since different DFGs mean different partial

order of DFG nodes (operators), hence different cut sequence.

The resulting DFGs may differ in terms of critical path,

balance structure, etc., which translates into physical character-

istics of the designs (latency, power dissipation due to spurious

computation, etc.), synthesized from these DFGs. An ordering

of cuts is sought that will optimize the DFG structure for a

given design objective (tree balance, longest path, etc).

We use a Branch & Bound algorithm to search for admissible

cut sequences that optimize a particular design objective. Here

we concentrate on minimizing latency, i.e., the critical path of

the expected DFG. The algorithm uses cut admissibility for

branching, and latency of the current solution as the bounding

condition.

III. RESULTS

The TED-to-DFG transformation procedure has been imple-

mented as part of an experimental tool TEDify. [16], available

on the web. The generated DFGs have been compared to those

obtained by the GAUT high-level synthesis system [14] for a

number of DSP designs.

Figure 7 shows the DFG extracted by GAUT from the original

VHDL or C description of an FIR16 filter. This DFG is then

used in subsequent architectural optimization. Figure 8 shows

the DFG obtained by our TEDify tool: a TED was extracted

from the same specification and was subjected to a cut-based

TED decomposition to produce a DFG with minimum latency.

The reduction in the number of multiplier operations, from

16 required by the original specification extracted by GAUT

to 8 produced by TEDify, has been accomplished by the first

two steps of the flow (1: TED variable ordering; and 2: TED

factorization and expression extraction), while the number of

adders remained the same. The latency of a DFG produced in
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Fig. 7. DFG for FIR16 produced by GAUT

step 3 of the flow was reduced from 16 control steps in the

specification produced by GAUT to 5 control steps generated

by TEDify.

Table I shows the pre-synthesis results; it compares the DFGs

(in terms of the number of operators and control steps)

produced by GAUT and TEDify for a number of DSP designs

(written in C or behavioral VHDL). In most cases the latency

was reduced, sometimes drastically.

Table II shows the results for FIR-16 and IIR filter designs

synthesized by GAUT under resource constraints for the

original DFG, extracted by GAUT and for the DFG computed

by TEDify. The resource limits imposed on the number of

ADD and MULT operators are shown in columns 2 and 3 of

the table. The next two columns show the latency (in ns) of

the final architecture for the two DFGs (produced by GAUT
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Fig. 8. DFG for FIR16 produced by TEDify

DFG: GAUT DFG: TEDify

Design # Operations Latency # Operations Latency

ADD MULT c-steps ADD MULT c-steps

IIR 4 4 5 4 0 3

FIR16 15 16 16 15 8 5

Prodmat 48 64 4 48 64 3

Ellip 20 0 11 36 0 7

DCT 48 64 4 48 64 3

TABLE I

PRE-SYNTHESIS RESULTS: COMPARISON OF DFG EXTRACTED FROM THE

INITIAL SPECIFICATION BY GAUT AND DFG PRODUCED BY TEDIFY

and TEDify, respectively), synthesized by GAUT. The delay

of ADD was set to 10 ns and MULT to 20 ns, with the clock

cycle set to 10 ns (these parameters are user-defined and can

be altered).

Benchmark # of Operators Latency(ns)

ADD MULT GAUT TEDify

FIR16 1 1 330 210

1 2 180 150

1 4 170 150

1 8 170 150

2 1 330 210

2 2 180 130

2 4 170 90

2 8 170 90

4 1 330 210

4 2 180 130

4 4 170 90

4 8 170 70

IIR 1 1 90 40

1 2 90 40

2 1 60 30

2 2 60 30

TABLE II

POST-SYNTHESIS RESULTS FOR RESOURCE-CONSTRAINED SYNTHESIS:

COMPARISON OF DESIGN PARAMETERS FOR THE DFG EXTRACTED BY

GAUT AND DFG GENERATED BY TEDIFY

Figure 9 shows the Gantt chart for the FIR-16 filter, synthe-

sized by GAUT using the original DFG (extracted by GAUT),

with the number of resources limited to one ADD and one

MULT. (see row 1 of Table II). Figure 10 shows the Gantt

chart for the same design under the same resource constraint,

synthesized by GAUT using the DFG generated by TEDify.

We can see the difference in latency (210 ns vs 330 ns) and

in the number of registers needed by the two solutions.



Fig. 9. Gantt chart for FIR16 design synthesized with the original DFG extracted by GAUT

Fig. 10. Gantt chart for FIR16 design synthesized with DFG generated by TEDify

IV. CONCLUSIONS

We are currently using TED ordering which minimizes the

number of nodes of the TED, but other objectives that will

more directly address the number of operators (especially the

multipliers) should be investigated. The correlation between

the number of multiplicative edges and multipliers would

suggest that ordering which minimizes the number of those

edges, rather than the number of TED nodes, would be more

appropriate for resource-limited applications. This objective

should also drive the factorization and extraction algorithms,

which are an important part of the TED decomposition

scheme, prior to cut-based transformation onto DFG. Those

and other practical issues are currently under investigation.

Furthermore, the area cost should be properly qualified by

distinguishing multipliers with arbitrary operands from those

that use constants, especially if the constants are powers of

2, in which case the multiplier can be replaced by a less

expensive shifter.

Finally, there are natural limitations inherent to the TED rep-

resentation. Currently TEDs can handle designs with adders,

subtractors, multipliers, shifters and Boolean logic, but cannot

efficiently handle other operators. For this reason the use of

TEDs is currently limited to untimed algorithmic descriptions

of DSP designs.
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