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Abstract

This tutorial paper gives an overview of the implementation aspects related to turbo decoders, where the term turbo

generally refers to iterative decoders intended for Parallel Concatenated Convolutional Codes as well as for Serial

Concatenated Convolutional Codes. We start by considering the general structure of iterative decoders, and the main

features of the SISO algorithm that forms the heart of iterative decoders. Then, we show that very efficient parallel

architectures are available for all types of turbo decoders allowing high speed implementations. Other implementation

aspects like quantization issues and stopping rules used in conjunction with buffering for increasing throughput are

considered. Finally, we perform an evaluation of the complexities of the turbo decoders as a function of the main

parameters of the code.
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I. INTRODUCTION

In 1993, at a moment when there were not many people to believe in the practicability of capacity approaching

codes, the presentation of turbo codes [1] was a revival for the channel coding research community. Furthermore,

the performance claimed in this seminal paper was soon confirmed with a practical hardware implementation [2].

Historical turbo codes, also sometimes called Parallel Concatenated Convolutional Codes (PCCC), are based on a

parallel concatenation of two recursive systematic convolutional codes separated by an interleaver. They are called

turbo in reference to the analogy of their decoding principle with the turbo principle of a turbo-compressed engine,

which re-uses the exhaust gas in order to improve efficiency. The turbo decoding principle calls for an iterative

algorithm involving two component decoders exchanging information in order to improve the error correction

performance with the decoding iterations.

This iterative decoding principle was soon applied to other concatenations of codes separated by interleavers, such

as Serial Concatenated Convolutional Codes (SCCC) [3][4], sometimes called serial turbo codes, or concatenation

of block codes, also named block turbo codes [5][6].

The near-capacity performance of turbo codes and their suitability for practical implementation explain their

adoption in various communication standards as early as the late 1990s: firstly, they were chosen in the telemetry

coding standard by the CCSDS (Consultative Committee for Space Data Systems) [7], and for the medium to

high data rate transmissions in the third generation mobile communication 3GPP/UMTS standard [8]. They have

further been adopted as part of the Digital Video Broadcast - Return Channel Satellite and Terrestrial (DVB-RCS

and DVB-RCT) links [9][10], thus enabling broadband interactive satellite and terrestrial services. More recently,

they were also selected for the next generation of 3GPP2/cdma2000 wireless communication systems [11] as well

as for the IEEE 802.16 standard (WiMAX) [12] intended for broadband connections over long distances. Turbo

coding FEC are used in several Inmarsat’s communication systems, too, such as in the new Broadband Global Area

Network (BGAN [13]) that entered service in 2006. A serial turbo code was also adopted in 2003 by the European

Space Agency for the implementation of a very high speed (1Gbps) adaptive coded modulation modem for satellite

applications [14].

This paper deals with the implementation issues of iterative decoders for concatenated convolutional codes. Both

parallel and serial concatenated convolutional codes are addressed and corresponding iterative decoders are equally

referfed as turbo decoders. Due to the trend of the most recent applications towards an increasing demand for

high-throughput data, special attention is paid to the design of high speed hardware decoder architectures, since it

represents an important issue for industry. The remainder of the paper is divided into six parts. A survey of the

general structure of turbo decoders is presented in Section II. Section III reviews the Soft-Input Soft-Output (SISO)

algorithms that are used as fundamental building blocks of iterative decoders. Section IV deals with the issue of

architectures dedicated to high throughput services. Particular stress is laid on the increase of the parallelism in

the decoder architecture. Section V presents a review of the different stopping rules that can be applied in order

to decrease the average number of iterations, thus also increasing the average decoding speed of the decoder. The
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fixed-point implementation of decoders, which is desirable for hardware implementations is dealt with in Section VI.

Finally, complexity issues, related to implementation choices, are discussed in Section VII.
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II. CONCATENATION OF CONVOLUTIONAL CODES AND ITERATIVE DECODING

A. Short history of concatenated coding and decoding

Code concatenation is a multilevel coding method allowing codes with good asymptotic as well as practical

properties to be constructed. The idea dates back to Elias’s product code construction in the mid 1950s [15]. A

major advance was performed by Forney in his thesis work on concatenated codes ten years later [16]. As stated

by Forney, concatenation is a method of building long codes out of shorter ones in order to resolve the problem of

decoding complexity by breaking the required computation into manageable segments according to the divide and

conquer strategy. The principle of concatenation is applicable to any type of codes, convolutional or block codes.

This first version of code concatenation is now called serial concatenation (SC) of codes. Before the invention of

turbo codes, the most famous example of concatenated codes was the concatenation of an outer algebraic code,

such as a Reed-Solomon code, with an inner convolutional code, which has been used in numerous applications,

ranging from space communications to digital broadcasting of television.

As far as the SC of convolutional codes is concerned, the straightforward way of decoding involves the use of

two conventional Viterbi Algorithm (VA) decoders in a concatenated way. The first drawback that prevents such a

receiver from performing efficiently is that the inner VA produces bursts of errors at its output, that the outer VA

has difficulty correcting. This can be circumvented by inserting an interleaver between the inner and outer VAs, as

illustrated in Figure 1.

Fig. 1. Transmission scheme with the insertion of an interleaver into a serial concatenation of convolutional codes.

The second main drawback is that the inner VA provides hard decisions, thus preventing the outer VA from

using its ability to accept soft samples at its input. In order to work properly, the inner decoder has to provide the

outer decoder with soft information. Amongst the different attempts to achieve this goal, the Soft-Output Viterbi

Algorithm (SOVA) approach calls for a modification of the VA in order to deliver a reliability value for each

decoded bit [17][18]. Like the VA, the SOVA provides a maximum likelihood trellis1 decoding of the convolutional

code which minimizes the probability of a sequence error. However, it is suboptimal with respect to bit or symbol

error probability. The minimal bit or symbol error probability can be achieved with symbol-by-symbol Maximum

A Posteriori (MAP) decoding using the BCJR algorithm [19].

1The trellis diagram is a temporal representation of the code. It represents all the possible transitions between the states of the encoder as a

function of time. The length of the trellis is equal to the number of time instants required to encode the whole information sequence.
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The ultimate progress in decoding concatenated codes occurred when it was observed that a Soft-Input Soft-

Output (SISO) decoder could be regarded as a signal-to-noise ratio amplifier, thus allowing common concepts in

amplifiers such as the feedback principle to be implemented. This observation gave birth to the so-called turbo

decoding principle of concatenated codes [20] in the early 1990s. Thanks to this decoding concept, the 1.5 dB gap

still remaining between what theory promised and what the state of the art in error control coding was able to offer

at the time2 was almost removed. In Figure 1, the receiver clearly exploits the received samples in a sub-optimal

way, even in the case where information passed from the inner decoder to the outer decoder is soft information.

The overall decoder works in an asymmetrical way: both decoders work towards decoding the same data. The outer

decoder takes advantage of the inner decoder work but the contrary is not true. The basic idea of turbo decoding

involves a symmetric information exchange between both SISO decoders, so that they can converge to the same

probabilistic decision, as a global decoder would. The issue of stability, which is crucial in feedback systems,

was solved by introducing the notion of extrinsic information, which prevents the decoder from being a positive

feedback amplifier. In the case where the component decoders compute the Logarithm of Likelihood Ratios (LLR)

related to information data, the extrinsic information can be obtained with a simple subtraction between the output

and the input of the decoder as described in Figure 2.

Fig. 2. General principle of turbo decoding in the logarithmic domain: extrinsic information symmetrically exchanged between the inner and

outer SISO decoders can be obtained with a simple subtraction between the ouput and the input of the decoders.

B. Parallel and serial concatenation of convolutional codes

1) Parallel versus serial concatenation of convolutional codes: The introduction of turbo codes is also the origin

of the concept of parallel concatenation (PC). Figure 3(a) shows the PC of two convolutional codes, as commonly

used in classical turbo codes. With the PC of codes, the message to be transmitted is encoded twice in a separate

fashion: the first encoder processes the data message in the order it is delivered by the source while the second one

encodes the same sequence in a different order obtained by way of an interleaver.

2In the early 1990s, the state of the art in error control coding was the concatenation of a Reed-Solomon code and a memory 14 convolutional

code proposed for the Galileo space probe [21]. This scheme was decoded using a four stage iterative scheme where hard decisions were fedback

from the Reed-Solomon decoder to the Viterbi decoder.
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6 E. BOUTILLON, C. DOUILLARD, G. MONTORSI

Fig. 3. General structures of a PC (a) and an SC (b) of two convolutional encoders. In (a), the encoded sequence � is obtained through

the concatenation of the information or systematic sequence and the redundancy sequences provided by the two constituent encoders, ��������	��
�������
.

The overall coding rates for SC and PC, ��� and ��� , are equal to

���������	���

and

����� ��� �"!
� �$# � !&% � � � ! � ���'��!( %*) ( % � �,+') ( % � !,+

where � � and � � refer to the coding rates of the inner and outer constituent codes in the SC scheme and ��� and

� ! refer to the rates of code 1 and code 2 in the PC scheme.

Historical turbo codes [1]-[22] are based on the PC of two Recursive Systematic Convolutional (RSC) codes.

Firstly, the choice of RSC codes instead of classical Non Recursive Convolutional (NRC) codes has to be found

in the comparison of their respective error correction performance. An example of such memory length -*�/.
codes is shown in Figure 4. Since they have the same minimum Hamming distance3, the observed error correcting

performance is very similar for both codes at medium and low error rates. However, the RSC code performs

significantly better at low signal to noise ratios [22].

However, the reason why using RSC codes is essential in the construction of concatenated convolutional codes

was explained through bounding techniques. It was shown in [23][24] that, under the assumption of uniform

3The minimum Hamming distance 0214365 of a code is the smallest Hamming distance between two any different encoded sequences. The

correcting capability of the code is directly related to the value of 0,14365 .
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Fig. 4. (a) Classical non recursive non systematic onvolutional code with ��� �
memory units (8-state code). (b) Equivalent recursive systematic

version of (a) code.

interleaving4, the bit error probability in the low error region,
���

, varies asymptotically with the interleaver gain:

�������
	�����
(1)

where
�

is the interleaver length and ������� is the maximum exponent of
�

in the asymptotic union bound

approximation. In the PC case, the maximum exponent is equal to � ����� � ( %���� ��� , where ��� ��� is the minimum

input Hamming weight of finite error events. This result shows that there is an interleaving gain only if ��� ����� (
,

which is true for RSC codes ( ��� ��� �! and � ����� � % (
) but not for NRC codes ( ��� ��� � (

and � ����� �#" ). As for

SC schemes, if both constituent codes are NRC, the same problem appears. It was shown that, for SCCC, at least

the inner code has to be recursive [25] in order to ensure an interleaver gain. Provided this condition is satisfied,

the maximum exponent is equal to � ����� � %
$&% �('�)+* ,.- �! / , where 0 � ���21 � is the minimum Hamming distance of the

outer code.

This analytical analysis also allows us to compare the SC and PC performance at low error rates: serial turbo

codes perform better than parallel turbo codes in this region because their interleaver gain is larger. As a counterpart,

the opposite behavior can be observed at high error rates, for the same overall coding rate. This can be explained

through the analysis of extrinsic information transfer characteristics based on mutual information, the so-called

EXIT charts [26].

2) Block coding with convolutional codes: Convolutional codes are not a priori well suited to encode information

transmitted in block form. Nevertheless, most practical applications require the transmission of data in block fashion,

the size of the transmitted blocks being sometimes reduced to less than a hundred bits (see e.g. the 3GPP turbo

code [8] with a 40-bit minimum block length). In order to properly decode data blocks at the receiver side, the

decoder needs some information about the encoder state at the beginning and the end of the encoding process.

4A uniform interleaver is a probabilistic device that maps a given sequence of length 3 and Hamming weight 4 into all distinct permutations

of length 3 and Hamming weight 4 with equal probability. The uniform interleaver is representative of the average performance over all

possible deterministic interleavers.
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8 E. BOUTILLON, C. DOUILLARD, G. MONTORSI

The knowledge of the initial state of the encoder is not a problem, since the “all zero” state is, in general, forced.

However, the decoder has no special available information regarding the final state of the encoder and its trellis.

Several methods can solve this problem, for example:

� do nothing, that is, no information concerning the final states of the trellises is provided to the decoder. The

trellis is truncated at the end of each block. The decoding process is less effective for the last encoded data

and the asymptotic coding gain may be reduced. This degradation is a function of the block length and may

be low enough to be accepted for a given application.

� force the encoder state at the end of the encoding phase for one or all constituent codes. This solution was

adopted by the CCSDS and UMTS turbo codes [7][8]. The trellis termination of a constituent code involves

encoding - extra bits, called tail bits, in order to make the encoder return to the all-zero state. These tail bits are

then sent to the decoder. This method presents two drawbacks. Firstly, the spectral efficiency of the transmission

is slighly decreased. Nevertheless, this reduction is negligible except for very short blocks. Next, for parallel

turbo codes, tail bits are not identical for the termination of both constituent codes, or in other words, they

are not turbo encoded. Consequently, symbols placed at the block end have a weaker protection again. As for

serial turbo codes, the tail bits used for the termination of the inner coder are not taken into account in the

turbo decoding process, thus leading to a similar problem. However, the resulting loss in performance is very

small and can be acceptable in most applications.

� adopt tail-biting [27]. This technique allows any state of the encoder as the initial state. The encoding task is

performed so that the final state of the encoder is equal to its initial state. The code trellis can then be viewed

as a circle, without any state discontinuity. Tail-biting presents two main advantages in comparison with trellis

termination using tail bits to drive the encoder to the all-zero state. Firstly, no extra bits have to be added

and transmitted. Next, with tail-biting RSC codes, only codewords with minimum input weight 2 have to be

considered. In other words, tail-biting encoding avoids any side effects, unlike classical termination. This is

particularly attractive for highly parallel hardware implementations of the decoder, since the block sides do

not require any specific processing. In practice, the straightforward circular encoding of a data block consists

of a two-step process: at the first step, the information sequence is encoded from the all-zero state and the

final state is stored. During this first step, the output bits are ignored. The second step is the actual encoding,

whose initial state is a function of the final state previously stored. The double encoding operation represents

the main drawback of this method, but in most cases it can be performed at a frequency much higher than the

data rate. An increased amount of memory is also required to store the state information related to the start

and the end of the block between iterations.

C. Iterative decoders for concatenated convolutional codes

The decoding principle of PCCC and SCCC is shown in Figures 5 and 6. The SISO decoders are assumed

to process LLRs at their inputs
� )�����+ and outputs

� )�� " + (the notations used in the figure are those adopted in

Section III).
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In the PC scheme of Figure 5, each SISO decoder computes the extrinsic LLRs related to information symbols
� ) � � � � + and

� ) � ! � � + , using the observation of the associated systematic and parity symbols coming from the

transmission channel
� )���� � � + and

� )�� ! ����+ , and the a priori LLRs
� ) � ! � � + and

� ) � � ����+ . Since no a priori LLRs are

avalaible from the decoding process at the beginning of the iterations, they are then set to zero. For the subsequent

iterations, the extrinsic LLRs coming from the other decoder are used as a priori LLRs for the current SISO decoder.

The decisions can be computed from any of the decoders. In the PC case, the turbo decoder structure is symmetrical

with respect to both constituent decoders. However, in practice the SISO processes are executed in a sequential

fashion: the decoding process starts arbitrarily with either one decoder, SISO1 for example. After SISO1 processing

is completed, SISO2 starts processing and so on. In the SC scheme of Figure 6, the decoding diagram is no longer

symmetrical. On the one hand, the inner SISO decoder computes extrinsic LLRs
� ) � � � � + related to the inner code

information symbol, using the observation of the associated coded symbols coming from the transmission channel
� )�� � � � + and the extrinsic LLRs coming from the other SISO decoder

� ) � � ����+ . On the other hand, the outer SISO

decoder computes the extrinsic LLRs
� )�� � � � + related to the outer code symbols using the extrinsic LLRs provided

by the inner decoder. The decisions are computed as a posteriori LLRs
� ) � � � � + related to information symbols

by the outer SISO decoder. Although the overall decoding principle depends on the type of concatenation, both

turbo decoders can be constructed from the same basic building SISO blocks, as described in Section III.

Fig. 5. The turbo decoding principle in the case of parallel turbo codes. Notations are taken from Figure 3(a). � ���	�2� and � �
�	�'� refer to the

LLRs at the input and output of the SISO decoders.

For digital implementations of turbo decoders, the different processing stages present a non-zero internal delay,

with the result that turbo decoding can only be implemented through an iterative process. Each SISO decoder

processes its own data and passes it to the other SISO decoder. One iteration corresponds to one pass through each

of all the SISO decoders. One pass through a single SISO decoder is sometimes referred to as half an iteration of
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10 E. BOUTILLON, C. DOUILLARD, G. MONTORSI

Fig. 6. The turbo decoding principle in the case of serial codes. Notations are taken from Figure 3(b). � � ���2� and � ��� �'� refer to the LLRs

at the input and output of the SISO decoders.

decoding.

The concatenated encoders and decoders can work continuously or block-wise. Since convolutional codes are

naturally better suited to encode information in a continuous fashion, the very first turbo encoders and decoders

[2][28] were stream-oriented. In this case, there is no constraint about the termination of the constituent encoders,

and the best interleavers turned out to be periodic or convolutional interleavers [29][30]. The corresponding decoders

call for a modular pipelined structure, as illustrated in Figure 7 in the case of parallel turbo codes. The basic decoding

structure has to be replicated as many times as the number of iterations. In order to ensure the correct timing of

the decoding process, delay lines have to be inserted into the decoder. The decision computation, not shown in the

figure, is performed at the output of SISO decoder 2, at the last iteration stage.

However, as far as block decoding is concerned, the simplest decoding architecture is based on the use of a

single SISO decoder, which alternately processes both constituent codes. This standard architecture requires three

storage units: a memory for the received data at the channel and decoder outputs (LLR ��� memory), a memory for

extrinsic information at the SISO output (EXT memory), and a memory for the decoded data (LLR � ��� memory).

The instantiations of this architecture in the PC and SC cases are illustrated in Figures 8 and 9. In the parallel

scheme, the decoding architecture is the same for both component codes, since they play the same role in the

overall decoding process. The SISO decoder decodes code 1 or 2 using the corresponding channel data from the

LLR ��� memory and the a priori information stored in the EXT memory at the previous half-iteration. The resulting

extrinsic information is stored in the EXT memory and then used as a priori information at the SISO input when the

other code is processed, at the next half-iteration. The decoded data are written into the LLR � ��� memory at the last

DRAFT January 29, 2007



PROC. OF IEEE: ITERATIVE DECODING OF CONCATENATED CONVOLUTIONAL CODES: IMPLEMENTATION ISSUES 11

Fig. 7. Pipelined architecture of the turbo decoder of Figure 5, in the case of continuous decoding of PCCC. The a priori LLRs at the input

of the first iteration stage are set to 0. The decision computation, performed at the last iteration stage, is not shown.

half-iteration of the decoding process. On the contrary, in the SC scheme, the architecture elements are not used in

the same fashion for inner and outer code processing. The inner decoding process, shown in Figure 9(a), is similar

to the elementary decoding process in the PC case, whereas the outer decoding process, shown in Figure 9(b), does

not use the LLR ��� memory contents or the a priori information input
� ) � � ����+ . The decoded data are written into

the LLR � ��� memory after the last processing round of the outer decoder.
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12 E. BOUTILLON, C. DOUILLARD, G. MONTORSI

Fig. 8. Standard architecture for block-wise decoding of parallel turbo codes.

Fig. 9. Standard architecture for block-wise decoding of serial turbo codes: (a) refers to the inner decoder, (b) refers to the outer decoder.
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III. SOFT INPUT SOFT OUTPUT ALGORITHMS

Soft Input Soft Output (SISO) algorithms are the fundamental building blocks of iterative decoders. A SISO is in

general a block that accepts messages (to be defined later) about both the input and output symbols of an encoder

and provides extrinsic messages about the same symbols. The extrinsic message is generated by considering the

a priori constraints that exist between the input and output sequences of the encoder. In this section we will give

more precise definitions of the “message” and on the input output relationships of a SISO block. Moreover we will

show efficient algorithms to perform SISO for some special types of encoders.

A. Definition of the input and output metrics

A SISO module generally works associated to a known mapping
�

(encoding) between input and output alphabets.

� � � ) � + � )�� ��) � +������������ � ) � + + �
	�� � 	� (2)

where � � )�� ����������������+ and � � )��,������������� � + are the input and output sequences of the encoder, respectively. The

alphabets � and  are generic finite alphabets and the mapping is not necessarily invertible.

A SISO module is a four port device that accepts some messages of the input and output symbols of the encoder

and provides homologous output extrinsic messages.

We will consider the following two types of normalized messages:

Likelihood ratio (LR) �
)�� +�� � )�� � � +� )�� � " + �

represents the ratio between the likelihood of the symbol being � and the likelihood of being " .

Log-Likelihood ratio (LLR)
� )�� + �! #"%$ � )�� � � +� )�� � " + &('*)%+ �-, �

�
)�� +

is its logarithmic version.

Normalized messages are usually preferred to not normalized ones as they allow the decoder to save one value

in the representation. In fact, by definition

�
) " + � (

and
� ) " + � " . In particular, when the variable � is binary

( � 	/. " � (�0 ) LRs and LLRs can be represented with a scalar

�
� �

�
)�� � ( + 5 and

� � � � )�� � ( + so that one can

write �
)�� + � )

�
� + �

� )�� + � � � � (3)

The sequence of LRs is always assumed to be independent at the input of SISO6 so that the likelihood ratio of

the sequences � and � is the product of the likelihoods of their constituent symbols�
) � + �

�1
�#2 �

�
)�� � +��

�
)�� + �

�1
3 2 �

�
)�� 3 +

5We have kept the index 4 with the binary LLR to remind the reader the name of underlying symbol.

6This is actually the basic assumption of iterative decoding, which otherwise would be optimum.
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14 E. BOUTILLON, C. DOUILLARD, G. MONTORSI

and equivalently its LLR:

� ) � + �
��

� 2 �
� )�� � +�� � )�� + �

��
3 2 �

� )�� 3 +
Furthermore, assuming that the sequence of LR of input and output symbols are mutually independent, the LR

of a pair ) � � � + , with the constraint of being a valid correspondence can be obtained as

�
) � � � + �

�� � �
) � +

�
) � ) � + +�� c=f(u);

" � otherwise.

B. General SISO relationships

The formal SISO input output relationships are obtained with the independence assumption constraining the set of

input/output sequences to be in the set of possible mapping correspondences. Using LR messages the relationships

are �
)�� � � � +

�
)�� � � � + � �����
	 � �' 2 � '

�
) ��� ����+ � ) � ) �� + ����+

� � � 	 � �'�2��
�
) � � ����+ � ) � ) � � + ����+ (4)

�
)�� 3 � � +

�
)�� 3 � � + � � � � 	 ��� + � � , 2�� �

�
) ��� ����+ � ) � ) �� + ����+

� � � 	 ��� + � � , 2��
�
) � � ����+ � ) � ) � � + ����+ (5)

where we have introduced the letters “ � ” and “
�

” to distinguish between input and output messages.

In the logarithmic domain (LLRs), products translate to sums and sums are mapped to the operator

������� ) � � � � ! + �  #"%$ ) '*)�� # '*) � + � �!�"� ) � � � � ! + #  #"%$ ) ( # '�#$ )��%#�)&� $ + (6)

and (4) and (5) (LLRs) become

� )�� � � � + # � )�� � � � + � ������ � 	 � �'�2 � ' �(' � ) � � � � + # � ) � ) � � + ����+*) % ������ � 	 � �'�2�� �(' � ) � � � � + # � ) � ) � � + ����+*) (7)

� )�� 3 � � + # � )�� 3 � � + � �!�"�� � 	 � � + � � , 2�� � �(' � ) � � ����+ # � ) � ) � � + ����+*)�% ������ � 	 � � + � � , 2�� �+' � ) � � ����+ # � ) � ) � � + � � +�) (8)

The algorithm obtained from the first type of messages (LR) is called multiplicative (sum-prod) while the second

(LLRs) is called additive (max*-sum), or log-MAP.

The ����� � operator requires in general two sums and a look-up table. The look-up table size depends on the

required accuracy and the whole correction term can be avoided, giving rise to a simpler and suboptimal version of

the SISO (max-sum or max-log-MAP). To compensate the effect of neglecting the look-up table several strategies

are possible, like scaling or offsetting the messages. These techniques are described in [31], [32]

Independently from the metric used, the input-output relationships (4),(5) or (7),(8) have a complexity that grows

with the size of the code. This complexity can be affordable for very simple mappings but becomes impractical for

most of the mappings used as encoders.

In the following sections we will describe some particular cases where this computation can be simplified.
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C. Binary mappings

As we have seen, for binary variables LR and LLR have the appealing feature of being able to be represented

as single values, in particular, using relationships (3) we have:

�
� � ) � + # �

� � ) ��+ � ������ � 	 � � � 2 � �
�� ��
�#2 � �

�� � � ' ) ��+ # ��
3 2 � � 3 )

� � + � � � ) � +���
% ������ � 	 � � � 2�� �

�� ��
�#2 � �

�� � � ' ) ��+ # ��
3 2 � � 3 )

� � + � � � ) � + �� (9)

� � � ) � + # � � � ) ��+ � ��������
	 � � + � � , 2 � �
�� ��
� 2 � �

�� � � ' ) ��+ # ��
3 2 � � 3 )

� � + � � � ) � + ��
% ������ � 	 � � + � � , 2�� �

�� ��
� 2 � �

�� � � ' ) ��+ # ��
3 2 � � 3 )

� � + � � � ) � +��� (10)

D. SISO relationships on trellises

In this section we will explain how to simplify the computation of (4) and (5), or their logarithmic counterparts

(7) and (8) when the mapping is represented over a trellis. As the correspondence between the multiplicative and

additive domain requires only the use of different operators we will describe the algorithm in the multiplicative

domain.

A trellis is an object characterized by the concatenation of

�
trellis sections ��� . Each trellis section (see Figure 10)

consists of a set of starting states 	 � 	�
 � , an input set ��� 	� � , the set of edges defined as the pair ' � � ) 	 � ����� + 	� � � 
 ���  � and two functions � � ) ' �+ and � � ) ' �+ that assign to each edge a final state in 
 � - � and an output symbol

in � � .
A trellis is associated to a mapping (2) by making a correspondence of the

�
trellis section’s input and output

alphabets with the � input and � output alphabets with the mapping:�� � 2 �  � �
��

�#2 �
� ��� � 2 � ��� �

��
3 2 �

 3 �
where � denotes the Cartesian product of sets.

The alphabets of the trellis sections must then be the Cartesian product of a set of sub-alphabets of the original

mapping:  � � �
����� � � �

��� � �
3 � � �  3

where . �!� 0 and . " � 0 are a partition of the sets of indexes of the input and output alphabets. Furthermore, the

cardinality of 
 � and 
 � - � is always one.
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edge

starting state

edge

ending state

Fig. 10. A trellis section and related functions. The starting state, the ending state, the input symbol and the output symbol. Note that edge is

defined as the pair starting state, input symbol.

Any mapping (2) in general admits several time varying trellis representations, in particular, the number of trellis

sections � and the alphabets defining each trellis section can be arbitrarily fixed. Finding a trellis with minimal

complexity (i.e., minimal number of edges as explained in [33]) is a rather complex task and is out of the scope

of this tutorial paper.

A trellis representation for a mapping allows us to interpret the mapping itself as paths in the representing

trellis. This correspondence allows us to build efficient encoders based on time varying finite state machines. More

importantly, this same structure can be exploited for the efficient evaluation of expressions like those in (4) and (5)

or (7) and (8) that involve associative and distributive operators.

In fact due to the distributive and associative properties of the operators appearing in (4), (5), it is possible to

compute the required output extrinsic LRs with the following algorithm ([19])

1) From the likelihoods of the alphabets of the mapping �������	��
� and ����������
�� compute the likelihoods of the

alphabets of the trellis sections and from them the likelihoods of the edges (branch metrics)

��� ��� � ��� ������ � �����!�"��
��$#%� �'&)(��
(11)

� � ��* � ��� ��+�-,.� ���/� � ��
��)#%* � &10 �
(12)

2 3 � ��4 � �5� �5� ��� � � ��� ��* � ��4 � ���
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Fig. 11. Correspondence between a mapping and a time varying trellis.

2) Compute the forward and backward recursions according to

� � - � ) 	 + � �
� � 	 � � 2 � � � ) 	 � +	��
 � ) ' � +� � ( ���������

�
% (

(13)

� � ) 	 + � �
� � 	 � � 2 � � � - � ) ��� +	��
 � ) ' � +� �

�
���������  (14)

with initializations

� � ) " + � � � - ��) " + � (

Periodically, normalization at this point may be introduced to avoid overflows. The normalization can be

performed by dividing all state metrics by a reference one. Note however that in the additive version

normalization can be avoided by using complement-two representation of state metrics using a technique

that can be found in the literature relative to Viterbi decoders.

3) Compute the a posteriori likelihood of edges,

� � ) ' � + � � � ) 	 � +	��
 � ) ' �+	� � � - ��) � � +�� ' ��� � ( ���������
�
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( )( )1l l lA s p e+ =( )( )l l lA s e
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( ) such that le f e s∀ =

( )( )1l l ls p eα + =( )( )l l ls eα

( )l eγ

*max

( ) such that le f e s∀ =
Fig. 12. Implementation of forward recursion in the additive and the multiplicative version.

4) Finally compute the desired extrinsic output LRs as�
)�� � � � + �

(�
)�� � � � + � � � 	 � ' + � � , 2 � ' � ) ' �+

� � � 	 � ' + � , 2�� � ) ' �	+ (15)

�
)�� 3 � � + �

(�
)�� 3 ����+ � � � 	 � � + � � , 2�� � � ) ' �+

� � � 	 � � + � , 2�� � ) ' �+ (16)

where � in (15) (resp. (16)) is the index of the trellis section associated to the symbol � � (resp. � 3 ).
If no information is available for some of the symbols involved in the mapping, their corresponding LR should

be set to the vector
�

and their LLR to the vector � . If no extrinsic information is required for some of the symbols

involved in the mapping, the corresponding final relationships (15) or (16) can be avoided.

Due to the finite memory of the trellis, forward and backward recursions (13) and (14) generally are such that
� � -�� ) 	 + and

� � # � ) 	 + are independent from
� � ) 	 + (resp.

� � ) 	 + ) for sufficiently large � . This fact also allows the

algorithm to work when messages are available only for a contiguous subset of trellis sections. See section III-F

for more details.

In Figure 12 we show as an example the block diagram of the forward recursion in its multiplicative and additive

forms. Note that in the additive form we denote with lower case Greek letters the logarithmic counterparts of the

variables defined for the multiplicative version.

The described SISO algorithm is completely general and can be used for any mapping and trellis. In the following

we will consider some special cases of mappings where the algorithm can be further simplified.

� Convolutional encoders: The trellis of a convolutional encoder has trellis sections that do not depend on the

time index. A convolutional encoder has a constant set of states, a constant input and output alphabet and

constant functions � ) ' + and � ) ' + . Convolutional encoders define a mapping between semi-infinite sequences
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when the starting state is fixed.  �
� ��
� 2�� � �

� �
� ��
3 2��  3

� Binary Convolutional encoders: have the additional constraint of having � � �  3 � � ! . For them each trellis

section is characterized with a set of ��� input bits and ��� output bits. LR and LLR are single quantities as

shown in (3), so that the branch metrics can be computed simply as

� � )�� + �
� � # ��
�#2�� � � � � � ' ) ��+

� � ) � + �
� � # ��
3 2�� � 3 � � � � ) ��+

� Linear Binary Convolutional encoders: For linear encoders we have the additional linear property

� ) ����� ��� + � � ) ��� + � � ) ��� +
The linearity of an encoder does not simplify the SISO algorithm. However linear encoders admit dual encoders

and the SISO algorithm can be performed with modified metrics (as we will see in the next section) on the

trellis of the dual code. This fact may lead to considerable savings especially for high rate codes that have

simpler dual trellis.

� Systematic encoders: Systematic encoders are encoders for which the output symbol � � is obtained by

concatenating the input symbol � � with a redundancy symbol 	 � :� � � )������ 	 �	+
For them the computation of metrics (11) and (12) is simplified as the metric on � � can be incorporated in

those of � � :
� � ) � � + � 1

����� �
�
)�� � ����+

�
)�� � ����+ 1

3 � � ��
 � �
�
)�� 3 ����+ �

where the first product refers to the systematic part of the label � � and the second part to the redundancy 	 � .
E. SISO algorithm for dual codes

In the previous section we saw that the linear property of the code does not simplify the SISO algorithm. However,

when the encoder is linear and binary7 we recall a fundamental result first derived in [34] and restated here.

7The result can be easily extended more generally to finite fields.
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Defining the new binary messages called reflection coefficients � � from the LR

�
� as

� � � ( %
�
�( #

�
�

and the correspondent sequence reflection coefficients

� )�� +�� �1
3 2 � ) � � � + � �

The following relationship holds true

� )�� 3 � � + � )�� 3 ����+ � ��� � 	 � �� + ��� , 2�� � � ) ��� ) ��� + � � +
��� �
	 � �� + � � , 2�� � ) � � ) � � + ����+ (17)

where � � is the mapping that defines the dual encoder, i.e. the set of sequences orthogonal to the code. This

relationship, formally identical to (5), can be used to perform SISO decoding of high rate linear binary encoders

with a complexity that is the one associated to their duals ([35], [36], [37]). A very important case where this

property is exploited is in the LDPC decoding for the efficient SISO computation at the check nodes side, as the

dual code of the ) � � � % ( + parity check code is the simple two-word ) � � ( + repetition code.

Although elegant and simple, this approach may sometimes lead to numerical problems in fixed point implemen-

tations and in these cases the approach based on puncturing a low rate mother code is still preferred.

F. Initialization of forward and backward recursions and windowing

For SISO on convolutional codes the initialization of forward and backward recursion, as well as the order in

which these recursions are performed, leads to different solutions. In Figure 13 we show, pictorially, the most

relevant approaches.

In the upper left part of the figure, we represent a possible solution when a single SISO processes a block of

data. The data is divided into adjacent equally sized ”windows” and the SISO processes sequentially the set of

windows in natural order. It first performs the forward recursion, storing the result in a temporary buffer and then

performs a backward recursion and computation of the outputs at the same time. Since the SISO processes the

windows sequentially and in natural order, the forward recursion results can be propagated to the next window for

correct initialization. Backward recursion on the other hand needs to be properly initialized on each window and

an additional unit must be deployed to perform this task (dashed lines).

Other scheduling possibilities, like performing first the backward and then the forward recursion are examined

in [38] and give rise to similar overheads.

When parallel processor are used (top, right), initialization of the forward recursions are needed and an additional

unit to perform this task must be deployed.

A more elegant and efficient solution that eliminates the overheads of initializations is reported in the bottom

part of the figure. In this case we exploit the fact that SISO processors are employed in an iterative decoder. The

results of the forward and backward recursion at a given iteration are propagated to the adjacent (previous or next)

window in the next iteration. This approach leads to negligible performance losses provided that the window size

is large enough.
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Fig. 13. Possible solutions for initialization of forward and backward recursions.
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IV. PARALLEL ARCHITECTURES FOR TURBO DECODERS

In this section, we consider the basic SISO decoder architecture with four processing units (branch metric, forward

recursion unit, backward recursion unit and output computation unit, see Figure 21). This SISO is able to perform

one trellis step during one clock cycle. The maximum throughput achievable by the turbo decoder using this SISO

is � clk
��� � � � � , where � � � is the number of iterations of the decoding process and � clk is the clock frequency of the

architecture. The factor
�

indicates the minimum number of trellis stages per information bit (
� �  for a PCCC

turbo decoder,
� �# # �� ' for a SCCC turbo decoder)8.

There are three solutions to increase the throughput of the decoder: increasing the parallelism of the decoder,

increasing the clock frequency and finally, decreasing the number of iterations. This last solution will be considered

separately in V.

Theoretically, the increase of parallelism can be obtained at all the levels of the hierarchy of the turbo decoding

algorithm, i.e., first at the turbo decoder level, second at the SISO level (duplication of the processing unit performing

an iteration); third at the half iteration level (duplication of the hardware to speed up a SISO processing); and finally,

at the trellis stage level.

A. Codeword pipe-line and parallelisation

The first method proposed in the literature to increase the throughput of a turbo decoder [2] is the simplest one:

it dedicates a processor for each half iteration. Thus, the  � � � processors work in a linear systolic way. While the

first one processes the first half iteration of the newest received codeword of index � , the second one processes

the second half iteration of the previous received codeword (index � % (
), and so on, up to the  � th� � processor that

performs the last iteration of the codeword of index � %  � � � . Once the processing of a half iteration is finished,

all codewords are shifted in the linear processor array. This method is efficient in the sense that the increase

of throughput is proportional to the increase of the hardware:  � � � processors working in parallel increase the

throughput by a factor of  � � � . Another efficient alternative involves instanciating several turbo decoders working

in parallel on independent codewords using demultiplexing.

Nevertheless, both methods imply a large latency of decoding and also require the duplication of the memories

for extrinsic and intrinsic information. To avoid the memory duplication, it is far more efficient to use parallelism

at the SISO level in order to speed up the execution time of an iteration.

B. Parallel SISO architecture

The idea is to use a parallelism to perform a SISO decoder, i.e., use several independent SISO decoders working

on the same codeword. To do so, the frame of size
�

(
� � � � ��� in the case of the inner code of the SCCC

scheme,
� � � otherwise) is sliced into

�
slices of size � � � � �

and each slice is processed in parallel by
�

8This maximum decoding rate is obtained when there is no idle cycle (to empty and/or initialized pipe-line) between two half iterations. In

[39], a technique to obtain this condition is presented.
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independent SISO decoders (in the following, we assume that the size
�

of the frame is a multiple of
�

). This

technique implies two types of problems which should be solved: first, the problem of data dependency within an

iteration; and second, the problem of the memory collisions in the parallel memory accesses.

Problem of data dependency: Since forward processing is performed sequentially from the first symbol � � to

the last symbol � � # � , the question arises of how to start simultaneously
�

independent forward recursions starting

respectively from the symbols � � ����� # � ��� ! � # � ����������� � # � # � ? The same question also arises for the backward

recursion in a symmetrical way. An elegant and simple solution to this problem was proposed independently by

Blankenship et al. [40] and Giulietti et al. [41] in 2002. This solution is derived from the sliding window technique

defined in Section III-D. The idea is to relax the constraint of performing the entire forward (respectively, backward)

processing within a single iteration (see Figure 13). Thus, the
�

final state metrics of the forward processing of

the
�

slices obtained during the
� th� � iteration are used as initial states, after a circular right shift, of the forward

processing of iteration
� # (

(
�

varying from 1 to � � � ). The same principle also stands for the backward recursion.

Memory organization: In the natural order, the organization of the memory can be very simple: the first � data

( � � to ��� # � ) are stored in a first Memory Block (MB), then the next � data ( ��� ����������� ! � # � ) are stored in a second

MB and so on. This mapping is called direct mapping. With direct mapping, the processing of the first dimension is

straightforward: each SISO unit has a direct access to its own memory. For the interleaved dimension, the problem

is more complex. In fact, the first SISO needs to process sequentially the symbol ��� + ��, ����� + ! , ������������� + � # � , . Since

at a given time � , � ) � + can be stored in any of the
�

memories, a network has to be created in order to connect

the first SISO unit to the
�

memory banks. Similarly, a network should also be created to connect the
�

memory

banks to the
�

SISO units. However, a conflict in the memory access can appear if, at a given time, two SISO

units need to access data stored in the same memory bank.

The problem of memory conflict has been widely studied in the literature and so far, three kinds of solutions

have been proposed: solution at the execution stage, solution at the compilation stage and solution at the design

stage. These three solutions are described below.

Formulation of the problem: Since each stage of a trellis needs inputs (intrinsic information, a priori information

and the associated redundancy) and generates an output (extrinsic and/or LLR information), the execution of
�

trellis stages at each clock cycle requires a memory bandwidth of
�

read/write accesses per clock cycle. Assuming

that a memory bank can be read and written at each clock cFycle, at least
�

memory banks of size � are required

to provide both the memory capacity and the memory bandwidth. Let us describe the sequence of read/write

in the memory bank in the natural and interleaved order. At time � , the
�

symbols accessed by the
�

SISO

processors are in the natural order 	 �� � . � � � # � ��������� � # ) � % ( + � 0
and in the interleaved order 	 !� �. � ) � +�� � ) �4# � + ��������� � ) �4# ) � % ( + � + 0 . The memory organization should allow, for all � � ( �#� � , a parallel

read/write access for both set 	 �� and 	 !� . In the remainder of the paper, we assume that the memory address 

corresponds to the bank � ��� at address ( 
 � "���� ) where � � � denotes the integral part function.

The generic parallel architecture is shown in Figure 14. An iteration on this architecture works on two steps.

When decoding the first encoder, the � ��� memory bank is accessed thanks to its associated address generator (AG).
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Fig. 14. Generic architecture of a parallel turbo decoder. At the end of each iteration, the final states
� 1 of forward processing (respectively

backward processing � 1 ) are exchanged to the right (respectively, left) SISO decoder in a circular way. Parameter � represents the number of

parallel SISO decoder. Parameter � represents the memory size of each slice.

The address generator delivers a sequence of addresses � �� ) � +�� 2 ����� � . The data coming from the memory banks are

then sent to the SISO units through the permutation network. The permutation network shuffles the data according

to a permutation defined at each cycle � by � � ) � + . The outputs of the SISO units are stored in the memory banks

in a symmetrical way, thanks to the permutation network9. At the end of an iteration, the final forward recursion

metrics � � (respectively backward 	 � ) are sent to their right (respectively left) neighbor. Those metrics are stored

temporarily during the processing of the second encoder. They are used as the initial state of the trellis at the

beginning of the next iteration when the first encoder is processed again. Note that when tail-biting code is used,

the left-most and right-most SISO also exchange their � � and 	 � values. The decoding of the second encoder is

similar: the � �� ) � + � 2 �
��� � are replaced by � !� ) �	+ � 2 ����� � and � � ) � + by � ! ) �	+ .

9The permutation network is composed in fact of two shuffle networks, one to shuffle the data between the SISOs and memory banks during

a write access, the other one to shuffle the data during a read access between memory bank and SISO unit.
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1) Solution at the execution stage: In this family of solutions, we encompass all solutions using direct mapping

with some extra hardware or features to tackle the problem of memory conflict during the interleaved dimension

processing. Two kinds of solutions have been proposed: the first one is technological, it uses memories with a

bandwidth higher than necessary in order to avoid memory conflict. For example, if two read/write accesses in a

memory cannot be performed in a single SISO clock cycle, then all double access memory conflicts are solved.

Note that this solution is not efficient in terms of area and power dissipation. A more efficient solution was proposed

by Thul et al. [42]. It relies on a “smart” permutation network that contains small FIFO modules to smooth the

memory access. These FIFO modules allow a fraction of the write access to be delayed and a fraction of the

read access to be anticipated so that, at each cycle, the whole memory bandwidth is used. In order to limit the

size of the FIFO modules, Thul et al. also proposed to “freeze” the SISO module in order to solve the remaining

memory conflict. This solution is generic and efficient but requires some additional hardware and extra latency in

the decoding process [43].

2) Solution at the compilation stage: This solution was proposed by Tarable et al. [44]. The authors show that,

regardless of the interleaver and the number
�

of SISO units, there is always a memory mapping free of read/write

conflict access. A memory mapping is a permutation � on the set . " �#� � % (�0
that associates to the index � the

memory location 
�� � ) �	+ . This non trivial mapping ( ���� � 0 ) implies non-trivial spatial permutations in both

natural ( � � ) �	+ �� � 0 � � � " � � � ) and interleaved order ( � ! ) �	+ �� � 0 � � � " � � � ). This method is general but has two

main drawbacks: the complexity of the network and the amount of memory to store the different configurations of

the network during the decoding process. In fact, the network should perform all possible permutations. It can be

implemented in one stage by a crossbar at a cost of a very high area, or in several stages by an ad hoc network (a

Benes network, for example [45]). In this later case, both complexity and latency of the network is multiplied by

a factor 2 compared to the simple barrel shifter (see section IV-B.3). Moreover, memories are required to store the

address generator sequences and the  � permutations � � ) � + � 2 ����� � and � ! ) � + � 2 ����� � . Assuming a multiple frame,

multiple rate decoder, the size of the memory to store each interleaver configuration may be prohibitive.

In conclusion to this sub-section, [44] proposes to deal with the problem of a turbo decoder of different size by

defining a single interleaver of maximum size. Codes of shorter length are then generated by simply pruning the

original interleaver. This type of interleaver is named prunable collision-free interleaver.

3) Solution at the design stage: The idea is to define jointly the interleaver and the architecture in order to solve

a priori the memory conflict while keeping a simple architecture. Figure 14 presents the interleaver structure used

to construct a parallel interleaver constrained by decoding parallelism.

With this kind of technique, memory mapping is the natural one, i.e., � � Id. Thus, in the natural order, the

spatial permutation is identity, � �� � Id, and the temporal permutations are also identity, ) � �� � Id + ��2 ����� � . In the

interleaved order, spatial permutation at time � is simply a rotation of index 	 ) � + , i.e., � !� ) � + � ) � # 	 ) � + + � "�� � .

All the temporal permutations � !� , for � � " � � � % (
, are equal to a unique temporal permutation � ! (the same

address is used for all memory blocks). Moreover, the expression of � ! can be computed on the flight as the sum

of a linear congruence expression and a periodic offset: � ! ) � + � )�� � � #���) � � "���� + + � "�� � , where � is the
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linear factor prime with � , � is the periodicity of the offset (generally, ��� �
) and � is an array of size � that

contains the offset values.

At first glance, one could think that such constraints on the interleaver would lead to poor performance. On

the contrary, the interleavers of this type are among the best known ones. Since the number of parameters to

define an interleaver is low, an exhaustive search among all parameters configuration can be done. Note that the

impulse method defined by Berrou [46] and its derivative [47] are efficient tools to optimize the construction of

such interleavers.

One should note that the almost regular permutation [48] defined for the DVB-RCS standard (Digital Video

Broadcast Return Channel Satellite), the dithered relatively prime interleaver [49] and the slice turbo code [50]

belong to the family of ”design stage interleaver”.

Problem of activity of parallel architecture: However, another issue arises when dealing with parallel architectures:

the efficient usage of computational resources. The idea is that it is inefficient to increase the number of SISOs if

the computational power of theses SISOs is used only partially. This issue is particularly critical in the context of

sequential decoding of turbo codes where half-iterations are processed sequentially. Due to data dependencies and

pipeline stages in hardware implementation, the SW algorithm leads to an idle time at the beginning and end of each

sub-block processing. This idle time can waste a significant part of the total processing power when the sub-block

size is short, i.e., with short codeword length and/or high degree of parallelism. This problem is quite complex and

not easy to solve in the general case. However it can be tackled by the use of a joint interleaver/decoder design

(design stage solution) as proposed in [39], or going back to the pipeline solution of section IV-A, as proposed

recently in [51] for very high speed turbo decoders.

C. Parallel trellis stage

In a given recursion (forward or backward), each trellis stage implies the computation, for each node of the

trellis, of the recursive equations (13) and (14). It is easy to associate a processing unit to each node of the trellis

so that a trellis stage can be processed at each clock cycle. The question is now: is it possible to increase the

parallelism? Since the forward (or backward) recursion contains a loop, it is not possible to increase the parallelism

directly. Some authors propose a technique, called trellis compacting. This technique is based on restructuring the

conventional trellis by grouping two consecutive trellis stages in a single one. In other words, instead of serially

computing the forward metric � � - � from the � � metrics and the branch metrics � � , and then computing � � - ! from

� � - � and � � - � , � � - ! is directly computed from � � , � � - � and � � .
This technique was proposed initially in the context of the Viterbi decoder and speed improvement of a factor 1.7

was reported [52]. It can be directly applied when the max-log-map algorithm is implemented. In fact, in this case,

forward and backward recursion are equivalent to the Viterbi recursion (the so-called Add Compare Select Unit).

Trellis compaction can also be adapted, thanks to few approximations, when the log-MAP algorithm is implemented,
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as shown in [53] and [54]10.

It is worth mentioning that trellis compaction leads to an equivalent trellis of the trellis of the double binary code

[56]. This is one explanation, together with its good performance for medium and low rate code, of the success of

double binary codes in several standards.

D. Increase of clock frequency

A direct way to increase the decoding throughput of a turbo decoder is to increase the clock frequency. To do

that, the critical path of the turbo decoder should be reduced. A simple analysis shows that the BM units as well

as the OCU units can be pipelined as needed. The critical path is in the forward or backward recursion loop. There

are not so many solutions to reduce this path directly: use of a fast adder (at a cost of an increase of area), reduce

the number of bits to code the forward and backward metrics (at a cost of a decreasing of the performance) and, if

the log-map algorithm is implemented, delay of one cycle the addition of the correcting offset in order to reduce

the critical path (see [38] for more details).

Another architecturally efficient solution for reducing this critical path consists of adding a pipe-line register in

a recursion unit and then to interleave two (or more) independent SISOs on the same hardware. With the pipe-line

register, the critical path can almost be reduced by two; thus, the hardware can operate at a double frequency

compared to the direct solution. The over cost is low since only a single additional pipe line stage is introduced in

the forward (or backward) metrics recursion loop after the first adder stage of Figure 17.

10One can note that treillis compaction is a special case of the general method presented in [55] to break the ACS bottleneck.
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nmin iter. / received frame

���������	��
���
������������� � � ��� LLR� � ��� 2N

(1+α)2Ν

Dec

Fig. 15. Block diagram of an an iterative decoder with input and output FIFO to improve the throughput.

V. STOPPING RULES AND BUFFERING

An efficient way to increase the throughput of the decoder is to exploit the randomness of the number of required

iterations when the decoder is embedded with some stopping criterion.

Assume as in Figure 15 that we have a decoder that is capable of performing ����� � � (
iterations while receiving

a frame. We add in front of it a FIFO buffer that has size ) ( # � +  � , where
�

is the codeword size and �!� " is

a constant that measures the memory overhead. If � ��" the decoder has no possibility of changing the number of

iterations as the FIFO memory only stores the following frame while decoding the current one. If instead � � "
the time available for decoding ranges from �"��� � to �#��$&%�� ) ( #  �� + �#��� � depending on the status of the FIFO.

In order to stop iterative decoding the decoder is embedded with a stopping rule so that the number of iterations

for decoding is described through a (memoryless) random variable � with distribution �4)�� + . We represent the status

of the FIFO as an integer ranging between �'��� � and �(��$&% which is the number of available iterations at any given

time. The transition probability matrix ) of the underlying Markov chain has the following elements

� �+* 3 �

�,,,,,,� ,,,,,,�
" � 
 % �	- % � ��� � �
� - ) 
 % � # � ��� � + � � � � ��� � � 
.� � ��� �
� # ) 
 % � # � ��� � + � � � ��$&% � 
�� � ��$/% % � ��� � �
�4) 
 % � # � ��� � + � otherwise.

� 
 � � � � ��� � ��������� � ��$/% (18)

where we have defined

� - )�� +��10�� 2 � �4) � + and � # )�� + �
��
� 2�� �4) � +

This Markov chain is irreducible and aperiodic. Consequently, a steady-state probability vector, defined as�32 �  +4 ��5* 0
6 ) � � 6 (19)

exists.

From the vector � 2 )�� + , which represents the probability of having � available iterations, the frame error probability

is then computed as �"7 �
��8�9;:�
� 2(��8�< = �>2 )�� + ��7 )�� + (20)
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where
� 7 )�� + is the frame error probability when � iterations are available. The steady state distribution � 2 typically

shows a rather sharp transition. As a consequence, when the average number of iterations
�� is below the minimum

number of available iterations �'��� � the FIFO is typically empty and

� 7 � � 7 ) �#��$&% +��
On the other side if

��
� � ��� � the FIFO is typically full and

� 7 � � 7 ) �#��� � + �
The procedure to design a FIFO buffer is then the following

1) Fix a stopping criterion choosing from one of those listed in the following Section V-A.

2) Run a single simulation with an large (infinite) number of iterations. In this simulation carry on, for each

desired
� � � � � , the statistics of the number of iterations required �4)�� + and frame error probability having �

available iterations
� 7 )�� + .

3) For all desired pairs ) � ��� � � � ��$/% + compute the matrix ) through (18) and from ) the steady state distribution

of the FIFO � 2 )�� + using (19). From the steady state distribution compute the frame error probability as in

(20).

4) Generally, the decoder speed must have �'��� � slightly larger than the average required for the chosen stopping

rule at the target FER. The maximum number of iterations �"��$/% must be set according to the desired target

number of iterations. The memory overhead � is then obtained as

� �
(
 

� �#��$/%� ��� � % (��

A. List of stopping rules

Several stopping rules have been proposed in the literature, see for example [57], [58], [59], [60], [61], [62], and

references therein. In the following we list the most efficient and simple rules

1) Hard rule 1: The signs of the LLRs at the input and at the output of a constituent SISO module are compared

and the iterative decoder is stopped if all signs agree. Note that the output of a SISO is always an extrinsic

LLR.

2) Hard rule 2: To improve the reliability of the stop rule, the previous check has to be passed for two successive

iterations

3) Soft rule 1: The minimum absolute value of all the extrinsic LLR at the output of a SISO is compared

against a threshold. Increasing the threshold increases the reliability of the rule and also increases the average

number of iterations.

4) Soft rule 2: The minimum absolute value of all the total LLR is compared against a threshold. Note that the

total LLR is the sum of the input and output LLR of a SISO module.

January 29, 2007 DRAFT



30 E. BOUTILLON, C. DOUILLARD, G. MONTORSI

The choice of the stopping rule and possibly of the corresponding threshold for soft rules, is mainly dictated by

the complexity of its evaluation and by the probability of false stops that induce an error floor in the performance,

for more details see [57].

In Figure 16 we report the FER performance of a rate 0.35 SCCC with 4 state constituent encoders and interleaver

size of 8,640 with fixed number of iterations and those obtained with the structure of Figure 15 with the first hard

stopping rule.

Solid lines refer to the decoder with a fixed number of iterations (5,6,7,10), while dashed curves are the

performance obtained using stopping rules and finite buffering. For these curves ������� has been kept fixed to

10 and �#��� � takes the label values 5,6,7 and 10. As anticipated, it can be seen that all the dashed curves start from

the performance of the correspondent �'��� � and at a given point they start to converge to the performance relative to�#��$/% iterations. The threshold point corresponds to the situation for which
�� � �"��� � . Note that since the average

number of iterations decreases with the signal to noise ratio the maximum gap between the curves is obtained at

low values of signal-to-noise ratio.

The pair ) ( " � � + , corresponding to a memory overhead of � =33% and a speed-up of 66%, shows a maximum

penalty of 0.15 dB at FER=
( " # � that becomes 0.01 dB at

( " #�� . The pair ) ( " ��� + , corresponding to a memory

overhead of 50% and a speed-up of 100%, shows instead a maximum penalty of 0.3 dB at FER=
( " # � that becomes

0.1 dB at
( " #�� .
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Fig. 16. Comparison of FER performance of an SCCC with 4 state constituent encoders and interleaver size of 8,640 with fixed number of

iterations with those obtained using the structure of Figure 15 and the first hard stopping rule.
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VI. QUANTIZATION ISSUES IN TURBO DECODERS

The problem of fixed-point implementation is an important one since hardware complexity increases linearly

with the internal bit width representation of the data. The trade-off can be formulated as follows: what is the

minimum bit width internal representation that leads to an acceptable degradation of performance. It is interesting

to note that the very function of the turbo-decoding process is the suppression of channel noise. This robustness

against channel noise implies also, as a benecifial side effect, a robustness against the internal quantification noise.

Thus, compared to a classical DSP application, the internal precision of a turbo-decoder can be very low without

significant degradation of the performance.

In this section, we will give a brief survey of the problem of fixed-point implementation in the case of a binary

turbo-decoder. First, we will discuss the problem of optimal quantization of the input signal and the resulting internal

precision. Then, the problem of the scaling of the extrinsic message will be discussed. Finally, we will conclude this

chapter by giving a not yet published pragmatic method to optimize the complexity versus performance trade-off

of a turbo-decoder.

A. Internal precision of a turbo decoder

Let us consider a binary turbo code associated with a BPSK modulation. The received symbol at time � is thus

equal to
�� �4� � � # � � , where � � equals to -1 if � � � " , and equals 1 otherwise, and � is white gaussien noise of

variance � . The LLR
� )��!� ����+ is then equal to

� )��!� ����+ �# �� � � ! � (21)

The quantization of
� )�� � ����+ on 	 ��� � bits is a key issue that impacts both the performance and the complexity

of the design. In the following, we will assume that the quantized value
� )�� ����+�� of

� )�� ����+ on 	 ��� � bit is given

by
� )�� � � +�� ��� ) � )�� � � + + , where the quantification function � is defined as:

��� ��� )�� + � 	 ���') 	 ���  ��
�
� # � % (
� # " � ��� �  � 
�
� # � % ( + (22)

where 	 ���')�� � 	 + � � if � belongs to ' % 	 � 	 ) , and 	 ���') � � 	 + � 	 
�� � )���+ � 	 otherwise and
�

is the interval dynamic

of the quantization (data are quantized between ' % � � � ) ). Symmetrical quantization is needed to avoid giving a

systematic advantage to one bit value against an other. In fact, such a situation would decrease the performance of

the turbo decoder.

One can note that if
�

is very large, most of the input will be quantized by a 0 value, i.e., an erasure. In that

case, the decoding process will fail. On the other hand, a too small value of
�

would lead to a saturation most of

the time and the soft quantization would thus be equivalent to a hard decision. Clearly, for a given code rate and a

given SNR, there is an optimal value of
�

. As a rule of thumb, for a 1/2 rate turbo code, the optimal value of
�

is

around 1.2. Equations (21) and (22) show that the input value
� )�� ����+�� of the turbo decoder depends on the channel

observation, the value
�

, as mentioned above, but also on the variance of the SNR of the signal, i.e., the variance
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of the noise � ! . The SNR is not available at the receiver level and it should be estimated using the statistic of

the input signal. In practical cases, the estimation of the SNR is not mandatory. When the max-log-map algorithm

is used, i.e., the ����� � operation is approximated by the simple ���"� operator, its estimation is not necessary. In

fact, the term !� � is just, in the logarithm domain, an offset factor that impacts both input and output of the max

unit. When the log-MAP algorithm is used, a pragmatic solution is to replace the real standard deviation � of

(21) by the maximum value � � leading to a BER (or a FER) acceptable for the application. Note that when the

effective noise variance � is below � � , the decoding process becomes sub-optimal due to a sub-estimation of the
� )�� � � ). Nevertheless, the BER (or the FER) would still decrease and thus remains in the functionality domain of

the application.

The number of bits 	 � � � to code the extrinsic message can be deduced from 	 ��� � . In many reported publications,

	 � � � � 	 ��� � # (
, i.e., extrinsic messages are quantified in the interval ' %  � �  � ) . Note that if the OCU delivers a

binary value out of the range ' %  � � ��� # ( �  � � ��� % ( ) , a saturation needs to be performed.

Once 	 ��� � and 	 � � � are chosen, the number of bits 	 � � to code the forward recursion metrics � and the backward

recursion nodes
�

can be derived automatically. In the following, we will only consider the case of the forward

recursion metrics � . The same results stand also for the backward recursion unit.

According to (11) and (12), in the logarithm domain, the branch metric ��� is a finite sum of bounded values. Let

us assume that � is a bound of the absolute value of the branch metric ��� ( � is a function of the code, 	 ��� � and

	 � � � ). Then, it is shown in [63] that at any time � 11:

���"�� ) � � ) 	 + +4% � 4��� ) � � ) 	 + +	� - � � (23)

where the parameter - is the memory depth of the convolutional encoder.

Assuming that � 4�� � ) � � ) 	 + + is maintained equal to zero by dedicated hardware, then (23) shows that 	 � � �
 ��� � !�) - � � +� bits are sufficient to code the � metrics. In practice, this solution is not efficient. In fact, maintaining� 4�� � ) � � ) 	 + + equal to zero implies additional hardware in the recursion loop to perform the determination of� 4�� � ) � � ) 	 + + and to subtract it from all the metrics. This hardware increases both the complexity and the critical

path of the FR unit.

A more efficient solution is to replace those complex systematic operations by the subtraction of a fixed value

when needed. Let us defined � as � � 
 ��� � ! ) ) - # ( +	� � +� . Then, coding the forward metric on 	 � � � ( #
� leads to a very simple scheme. In fact, since � is the maximum dynamic of the branch metric, (23) gives:����� � ) � � - � ) 	 + +4% � 4�� � � ) � � ) 	 � + + - ) - # ( + � � .

This equation proves that, if at time � , � 4�� � ) � � ) 	 + + is below  �� , then at time � # (
, �!�"� � ) � � - ��) 	 + + also remains

below  � - � % ( �# ��� � % (
. If at time �,# (

, � 4�� � ) � � ) 	 + + becomes above  �� , then all the forward metric will range

between  �� and  �� - � . In that case, a rescaling operation is performed by subtracting  �� from all the forward

metrics. This situation is detected thanks to an AND gate connected to the Most Significant Bit (MSB) of the �
11the exact bound is derived in [38]
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Look-up
tablea

b ( )*max ,a bMUX ( )max ,a b

-

Fig. 17. Block diagram for the ������� operator.

metrics. The subtraction is simply realized by setting all the MSB to 0. Thanks to the rescaling process, the dynamic

to represent the increasing function of the forward metric is very limited. Note that other efficient methods have

been proposed in the literature, like more elaborated rescaling techniques or simply avoiding the rescaling operation

using modulus arithmetic [64].

Typical values of 	 ��� � are between 3 to 6 bits. For an 8 state turbo code, the corresponding 	 � � are around 7

to 10 bits. An example of the impact of 	 ��� � on performance is given in Figure 19. The reader can find in [65]

more deeper analysis of the bit width precision of the turbo-decoder.

B. Practical implementation of the � � � � algorithm

In figure 17, we report a block diagram of the implementation of the fundamental associative operator ���"� �
according to its definition (6). The look-up table performs the computation of the correcting factor given by (24):

�4)�� + � � � ) ( # ' # $ � $ + + (24)

Figure 18 shows the plot of the function �4)�� + . The maximum value of this function is � � )  + and the function

decreases rapidly toward 0. In hardware, all real values are replaced by integer values thanks to (22). Thus, the

maximum quantized value of � is given by � ) � � )  + + . Moreover, from (22), it is possible to compute the maximum

integer � � so that ��� � � � implies � ��)���� + � " . As an example, for � � ( �  and 	 � � � � �
, the maximum

quantized value of � � is 4 (thus ��� takes its values between 0 and 4 and requires 3 bits to be coded) and � � � ( �

(see Figure 18). The hardware realization of the computation of the offset factor is thus simple. A first test is

performed to determine if
� � � � is below 15. If the test is positive, the 5 Least Significant Bits (LSB) of � � are used

as input of a 3-bit output look-up table that contained the precomputed values of ����)���� + . Otherwise, the offset is

set to 0. Note that it is also possible to compute the absolute value of � � before the access to the LUT in order

to reduce its size by half.

There are many other different implementations of the offset function in the literature. For example, [66] proposes

a linear approximation of the �4)�� + function while [67] proposes a very coarse, but efficient, approximation. When

the offset factor is omitted, the hardware is simplified at a cost of a performance degradation. This point is discussed

in the next section. Note that, when the offset factor is omitted, the algorithm is named in the literature the min-sum

or the max-log-MAP algorithm.
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Fig. 18. Plot of the function
� � 4 � . The quantized version of this function for � � �

�
�

and � ����� ��� is also given (red dot points).

C. Rescaling of the extrinsic message

The use of the max-log-MAP algorithm leads to an overestimation of the extrinsic message and thus, decreases

the performances of the turbo decoder by approximatively 0.5 dB. This penalty can be significantly reduced if the

over-estimation of the extrinsic message is compensated, on average, by a systematic scaling down of the extrinsic

message between two consecutive half iterations. This scaling is performed thanks to a multiplication by a scaling

factor � � , where the value of � � depends on the number of the half iteration. Typically, during the first iteration,

the value of � � is low (around 0.5), and increases up to 1 for the two last half iterations. This technique, for a

classical turbo decoder, reduces the degradation from 0.5 dB to 0.2 dB. For a double binary code, it reduces the

degradation from 0.5 dB to 0.05 dB. Note that the scaling factor is also favorable with respect to the decorrelation

of the extrinsic messages. Even if we use the log-MAP algorithm, the scaling factors help the decoder to converge.

D. Method of optimization

As seen above, many parameters impact both the performance and the complexity of the turbo decoder: number

of bits of quantization, maximum number of iterations, scaling factors of the extrinsic message, value of the

quantization dynamic � and also, the targeted BER and FER. For example, Figure 19 shows the bit error rate

(BER) obtained for a turbo code of rate 1/2 and size
� � � (  decoded for different numbers of iteration and

different values of 	 ��� � .

All those parameters interact in a non linear way (see the effect of � � � and 	 ��� � in Figure 19 for example).

The problem of finding a good performance-complexity trade-off is thus a complex task. Moreover, the evaluation
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Fig. 19. Curve BER = f(SNR) for a 2/3 rate turbo code of length 3 � � � �
for different � ����� values and number of decoding iterations.

The value of � is equal to 1.39.

of each configuration generally requires a CPU extensive Monte-Carlo simulation in order to have an accurate

estimation of the BER. In order to avoid such simulation, we propose an efficient pragmatic method:

� step 1: Define the space of the search by defining the range of search for each parameter of the decoder.

Define a model of complexity for each parameter12. Define also the maximum allowable complexity of the

design.

� step 2: Define the “worst case” configuration by individually setting the parameters to the value that degrades

performance most.

� step 3: Using this configuration, perform a Monte Carlo simulation at the SNR of interest. Each time a received

12See [31] and VII for an example of modelization of the hardware complexity of a turbo decoder
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codeword fails to be decoded, store the codeword (or information to reconstruct it, i.e., the seeds of the pseudo

random generators) in a set
�

. Stop the process when the cardinality of the set
�

is high enough (typically

around 1000). Note that this operation can be very CPU consuming but it has to be done only once.

� step 4: Perform an optimization in order to find the set of parameters that minimize the BER (or the FER)

over the set
�

with the constraint that the overall complexity of the decoder remains below a given value.

� step 5: Perform a normal Monte Carlo simulation in order to verify a posteriori the real performance of the

selected parameters. Go to step 1 with a different scenario of optimization if needed.

This method is efficient since the test of one configuration can be a few orders faster than the direct method. For

example, for a FER of
( " #�� , the test of a configuration with a classical Monte-Carlo simulation requires, on average,

the simulation of
( "�� codewords. In contrast, with the proposed method, testing a new configuration requires only

the decoding of
( "�� codewords. An improvement of simulation speed by a factor of

( "�� is then obtained.
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Fig. 20. General architecture of an iterative decoder. Shaded blocks are processors, white blocks are memories.

VII. EVALUATION OF THE COMPLEXITY OF ITERATIVE DECODERS

In order to provide a high level evaluation of the complexity of the iterative decoders we will use as reference

the architecture reported in Figure 20. Constituent encoders are assumed to be binary and messages are stored in

the form of LLRs.

The iterative decoders are generally built around two sets of processors and two memories. The messages coming

from the channel are stored in a buffer as they will be accessed several times during the iterative process. The

extrinsic messages are instead stored in a temporary memory denoted by EXT in the figure.

The high level algorithm of the decoder can be summarized with the following steps:

1) initialize the inner memory to null messages,

2) apply the first set of constraints A using the EXT and LLR, write the updated messages in EXT,

3) apply the second set of constraints B using the EXT and LLR, write the updated messages in EXT,

4) iterate until some stopping criterion is satisfied or the maximum number of iterations is reached.

The application of constraints E and F here are executed serially. Different scheduling can be applied, especially

for LDPC, but this is the common approach.

As we have seen in section IV PCCC, as well as SCCC and LDPC, admits efficient highly parallel structures so

that the throughput can be arbitrarily increased by increasing the number of parallel processors without requiring

additional memory. The trade-off between area and throughput of the decoder are then fully under designer control.

In this section we will focus on
�

, defined as the number of elementary operations required for decoding one

information bit per iteration as a function of the main design parameters of the code.
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The throughput
�

of the implemented decoder can be well approximated by

� � �
�

dep�
it
�

where
�

dep is the number of deployed operators running at frequency � , and
�

it is the number of required iterations.

For iterative decoders with messages in the form of LLR, the evaluation of computational complexity can be

expressed in terms of number of sums and ����� � operations. Note that �!�"� will substitute ����� � when the max-sum

version of SISO processors is used instead of the ���"� � -sum version.

A. LDPC

For LDPC, each variable node processor with degree 0�� requires  �0�� sums to compute the updated message.

Thus, summing up over all possible nodes, the variable node processing requires  sums per edge.

For check nodes, the number of operations needed for updating the EXT messages depends linearly on the

check degree 0 � with a factor that depends on the used approximation. In [68] a comprehensive summary of the

available optimal and approximated techniques for check node updates is presented, together with their correspondent

complexity and performance trade-offs. Here we will assume the optimal and numerical stable algorithm (6) and

(7) in [68] that requires
� ) 0 � %  + ����� � operators for a check node of degree 0 � . The reader is warned however

that the factor
�

can be reduced by using other sub-optimal techniques.

Summing up over the set of variable and check nodes we get the following complexity

� �
�� � !��� � sums;

��� � # !� #  	� � ����� � (25)

per decoded bit and per iteration. In (25) we introduced the fundamental parameter 
 that is the average variable

degree which measures the density of the LDPC parity check matrix. � is the rate of the code.

In Table I we show the normalized complexity
�

required for some values of the two relevant parameters 
 and

� .

Note that LDPC decoders have a complexity that is inversely proportional to the rate of the code and proportional

to the parameter 
 . The parameter 
 has also an impact on the performance of the code and takes typical values in

the range . % � .

B. PCCC and SCCC

The complexity of PCCC and SCCC is strictly related to the complexity of their constituent SISO decoders.

Here we consider rate � � � binary constituent encoders. In Figure 21 we report a block diagram of the SISO

module showing its basic architecture according to the algorithm described in Section III. In the figure we have

reported the sections of the architecture corresponding to the four operations reported in the algorithm described

in Section III-D. Light blocks are computation blocks, while dark block refers to memory, which can be organized

as LIFO or FIFO RAM. In this SISO structure, we have assumed that initialization of forward and backward state

metrics are propagated across iterations so that no overhead is required for this operation.
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R

η sum max* sum max* sum max* sum max* sum max* sum max* sum max* sum max* sum max*
2 40 12 20 12 13 12 10 12 8 12 7 12 6 12 5 12 4 12

2.2 44 24 22 18 15 16 11 15 9 14 7 14 6 14 6 14 5 13
2.4 48 36 24 24 16 20 12 18 10 17 8 16 7 15 6 15 5 15
2.6 52 48 26 30 17 24 13 21 10 19 9 18 7 17 7 17 6 16
2.8 56 60 28 36 19 28 14 24 11 22 9 20 8 19 7 18 6 17

3 60 72 30 42 20 32 15 27 12 24 10 22 9 21 8 20 7 19
3.2 64 84 32 48 21 36 16 30 13 26 11 24 9 22 8 21 7 20
3.4 68 96 34 54 23 40 17 33 14 29 11 26 10 24 9 23 8 21
3.6 72 108 36 60 24 44 18 36 14 31 12 28 10 26 9 24 8 23
3.8 76 120 38 66 25 48 19 39 15 34 13 30 11 27 10 26 8 24

4 80 132 40 72 27 52 20 42 16 36 13 32 11 29 10 27 9 25
4.2 84 144 42 78 28 56 21 45 17 38 14 34 12 31 11 29 9 27
4.4 88 156 44 84 29 60 22 48 18 41 15 36 13 33 11 30 10 28
4.6 92 168 46 90 31 64 23 51 18 43 15 38 13 34 12 32 10 29
4.8 96 180 48 96 32 68 24 54 19 46 16 40 14 36 12 33 11 31

5 100 192 50 102 33 72 25 57 20 48 17 42 14 38 13 35 11 32
5.2 104 204 52 108 35 76 26 60 21 50 17 44 15 39 13 36 12 33
5.4 108 216 54 114 36 80 27 63 22 53 18 46 15 41 14 38 12 35
5.6 112 228 56 120 37 84 28 66 22 55 19 48 16 43 14 39 12 36
5.8 116 240 58 126 39 88 29 69 23 58 19 50 17 45 15 41 13 37

6 120 252 60 132 40 92 30 72 24 60 20 52 17 46 15 42 13 39
6.2 124 264 62 138 41 96 31 75 25 62 21 54 18 48 16 44 14 40
6.4 128 276 64 144 43 100 32 78 26 65 21 56 18 50 16 45 14 41
6.6 132 288 66 150 44 104 33 81 26 67 22 58 19 51 17 47 15 43
6.8 136 300 68 156 45 108 34 84 27 70 23 60 19 53 17 48 15 44

7 140 312 70 162 47 112 35 87 28 72 23 62 20 55 18 50 16 45

0.900.50 0.60 0.70 0.800.10 0.20 0.30 0.40

TABLE I

COMPLEXITY OF LDPC DECODER IN NUMBER OF ELEMENTARY OPERATIONS PER INFORMATION BIT AND PER ITERATION,

We will consider two versions of SISO. The first (inner SISO), which is used in PCCC and as the inner SISO

for SCCC, gets messages on information and coded bits and provides messages on input bits. The second (outer

SISO), which is used as outer SISO in SCCC, gets messages only on coded bits and provides updated messages

on both information (user’s data) and coded bits. In Figure 21 we can identify the following units:

� The Branch Metric Computer (BMC) is responsible for computing the LR or LLR to be associated with each

trellis edge section according to (11) and (12). The number of sums required is  � % ( % � for the outer SISO

and  � % � % ( # � for inner SISO

� The Forward Recursion computer (FR) is responsible for computing the forward recursion metrics
�

according

to (13). Each state metric update requires  � % ( �!�"� � between the incoming edges. The metrics of the  � � �
edges are obtained summing the previously computed branch metrics with each the path metrics (  � � � sums).���"� �

� The Backward Recursion computer (BR), identical to forward recursion, is responsible for computing the

backward recursion metrics
�

according to (14). As the recursion proceeds in the backward direction the input
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Fig. 21. General architecture of SISO module. The module uses 4 logic units (FR, BR, OCU and BMC). The sections of the block diagram

refer to the 4 main steps of the algorithm described in Section III.

branch metrics must be reversed in time and this is the reason of the LIFO in front of it.

� The LR edges computed according to (3) require both the forward and backward metrics and the branch

metrics. As backward metrics are provided in reversed order, a LIFO may also be inserted on the line coming

from the FR. Note that the edge LF are then produced in reversed time order. For both FR and BR as well as

inner and outer SISO the complexity is  � � � sums and )  � % ( + � � ����� � .
� The Output Computation Unit (OCU) computes the a posteriori LR applying (15) and/or (16) depending on

the needs. The input LR are used to compute extrinsic information An efficient algorithm to compute the

updated messages requires  � � � #  � # � sums and  � � � #  � - � %  � % � �!�"� � . As the edges LR are

provided in reversed time order, also the computed LR are reversed in order so that a LIFO may be necessary

to provide the updated LR in the same order of the inputs. The correct ordering of the messages however can

also be solved implicitly when storing them in the RAM.

In Table II we give the summary of the operations required for the inner and outer SISO while in Table III we

report the numerical values for some typical values of � , � and
� � .

Having determined the complexity per information bit for the inner and outer SISO decoders
� � and

�
� , the
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Outer SISO Inner SISO

Unit Sum ������� Sum �������

Branch metric computation
� 5 � � � � -

� 5 � � � ����� -

Forward recursion
��� 3	� � ��� � � � 3	� ��� 3
� � ��� � � � 3	�

Backward recursion
� � 3 � � � � � � � 3 � � � 3 � � � � � � � 3 �

Output computation
� � 3	� � � ����� � � 3
� � � 5� �

� � � � � � � 3
� � � � � � 3	� � � �  �
� � � � �

TABLE II

SUMMARY OF COMPLEXITY PER TRELLIS STEP FOR THE SISO ALGORITHM ON BINARY LLR.

k n Ns BMC FR+BR OCU Total FR+BR OCU Total BMC FR+BR OCU Total FR+BR OCU Total
1 2 2 1 8 9 18.0 4 4 8.0 2 8 6 16.0 4 2 6.0
1 2 4 1 16 13 30.0 8 8 16.0 2 16 10 28.0 8 6 14.0
1 2 8 1 32 21 54.0 16 16 32.0 2 32 18 52.0 16 14 30.0
1 2 16 1 64 37 102.0 32 32 64.0 2 64 34 100.0 32 30 62.0
1 2 32 1 128 69 198.0 64 64 128.0 2 128 66 196.0 64 62 126.0
1 3 2 4 8 11 23.0 4 10 14.0 5 8 6 19.0 4 2 6.0
1 3 4 4 16 15 35.0 8 14 22.0 5 16 10 31.0 8 6 14.0
1 3 8 4 32 23 59.0 16 22 38.0 5 32 18 55.0 16 14 30.0
1 3 16 4 64 39 107.0 32 38 70.0 5 64 34 103.0 32 30 62.0
1 3 32 4 128 71 203.0 64 70 134.0 5 128 66 199.0 64 62 126.0
2 3 2 4 16 16 18.0 12 14 13.0 6 16 12 17.0 12 8 10.0
2 3 4 4 32 24 30.0 24 22 23.0 6 32 20 29.0 24 16 20.0
2 3 8 4 64 40 54.0 48 38 43.0 6 64 36 53.0 48 32 40.0
2 3 16 4 128 72 102.0 96 70 83.0 6 128 68 101.0 96 64 80.0
2 3 32 4 256 136 198.0 192 134 163.0 6 256 132 197.0 192 128 160.0
2 4 2 11 16 18 22.5 12 28 20.0 13 16 12 20.5 12 8 10.0
2 4 4 11 32 26 34.5 24 36 30.0 13 32 20 32.5 24 16 20.0
2 4 8 11 64 42 58.5 48 52 50.0 13 64 36 56.5 48 32 40.0
2 4 16 11 128 74 106.5 96 84 90.0 13 128 68 104.5 96 64 80.0
2 4 32 11 256 138 202.5 192 148 170.0 13 256 132 200.5 192 128 160.0
3 4 2 11 32 27 23.3 28 36 21.3 14 32 22 22.7 28 22 16.7
3 4 4 11 64 43 39.3 56 52 36.0 14 64 38 38.7 56 38 31.3
3 4 8 11 128 75 71.3 112 84 65.3 14 128 70 70.7 112 70 60.7
3 4 16 11 256 139 135.3 224 148 124.0 14 256 134 134.7 224 134 119.3
3 4 32 11 512 267 263.3 448 276 241.3 14 512 262 262.7 448 262 236.7
4 5 2 26 64 46 34.0 60 82 35.5 30 64 40 33.5 60 52 28.0
4 5 4 26 128 78 58.0 120 114 58.5 30 128 72 57.5 120 84 51.0
4 5 8 26 256 142 106.0 240 178 104.5 30 256 136 105.5 240 148 97.0
4 5 16 26 512 270 202.0 480 306 196.5 30 512 264 201.5 480 276 189.0
4 5 32 26 1024 526 394.0 960 562 380.5 30 1024 520 393.5 960 532 373.0

Outer Inner
Sum max* Sum max*

TABLE III

COMPLEXITY PER INFORMATION BIT OF SISO ALGORITHM FOR SOME TYPICAL VALUES OF
� , � AND 3 � .
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complexity of the PCCC and SCCC can be evaluated as 13

� 2 ����� �
�
�

� #
(
	 �
� � �

��� ����� �  � � �
where 	 � is the rate of the outer encoder for SCCC.

C. Memory requirements

The memory requirements of an iterative decoder is the sum of memory required for the storage of channel

messages, which is
�

for all types of decoders and the memory for the storage of the extrinsic messages, which

depends on the encoding scheme.

For LDPC the number of extrinsic messages is given by 
 � , for SCCC by
�
� , n and for PCCC by

�
.

Memory requirements are usually not negligible and in some important cases, e.g., for low throughput imple-

mentation and/or high block sizes, can dominate the computational requirements considered in the next sections.

D. Non binary decoders

Slightly different conclusions are obtained using non binary constituent decoders. The main consequence of this

approach is that messages are no longer scalars but vectors of dimension equal to the cardinality of the used alphabet

minus one. The dimension of message memory must then be increased accordingly.

The operators BMC and OCU are slightly changed while FR and BR remain the same.

Non binary decoders also yield different performance. An important application of non-binary decoder is the

DVB-RCS/RCT and WiMAX 8-state double-binary turbo code and its extension to 16 states [69].

13We assume here that the two constituent encoders are equal, generalization to different encoders is straightforward.
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VIII. CONCLUSION

We have presented an overview of implementation issues for the design of iterative decoders in the context of the

concatenation of convolutional codes. Hardware architectures were described and their complexity was assessed.

Low throughput (below 10 Mbit/s) turbo decoders have already been widely implemented, either in software or

hardware, and are commercially available. In this paper, we have laid stress on the different methods allowing

the throughput of a turbo decoder to be increased. We have particularly investigated parallel architectures and

stopping criteria. As for architecture optimization, a joint design of the concatenated code and the architecture

was favoured, especially concerning interleaver design. Such an approach has already been introduced in standards

such as DVB-RCS, DVB-RCT and WiMAX. Amongst the main challenges in the years to come, low energy

consumption receiver design will represent a crucial one. Significant progress in this field will probably require a

real technological breakthrough. Some answers to this problem are currently emerging, such as the analog decoding

concept [70]-[71], which allows the iterative process to be removed, the SISO decoders being directly wired together

in order to implement the feedback connections.
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