
HAL Id: hal-00167341
https://hal.science/hal-00167341

Submitted on 14 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topological sensitivity and FMM-accelerated BEM
applied to 3D acoustic inverse scattering

N. Nemitz, Marc Bonnet

To cite this version:
N. Nemitz, Marc Bonnet. Topological sensitivity and FMM-accelerated BEM applied to 3D
acoustic inverse scattering. Engineering Analysis with Boundary Elements, 2008, 32, pp.957-970.
�10.1016/j.enganabound.2007.02.006�. �hal-00167341�

https://hal.science/hal-00167341
https://hal.archives-ouvertes.fr


Topological sensitivity and FMM-accelerated

BEM applied to 3D acoustic inverse

scattering

Nicolas Nemitz, Marc Bonnet ∗

Solid Mechanics Laboratory (UMR CNRS 7649), Ecole Polytechnique,
F-91128 Palaiseau cedex, France

Abstract

This study is set in the framework of inverse scattering of scalar (e.g. acoustic)
waves. A qualitative probing technique based on the distribution of topological sen-
sitivity of the cost functional associated with the inverse problem with respect to the
nucleation of an infinitesimally-small hard obstacle is formulated. The sensitivity
distribution is expressed as a bilinear formula involving the free field and an adjoint
field associated with the cost function. These fields are computed by means of a
boundary element formulation accelerated by the Fast Multipole method. A com-
putationally fast approach for performing a global preliminary search based on the
available overspecified boundary data is thus defined. Its usefulness is demonstrated
through results of numerical experiments on the qualitative identification of hard
obstacles in a bounded 3-D acoustic domain, for configurations featuring O(105)
nodal unknowns and O(106) sampling points, based on exact or noisy synthetic
data.

Key words: topological derivative, Helmholtz equation, inverse scattering,
boundary elements, fast multipole method

1 Introduction

Defect identificaton problems are often solved by minimization of a cost func-
tion featuring the experimental data and (if available) prior information. Such
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cost functions are non-convex and exhibit local minima. Despite that fact, tra-
ditional iterative minimization or equation-solving methods are usually pre-
ferred to global search techniques such as evolutionary algorithms due to the
prohibitive computational cost of solving large numbers of forward wave scat-
tering problems. To perform optimally, gradient-based iterative algorithms are
used in conjunction with shape sensitivity techniques see e.g. [22,26,28].

Still, the stand-alone use of gradient-type minimization for such purposes is
not satisfactory for its success is strongly dependent on a reliable prior in-
formation about the geometry of the hidden object. This has prompted the
development of so-called ‘sampling’ or ‘probe’, non-iterative, methods. They
may be used either in isolation or as a preliminary step for choosing adequate
initial guesses to be used in subsequent standard optimization schemes. Such
methods are surveyed in a recent review article [29] and include the linear
sampling method [7,25], not pursued here, and the application of topologi-
cal sensitivity, which is the subject of this article. The concept of topological
sensitivity consists in quantifying the sensitivity of a given cost functional
with respect to the nucleation of an infinitesimal obstacle at (many) specified
locations in the reference (background) medium. The topological sensitivity
therefore allows to define a spatial obstacle indicator. This concept initially
appeared first in [11,30] in connection with topological optimization of me-
chanical structures, allowing to define algorithms where “excess” material is
iteratively removed until a satisfactory shape and topology is reached [14].
More recently, other investigations have studied the topological sensitivity as
a sampling tool for inverse scattering problems, in the context of identification
of cavities in 3D semi-infinite and infinite elastic media [18] and in elastic 3D
bounded bodies [5], of penetrable inclusions in acoustic media [6] or elastic
bodies [20], and for problems formulated in the time domain [19] (see also [13]
for 2D elastostatics and [12] for 2D linear acoustics).

The derivation of topological sensitivity formulae for a given cost functional
requires an asymptotic expansion of the scattered field induced by the nucle-
ating obstacle. Although related asymptotic expressions have been proposed
elsewhere (e.g. in [1] for inverse electromagnetic problems and penetrable scat-
terers, or in the framework of the low-frequency limit in scattering theory [10]),
they have so far been utilized for the explicit reconstruction of small inhomo-
geneities based on either i) treatment of the measurement residuals [2,34,35], or
ii) the reciprocity-gap approach [3]. In contrast, the present approach, that uti-
lizes the spatial distribution of topological sensitivity as an indicator function,
aims at approximate reconstruction of finite obstacles and may be considered
as a sampling technique exploiting asymptotic expansions.

The distribution of topological sensitivity can be expressed in terms of a bi-
linear formula involving the free field and an adjoint field associated with the
cost function. However, the computational cost of solving the forward and ad-
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joint problems and evaluating the topological sensitivity distribution on a fine
sampling grid increases rapidly with the non-dimensional wavenumber. The
purpose of this article is to propose the topological sensitivity field computed
by means of the Fast Multipole BEM (FM-BEM) [16,17,27] as the basis of a
computationally fast tool for probing acoustic media for hidden hard obstacles
on the basis of overdetermined boundary data, within the model framework
of forward scattering problems governed by the scalar Helmholtz equation.
To that end, the FM-BEM is in particular applied to evaluate in a fast way
the integral representation formulae expressing the free and adjoint fields at
a large number of sampling points points inside the medium.

This article is organized as follows. After some preliminaries concerning the
forward and inverse problems of interest (Section 2), the concept of topo-
logical sensitivity is presented in Section 3. The FM-BEM approach for the
scalar Helmholtz equation is then summarized in Section 4. Finally, results of
numerical experiments on qualitative scatterer identification using computed
distributions of topological sensitivity are presented in Section 5, for configu-
rations featuring O(105) nodal BE unknowns and O(106) sampling points.

2 Forward and inverse problems

This article is concerned with the identification of rigid obstacles embedded in
acoustic media. The generic acoustic scattering problem of interest is defined
as follows. Let Ω denote a three-dimensional open domain, either bounded or
unbounded, with a sufficiently regular boundary S and filled with an acoustic
medium characterized by wave velocity c and mass density ρ; this configuration
will be referred to as the reference (i.e. obstacle-free) medium. Let B? denote
a rigid scatterer (or a set thereof) bounded by the closed surface Γ?, so that
Ω? = Ω \ B̄? is the acoustic region surrounding the scatterer. Steady-state
excitations on S with angular frequency ω generate an acoustic pressure field
u? in the acoustic domain Ω?, governed by the following set of field equations
and boundary conditions (collectively denoted by P(B?) for later reference):

P(B?) :

(∆ + k2)u? = 0 (in Ω?),

p[u?] = pD (on S),

p[u?] = 0 (on Γ?),

(1)

where k = ω/c is the wavenumber, w → p[w] ≡ w,n = ∇w · n denotes the
normal derivative operator, n is the normal on S ∪ Γ? outward to Ω?, and pD

is the prescribed Neumann data over S (other types of boundary conditions
may be considered as well). The implicit time-harmonic factor e−iωt is, as
usual, omitted for brevity. It is assumed that ω is not an eigenfrequency of
any of the boundary-value problems arising in the ensuing developments.
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In the inverse scattering problem of interest, an unknown obstacle Btrue, of
boundary Γtrue, is to be identified. The corresponding exact acoustic field utrue

is then governed by problem P(Btrue). With reference to problem P(Btrue),
supplementary information is needed for the identification of Btrue. Here, mea-
sured values uobs of acoustic pressure are assumed to be available over the mea-
surement surface Sobs ⊂ S. Ideally (i.e. assuming that the physics is exactly
described by the chosen linear acoustics setting and that no measurement
errors are present), uobs is the trace of utrue on Sobs. The identification of
Btrue may then be formulated in terms of the minimization of a cost function.
Generic cost function of format

J (Ω?) =
∫

Sobs
ϕ

(
u?

R(ξ), u?
I (ξ), ξ

)
dΓ (2)

are considered, where u? is the boundary trace of the solution to the forward
problem P(B?) for an assumed obstacle configuration B?, the subscripts ’R’
and ’I’ being used to indicate the real and imaginary parts of a complex
quantity (i.e. wR = Re(w) and wI = Im(w)). For instance, the output least-
squares cost function associated to measurement uobs on Sobs, commonly used
for such purposes, corresponds to

ϕ(wR, wI, ξ) =
1

2

∣∣∣w(ξ)−uobs(ξ)
∣∣∣2, (3)

The minimization of such cost functions can be performed using many meth-
ods, all of which are iterative and need repeated evaluations of J(Ω?). Tra-
ditional gradient-based minimization may converge within a moderate num-
ber of evaluations of J (Ω?) if the trial surface Γ? can be described in terms
of a few geometrical parameters, but reach a local minimum which depends
on the choice of initial guess. Global search techniques, e.g. evolutionary al-
gorithms [24] or sampling methods based on the Metropolis algorithm [33],
perform a global search (i.e. identify absolute and/or multiple minima), but
at the cost of very large numbers of cost functions evaluations. In this article,
the topological sensitivity is proposed as a tool for performing a qualitative
global search at a computational cost which is far below that entailed by a
true global optimization technique.

3 Topological sensitivity of the cost function

3.1 Notations

Let Bε(xs) = xs + εB, where B ⊂ R3 is a fixed bounded open set with
boundary S and volume |B| containing the origin, define the region of space
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occupied by a hard obstacle of (small) size ε > 0 containing a fixed sampling
point xs. It is convenient to introduce the scaled position vector ξ̄ defined by

ξ = xs + εξ̄ (ξ ∈Bε, ξ̄ ∈B) (4)

In particular, this mapping recasts integrals over Bε and Γε into integrals
over B and S , respectively, and transforms the differential volume and area
elements according to

dVξ = ε3 dV̄ξ̄ (ξ ∈Bε, ξ̄ ∈B), dΓξ = ε2 dΓ̄ξ̄ (ξ ∈Γε, ξ̄ ∈S ) (5)

Without loss of generality, xs can be chosen as the center of Bε, i.e. such that

∫
Bε

(ξ − xs) dVξ = 0 , i.e.
∫

B
ξ̄ dV̄ξ̄ = 0. (6)

Let u? = uε(ξ; xs) denote the solution to the scattering problem P
(
Bε(xs)

)
defined by (1), where Ω? = Ωε(xs) = Ω \ Bε(xs) and Bε(xs) is the closure of
Bε(xs). Further, let J(ε; xs) be defined by

J(ε; xs) = J
(

Ωε(xs)
)

=
∫

Sobs
ϕ

(
uε

R(ξ; xs), u
ε
I(ξ; xs), ξ

)
dΓ, (7)

For convenience, explicit references to xs will often be omitted in the sequel,
e.g. by writing J(ε) or uε(ξ) instead of J(ε; xs) or uε(ξ; xs).

The evaluation of J(ε) entails solving for uε the forward problem P(Bε). It is
convenient, and customary, to decompose uε according to

uε = u + vε, (8)

where u, the free field defined as the response of the obstacle-free (reference)
medium Ω due to the given excitation pD, solves

(∆ + k2)u = 0 (in Ω),

p[u] = pD (on S),
(9)

while vε, the scattered field, solves

(∆ + k2)vε = 0 (in Ωε),

p[vε] = 0 (on S),

p[vε] = −p[u] (on Γε).

(10)
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3.2 Expansion of J(ε)

To establish the topological sensitivity of J(ε), one starts with the expansion

J(ε) = J(0) +
∫

Sobs
Re

[
ϕ,u vε

]
dΓ + o

(
|vε|Sobs

)
, (11)

with

ϕ,u ≡
(

∂ϕ

∂uε
R

− i
∂ϕ

∂uε
I

)∣∣∣∣
uε=u

. (12)

Let the adjoint field û be defined by

(∆ + k2)û = 0 (in Ω) ,

p[û] = ϕ,u (on Sobs) ,

p[û] = 0 (on S \ Sobs).

(13)

Then, the reciprocity identity (i.e. third Green’s formula) applied to the states
û and vε over the domain Ωε leads, by virtue of the boundary conditions in (10)
and (13), to the identity

∫
Sobs

ϕ,u vε dΓ +
∫
Γε

p[û]vε dΓ +
∫
Γε

ûp[u] dΓ = 0 (14)

As a result, the integral in the r.h.s. of (11) is converted into integrals over the
vanishing cavity surface. Besides, since both u and û are also defined inside
Bε, the last integral in (14) can be recast into a domain integral over Bε by
means of the divergence formula. Expansion (11) then takes the form

J(ε) = J(0) + Re
{∫

Bε

[
∇u ·∇û− k2uû

]
dV −

∫
Γε

vεp[û] dΓ
}

+ o(|vε|Sobs), (15)

The first integral in (15) features a density function whose definition does not
depend on ε, and its expansion about ε = 0 can therefore be obtained by simply
using the scaled coordinates (4), (5) and expanding

[
∇u ·∇û−k2uû

]
(xs+εξ̄)

about ε = 0. In contrast, the second integral of (15) features the scattered
field vε, which depends on ε. Its asymptotic behaviour must then be obtained
from that of vε on Γε (taking into account the fact that Γε also depends
on ε). This step is based on exploiting an integral equation reformulation of
equations (10).
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3.3 Governing integral equation formulation for the scattered field

The governing problem (10) for the scattered field vε = vε(· ; xs) can be recast
as the boundary integral equation [4,8]:

1

2
vε(x) +

∫
Γε

H(x, ξ; k)vε(ξ) dΓξ = −
∫
Γε

G(x, ξ; k)p[u](ξ) dΓξ (x∈Γε), (16)

where the Green’s function G(x, ξ, k) is defined by

(∆ξ +k2)G(x, ξ, k) + δ(ξ−x) = 0 (ξ ∈Ω), H(x, ξ, k) = 0 (ξ ∈S), (17)

and H(x, ξ; k) = ∇G(x, ξ, k) · n(ξ) is the normal derivative of G(x, ξ, k) (the
nabla symbol ∇, when used in front of such kernel, conventionally indicates
a gradient with respect to the second argument ξ). Moreover, the free and
adjoint fields have the explicit expressions

u(x) =
∫

S
G(x, ξ; k)pD(ξ) dΓξ , û(x) =

∫
S
G(x, ξ; k)ϕ,u(ξ) dΓξ. (18)

It is convenient for the present purposes to split (G,H) according to:

G(x, ξ; k) = G(x, ξ; k) + GC(x, ξ; k)

H(x, ξ; k) = H(x, ξ; k) + HC(x, ξ; k),
(19)

where (G, H) is the well-known singular free-space fundamental solution for
the Helmholtz equation, given by

G(x, ξ; k) =
1

4πr
eikr , H(x, ξ; k) = [r · n(ξ)]

ikr − 1

4πr3
eikr, (20)

with r = ξ − x and r = |ξ − x| = |r|, and the complementary part (GC, HC)
is not singular at ξ = x. On using decomposition (19), equation (16) becomes

1

2
f(x) +

∫
Γε

H(x, ξ; k)vε(ξ) dΓξ +
∫
Γε

HC(x, ξ; k)vε(ξ) dΓξ

= −
∫
Γε

G(x, ξ; k)p[u](ξ) dΓξ −
∫
Γε

GC(x, ξ; k)p[u](ξ) dΓξ (x∈Γε). (21)

3.4 Leading asymptotic contribution to the scattered field

To study the asymptotic behaviour of integral equation (21) as ε → 0, it is
useful to introduce further scaled geometric quantities:

x = εx̄ , r = εr̄ , r = εr̄ (x, ξ ∈Γε; x̄, ξ̄ ∈S ) (22)
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in addition to definition (4) of ξ̄. The leading contributions as ε → 0 to the
fundamental kernels featured in equation (21) are

G(x, ξ; k) = ε−1G(x̄, ξ̄) + O(1)

H(x, ξ; k) = ε−2H(x̄, ξ̄) + O(1)
(x, ξ ∈Γε), (23)

for the singular kernels (G, H) defined by (20), where

G(x̄, ξ̄) =
1

4πr̄
, H(x̄, ξ̄) = − r̄ · n(ξ̄)

4πr̄3
(24)

are the fundamental kernels for the Laplace equation, and

GC(x, ξ; k) = GC(xs, xs; k) + O(ε)

HC(x, ξ; k) = HC(xs, xs; k) + O(ε)
(x, ξ ∈Γε). (25)

for the nonsingular kernels (GC, HC).

On performing the coordinate transformations (4), (22) and invoking estimates
(23), (25) together with (5b), one finds that∫

Γε

HC(x, ξ; k)vε(ξ) dΓξ = O(ε2|vε|)∫
Γε

GC(x, ξ; k)p[u](ξ) dΓξ = O(ε3).
(26)

The limiting form of integral equation (21) as ε → 0, retaining only the leading
contributions, is hence found to be

L̄S

[
vε

(
xs +εξ̄

)]
(x̄) = −ε∇u(xs) ·

∫
S

1

4πr̄
n(ξ̄) dΓ̄ξ̄ + o(ε) (27)

where L̄S , defined by

[
L̄S f

]
(x̄) =

1

2
f(x̄) +

∫
S

H(x̄, ξ̄)f(ξ̄) dΓ̄ξ̄ (x̄∈S ), (28)

is in fact the governing integral operator associated with exterior Neumann
problems for the Laplace equation in the normalized domain R3 \ B̄. Equa-
tion (27) indicates that the scattered field is of order O(ε) on Γε:

vε(ξ) = vε
(
xs +εξ̄

)
= ε∇u(xs) · V(ξ̄) + o(ε) (ξ ∈Γε, ξ̄ ∈S ) (29)

where the vector function V(ξ̄) solves the exterior (vector) Laplace problem

[
L̄S V

]
(x̄) = −∇u(xs) ·

∫
S

1

4πr̄
n(ξ̄) dΓ̄ξ̄ (30)
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i.e.
∆V = 0 (ξ̄ ∈ R3 \B̄),

∇ξ V .n = −n (ξ̄ ∈ S ),

|ξ|2V = O(1) (|ξ̄| → +∞)

(31)

It is important to note that V(ξ̄) does not depend on the sampling point xs,
and hence needs to be computed only once.

3.5 Topological derivative

On substituting (29) into (15) and taking (5) into account, one finally arrives
at the following expansion of J(ε):

J(ε) = J(0) + ε3T (xs) + o(ε3) (32)

where T (xs), the topological derivative of J(ε), is given in terms of the free
and adjoint fields by

T (xs) = Re
{
∇û ·A(S ) ·∇u− |B| k2ûu

}
(xs) (33)

and with the second-order tensor A(S ) defined by

A(S ) = |B| I −
∫

S

[
V(ξ̄)⊗n(ξ̄)

]
dΓ̄ξ̄ (34)

= |B| I −
∫

S

[
n(ξ̄)⊗ V(ξ̄)

]
dΓ̄ξ̄

where the second equality (i.e. the fact that A(S ) is symmetric) easily stems
from the third Green’s identity and the definition (31) of V . The tensor A(S )
is a particular example of the polarization tensors that arise in various small-
scatterer asymptotic theories, see e.g. [1,2].

For arbitrary surfaces S which are sufficiently regular for integral equa-
tion (30) to be mathematically meaningful (this includes surfaces with edges
and corners, e.g. box-shaped scatterers, but precludes infinitely-thin screens),
the vector density V may be found by e.g. solving numerically three sets of
BEM equations for exterior Laplace problems, a computationally modest task.

For the simplest case of a rigid spherical obstacle (where B is the unit sphere,
|B| = 4π/3, and on which n(ξ̄) = −ξ̄) one easily finds by analytical means
that V(ξ̄) = ξ̄/2. Then, (34) is readily found to be given by

A(S ) = 2πI. (35)

When S is an ellipsoid with principal directions e′1, e
′
2, e

′
3 and semi-axes

a1, a2, a3, the analytical solution of (31) is found by introducing an ellipsoidal
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coordinate system and expanding V in terms of spheroidal harmonics [21].
This procedure yields the polarization tensor featured in (33) as

A(S ) = |B|
3∑

m=1

1

1− Im

e′m⊗e′m, (36)

where Im are the functions of the two aspect ratios of B (e.g. a2/a1 and a3/a1)
given by

Im =
a1a2a3

2

∫ ∞

0

dr

(r + a2
m)

√
r+a2

1

√
r+a2

2

√
r+a2

3

, m = 1, 2, 3

3.6 Qualitative obstacle identification via topological sensitivity

Equation (33) provides, when applied to the featured cost functional J , an in-
formation indicating whether J increases (T (xs) > 0) or decreases (T (xs) < 0)
in response to the nucleation at xs of an infinitely small impenetrable scat-
terer with prescribed shape. Thus, the topological sensitivity field T (xs) is
guaranteed to define a correct obstacle indicator only in the limit as the size
of a hidden obstacle approaches zero. It is nonetheless natural to examine
whether the spatial distribution of T can still furnish a useful information for
the reconstruction and characterization of finite obstacles. In keeping with the
ultimate goal of minimizing J , the key idea in this setting is to approximate
the support of a hidden (finite) obstacle via regions where T attains pro-
nounced negative values. While the reasoning behind such an idea is heuristic,
the numerical experiments presented in this article as well as in other related
works [18,5,13,12,23] support the utility of this notion. Since the computation
of the indicator function T (over the volume of interest) is significantly faster
than an iterative (e.g. minimization-based) inversion, this approach offers a
convenient means of extracting preliminary obstacle information from the data
uobs. Such information can then be used either in a stand-alone manner for
qualitative reconstruction, or as a reliable initial “guess” for more elaborate,
iterative reconstruction schemes.

3.7 Practical computation of topological sensitivity

The developments thus far are based on the Green’s function G defined by (17),
and lead to almost explicit formulae for T (xs), their only non-explicit com-
ponent being the auxiliary density V , which must be computed numerically
except for simple shapes of the trial scatterer B.

In practice, this explicit character is retained only for geometries Ω such that
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the corresponding Green’s function is known analytically. Such cases corre-
spond with geometrically simple configurations, e.g. the acoustic half-space.
For configurations where the Green’s function is not available, the free and ad-
joint fields and the nonsingular kernels may be sought as solutions of boundary
integral equations [4,8]. The free and adjoint fields, defined by (9) and (13),
satisfy the well-known integral identities

c(x)u(x) +
∫

S
H(x, ξ; k)u(ξ) dΓξ =

∫
S

G(x, ξ; k)pD(ξ) dΓξ (37)

c(x)û(x) +
∫

S
H(x, ξ; k)û(ξ) dΓξ = −

∫
Sobs

G(x, ξ; k)ϕ,u(ξ) dΓξ (38)

which provide integral equations for x ∈ S (with c(x) = 1/2, except at points
x where S is only piecewise smooth, such as edges or corners, for which c(x)
is also known) and integral representation formulae for x ∈ Ω (with c(x) = 1).
Differentiation of the latter under the integral sign provide integral represen-
tations of ∇u(x) and ∇u(xs) in Ω.

Hence, evaluation of the topological sensitivity field as given by (33) entails
the solution of integral equations (37) and (38) for u and û on S, followed by
an evaluation of u(xs), ∇u(xs) and û(xs), ∇u(xs) by means of (37) and (38)
used as integral representations. The first step may involve large numbers of
unknowns if the diameter of Ω spans more than a few wavelengths. Moreover,
the present objective being to comprehensively explore a 3-D region of space
for hidden scatterers by examining the distribution of T (xs), formula (33) is
to be evaluated at a large number of sampling points xs. Both steps can then
be considerably accelerated using the FM-BEM.

4 The fast multipole method for Helmholtz equation

4.1 BEM discretization

Equations (37) and (38) are in this article solved by means of the simplest
BEM discretization, which employs flat triangular boundary elements with
straight edges and piecewise-linear C0 interpolation of u and û (other choices,
e.g. C0 quadratic interpolation, would of course have been possible). All nu-
merical results presented hereinafter have been obtained on that basis. The
primary unknowns are the values of u or û at the mesh nodes, i.e. at all the
element vertices. Equations (37) and (38) are collocated at all mesh nodes. All
singular element integrals associated with the kernel H(x, ξ; k) are zero be-
cause of the piecewise-flat geometry representation, which of course simplifies
the implementation. Denoting by N the total number of nodes (and hence of
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unknowns), this procedure gives rise to the linear systems of equations

[A]{u} = {b} (39)

[A]{û} = {b̂} (40)

where the N -vectors {u} and {û} collect all nodal values of u and û. The
discussion to follow will focus on solving system (39), the adjoint system (40)
being of course solved in exactly the same way with {b} replaced by {b̂}.

As the problem size N grows, direct solvers become impractical or infeasible
with respect to both computing time and storage, mainly due to the fully-
populated nature of the BEM matrix [A], and iterative solvers are used instead.
Since [A] is a non-symmetric, invertible matrix (except when k is a eigenvalue
for Ω and homogeneous Neumann BCs), the iterative solution technique most
often used for systems such as (39) is the generalized minimal residual (GM-
RES) algorithm (see e.g. [15]), which is applicable to general invertible square
matrices. Such algorithms are based on matrix-vector evaluations, and there-
fore do not require actual assembly and storage of [A]. The GMRES algorithm
requires repeated evaluations of the residual

{b} − [A]{u} (41)

where {u} is a given solution candidate, which is updated at each GMRES
iteration. Hence, one needs to compute (discretized versions of) the double-
layer and single-layer potentials featured in the left-hand and right-hand sides,
respectively, of (37) and (38) for known densities.

Traditional BE methods lead to a O(N2) computational cost for each residual
evaluation, because element integrals computed for a collocation point can-
not be reused for another collocation point. By adopting the Fast Multipole
boundary element method (FM-BEM), each residual can be computed within
a O(NLogN) time. The implementation used here, concisely described in the
remainder of this section, follows Darve [9] and Sylvand [31,32].

4.2 Expansion of the fundamental solution

The starting point for the FM-BEM is the following representation of the
full-space fundamental solution (20):

G(x, ξ; k) = lim
p→∞

ik

4π

∫
Ŝ

e−ik(ŝ·x̃)Tp(ŝ, r0)e
ik(ŝ·ξ̃) dΓŝ (42)
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where Ŝ = {ŝ, |ŝ| = 1} is the unit sphere, the position vector r = ξ−x has
been decomposed as

r = (ξ0 − x0) + (ξ − ξ0)− (x− x0) = r0 + ξ̃ − x̃ (43)

in terms of two poles x0 and ξ0, and with the transfer function Tp(ŝ, r0) defined
by

Tp(ŝ, r0) =
(−i)n

4π

p∑
n=0

(−1)n(2n+1)h(1)
n (kr0)Pn(ŝ · r̂0) (44)

In (44), the h(1)
n and Pn are respectively the spherical Hankel functions of

first kind and the Legendre polynomials, and r0 ≡ |ξ0 −x0|. Moreover, for
any vector z ∈ R3, a hat symbol indicates the corresponding unit vector, i.e.
ẑ = z/|z|. Representation (42) holds under the condition

|r0| > |ξ̃ − x̃| (45)

The poles x0 and ξ0 are actually meant to be chosen close to ξ and x, respec-
tively, so as to satisfy the stronger condition

|ξ − x0| > |x− x0| and |x− ξ0| > |ξ − ξ0| (46)

The representation of H(x, ξ; k) obtained by differentiating (42) is then

H(x, ξ; k) = lim
p→∞

−k2

4π

∫
Ŝ

e−ik(ŝ·x̃)Tp(ŝ, r0)
[
ŝ · n(ξ)

]
eik(ŝ·ξ̃) dΓŝ (47)

In practice, representations (42) and (47) are approximated by (i) using the
transfer function Tp(ŝ, r0) with a finite index p and (ii) replacing the integral
over the unit sphere with a quadrature rule with Q points ŝq and weights wq.
So, one replaces (42) and (47) with the approximations

G(x, ξ; k) ≈ ik

4π

Q∑
q=1

wqe
−ik(ŝq ·x̃)Tp(ŝq, r0)e

ik(ŝq ·ξ̃) (48)

H(x, ξ; k) ≈ ik

4π

Q∑
q=1

wqe
−ik(ŝq ·x̃)Tp(ŝq, r0)

[
ŝq · n(ξ)

]
eik(ŝq ·ξ̃) (49)

The choice of points ŝq and weights wq, and their number Q, depends on the
truncation order p used in the transfer function Tp. On parameterizing unit

vectors ŝ ∈ Ŝ using spherical angular coordinates (θ, φ), a commonly used
choice [31,9] consists in using the Q(p) = (p+1)(2p+1) quadrature points of
the form ŝq = (θa, φb), where cos θa (1 ≤ a ≤ p+1) are the abscissae for the
(p+1)-point Gauss-Legendre 1-D quadrature rule over [−1, 1], φb = 2πb/(2p+1)
(1 ≤ b ≤ 2p + 1) are uniformly-spaced abscissae on [0, 2π]. The associated
weights are wq = 2πwθ

a/(2p+1), where wθ
a are the Gauss-Legendre weights for

the (p+1)-point rule.
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Now, let Sx and Sξ denote two disjoint portions of S, and let the poles x0 and
ξ0 be chosen close to Sx and Sξ, respectively, in such a way that (46) holds
for any x∈Sx and ξ ∈Sξ. Consider the computation of

I(x) =
∫

Sξ

G(x, ξ; k)v(ξ) dΓξ (x ∈ Sx)

for a given density v(ξ), which is a typical contribution to the evaluation of
the residual (41). On substituting (48), one obtains

I(x) ≈ ik

4π

Q(p)∑
q=1

wqe
−ik(ŝq ·x̃)Tp(ŝq, r0)

∫
Sξ

eik(ŝq ·ξ̃)v(ξ) dΓξ (x ∈ Sx) (50)

So, the same integral over Sξ can be re-used for all collocation points x∈Sx.
Moreover, for a chosen portion Sξ, this is true for any portion Sx and associated
pole x0 such that condition (46) holds. Computations of the form (50) can be
decomposed into three stages: (i) compute for each quadrature point of Ŝ the
multipole moment R(ŝq; ξ0):

R(ŝq; ξ0) =
∫

Sξ

eik(ŝq ·ξ̃)v(ξ) dΓξ (51)

(ii) multiply R(ŝq; ξ0) by the transfer function Tp(ŝq, r0), to obtain local ex-
pansion coefficients L(ŝq; x0) at x0:

L(ŝq; x0) = Tp(ŝq, ξ0−x0)R(ŝq; ξ0) (52)

(iii) for all x ∈ Sx, transfer L(ŝq; x0) locally from x0 to x and perform the

numerical quadrature over Ŝ, to obtain (an approximation of) I(x):

I(x) ≈ ik

4π

Q(p)∑
q=1

wqe
−ik(ŝq ·x̃)L(ŝq; x0) (53)

The one-level fast multipole method consists in partitioning the spatial region
containing S into cubic cells of identical sizes whose vertices lie on a regular
cubic grid. Each pair (Sx, Sξ) is such that Sx = S ∩ Cx and Sξ = S ∩ Cξ,
where (Cx, Cξ) is any pair of disjoint cubic cells. The poles x0 and ξ0 are the
respective cell centroids. The one-level FM-BEM has a complexity of O(N3/2)
per iteration for equations of type (39), which is of course better than the
O(N2) complexity of traditional BEM, but not optimal. Further acceleration
is provided by using the multi-level fast multipole method, where the size of
clusters Sx, Sξ depends of their distance.
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4.3 Multilevel FM-BEM algorithm

To exploit optimally the acceleration afforded by (50), a hierarchical oct-tree
structure of elements is introduced. For that purpose, a cube containing the
boundary S, called ‘level-0 cell’, is divided into eight cubes (level-1 cells), each
of which is divided in the same fashion, and so on. A level-` cell is divided
into level-(`+1) cells unless it contains less than a preset (relatively small)
number E of boundary elements (such cells are termed leaves). A noteworthy
feature of the FM-BEM applied to Helmholtz-type equations is that to achieve
the same accuracy in approximations (48), (49) at all levels, the truncation
parameter p is level-dependent. A often-used formula [9] for the adjustment
of p is of the form

p(`) =
√

3kd(`) + CLog10(
√

3kd(`) + π) (54)

where d(`) is the size of a cubic `-level cell (so, d(`+1) = 2d(`) and p(`+1)
is roughly 2p(`)) and C is a constant. As a result, the set of quadrature
points ŝq on Ŝ is also level-dependent: each level necessitates a distinct set ŝ`

q

of quadrature points and associated weights. For the present implementation,
values of C such that 2≤C ≤ 8 were found to provide a acceptable compromise
between accuracy and cost, and C = 4 was actually used.

The FM-BEM algorithm then consists of:

• An upward pass where multipole moments (51) are first computed for the
lowest-level cells and then recursively aggregated by moving upward in the
tree until level 2 (for which there are 4×4×4 cells) is reached. Letting C (ξ0)
denote the set of children of a given `-level cell C(ξ0), i.e. of (` + 1)-level
cells C(ξ′0) contained in C(ξ0), this operation relies on the identity

R(ŝ`+1
q ; ξ0) =

∑
C(y0)∈C (x0)

eik(ŝ`+1
q ·(ξ′

0−ξ0))R(ŝ`+1
q ; ξ′0) (55)

for shifting the origin from the center ξ′0 of a level-(`+1) cell to the center
ξ0 of a level-` cell in the the contribution of a given cell.

Then, it is necessary to interpolate, i.e. compute R(ŝ`
q; ξ0) at the quadra-

ture points ŝ`
q from the previously determined values R(ŝ`+1

q ; ξ0). The pro-
cedure used follows [31,9] and is not detailed here.

• A downward pass where the coefficients of local expansions are first com-
puted at level ` = 2 and then evaluated at lower-level cells by tracing the
tree structure downwards. This operation relies on the identity

L(ŝ`
q; x

′
0) = e−ik(ŝ`+1

q ·(x0−x′
0))L(ŝ`

q; x0) (56)

for shifting the origin from the center x0 of a level-(`) cell to the center x′
0
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of a level-(`+1) cell. This operation is not performed at the root level, i.e.
when `+1 = 2.

Then, the contributions of all level-(`+1) cells belonging to the interaction
list I(x0) of the level-`+1 cell C(x0) (i.e. all such cells which are non-adjacent
to C(x0) but whose father is adjacent to the father of C(x0)) are aggregated:∑

C(y0)∈I(x0)

Tp(ŝ
`
q, y0−x0)R(ŝ`

q; y0)

and the result is added to L(ŝ`
q; x

′
0) given by (56)

Then, the values L(ŝ`
q; x

′
0) are converted to values at the quadrature

points ŝ`+1
q by a ‘reverse interpolation’, or ‘anterpolation’, procedure.

• When the lowest level is reached, all quadratures of the form (53) are finally
performed, where x0 is the centers of a leaf cell, thus evaluating all far-field
contributions to the residual at all collocation points.

Moreover, for all leaf cells C(x0) and all collocation points x ∈ C(x0),
the near-field contributions are computed by evaluating using traditional
integration methods the element contributions for all elements located in
C(x0) and all cells of same level adjacent to C(x0).

The computation of integral representation formulae for u(xs), ∇u(xs) and
û(xs), ∇u(xs) at all chosen sampling points follows the same approach, with
collocation points x ∈ S replaced with sampling points xs ∈ Ω. For sampling
points lying in leaf cells not adjacent to any same-level cell intersecting S, the
integral representations result from far-field interactions (i.e. fast-multipole
contributions) only. Besides, all multipole moments used in this step are those
corresponding to the solution of (39) or (40), i.e. those evaluated at the last
iteration of the GMRES solution algorithm

4.4 Numerical verification of theoretical complexity

To check that the theoretical complexity of the FM-BEM is achieved and illus-
trate the computational advantage brought by the FM-BEM over the conven-
tional BEM, the simple situation of a spherical acoustic domain subjected on
its surface to a uniform normal velocity, is considered. BEM solutions for this
problem have been computed for a sequence of meshes with decreasing element
size. For each mesh, the prescribed frequency is selected so that the number
of nodes per wavelength is (approximately) the same for all meshes. Figure 1
shows the CPU time used for one evaluation of residual (41), using either clas-
sical BEM integration techniques (with theoretical complexity O(N2)) or the
FM-BEM (with theoretical complexity NLogN), as a function of the number
N of nodal unknowns. Functions of the form C1N

2 and C2NLogN closest to
the actual recorded values of CPU(N) are also plotted on the same graph. The
theoretical complexity for both the classical BEM and the FM-BEM are very
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Fig. 1. CPU time for one evaluation of residual (41) as a function of the number N of
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complexity O(NLogN)).
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Fig. 2. Pattern of excitation surfaces Sq on each face of external boundary S.

well verified by the actual CPU times. The FM-BEM, as expected, performs
much better for large problems.

5 Preliminary identification via topological sensitivity: numerical
examples

To illustrate the approach described in Sections 3 and 4, the following config-
uration has been considered: the bounded acoustic domain is the cube defined
by Ω(L) = { |ξi| ≤L (i = 1, 2, 3) }, with L = 8a or L = 16a in terms of a refer-
ence length a. A simulated testing configuration is based on 30 experiments,
each of which consists in applying a uniform excitation over a small region Sq

(1≤ q≤ 30) of S and recording the acoustic pressure over the whole boundary
S (i.e. at all BE mesh nodes), so that Sobs = S. Unless indicated otherwise,
the acoustic excitation is such that the wavelength is λ = 3a. Each of the six
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faces of the cubical domain Ω supports five excitation surfaces Sq, each a disk
of radius a, arranged as depicted on Fig. 2. The cost function for the inverse
problem is defined by

J (Ω?) =
1

2

30∑
q=1

∫
S
|u? − uobs

q |2 dΓξ (57)

where uobs
q is the data obtained for the q-th applied excitation, with uobs

q = utrue

in the absence of data noise. The centroid xtrue of true scatterer Btrue to be
identified is located at xtrue = (2a, 3a, 2a).

To facilitate the graphical interpretation, a thresholded variant T̂ (xs) of T (xs)
is introduced according to

T̂ (xs) =

T (xs) , T ≤ C Tmin

0 , T > C Tmin

with C = 0.25. (58)

The BE meshes used for computing the free field u, the adjoint field û and
the simulated data utrue

q are made of three-noded flat triangular elements,
arranged in a regular mesh with approximately 15 nodes per wavelength. For
the purposes of computing the simulated error-free data utrue for each synthetic
experiment, BE meshes of Γtrue have been set up as well. Table 1 indicates the
numbers of nodes and elements supported by the BE meshes.

Table 1
Number of element and DOFs supported by the BE meshes.

Cube size Cube Obstacle Total
Elements nodes Elements nodes Elements nodes

2L = 16a 76800 38402 336 170 77136 38572
2L = 32a 307200 153602 336 170 307536 153772

Single spherical scatterer. First, the identification of one spherical scat-
terer is considered, for three cases with increasing scatterer radii 0.2a, 0.4a
and 0.8a. The field T has been computed for each case on the basis of error-
free synthetic data, over a sampling grid S made of 100×100×100 sampling
points located on the vertices of a regular cubic grid, centered at the origin
and with grid spacing ∆xs = 16a/101, uniformly filling the whole acoustic do-
main bounded by S. Figures 3, 4 and 5 show, for each scatterer configuration
considered in turn, the distribution of the thresholded topological sensitivity
T̂ defined by (58) in the three coordinate planes containing the true scatterer
centroid xtrue. In all cases, T̂ (and hence T ) is seen to attain its lowest values in
zones corresponding to, or close to, the actual true scatterer location. It should
however be mentioned that T has been observed to also achieve low values
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in regions close to edges or corners of S, where there is no scatterer. To em-
phasize and illustrate this remark, Fig. 6 shows the iso-surfaces of the field T
corresponding to T = 0.55Tmin, computed on the entire search grid S (Fig. 6a)
and on truncated search grids such that { |ξi| ≤ 6.5a (i = 1, 2, 3) } (Fig. 6b)
and { |ξi| ≤ 5a (i = 1, 2, 3) } (Fig. 6c), i.e. in which sampling points situated at
distances less than 1.5a and 3a, respectively, from S have been taken out of
S. Figure 6c shows that, at least in the central region { |ξi| ≤ 5a (i = 1, 2, 3) }
of the acoustic domain, low negative values of T occur only in a small region
which is consistent with the actual location of the scatterer. If a lower excita-
tion frequency is used, the distribution of T around the true obstacle location
is more “smeared”, as in Figure 7 where λ = 12a was used (the other data
being as in the previously discussed examples).

Dual spherical scatterer. The identification of a set of two spherical scat-
terers, of respective locations xtrue

1 = (a, 2a, 2a) and xtrue
2 = (−3a,−2a, 2a)

and of equal radii 0.8a, embedded in the same domain Ω(8a) and under the
same (virtual) experimental conditions as before, is now considered. Figure 8,
which shows the distribution of thresholded topological sensitivity T̂ in the
coordinate planes ξ3 = 2a containing the true scatterer centroids xtrue

1,2 , indi-
cates that both scatterers are well resolved and reasonably located. Again, T
is observed to also achieve relatively low values in regions close to edges or
corners of S, where there is no scatterer. However, as evidenced by a compar-
ison of Figure 8a and 8b, which differ only by the chosen threshold (C = 0.25
and C = 0.5, respectively) in the definition (58) of T̂ , the lowest values of T
are attained near the correct obstacle location, and not near edges or corners
of S. These observations are emphasized by Fig. 9 showing the iso-surface of
the field T corresponding to T = 0.75Tmin, computed on a truncated search
grids such that { |ξi| ≤ 7a (i = 1, 2, 3) }. Again, the two obstacles are seen to be
well resolved, with no other significantly low value of T found in the sampling
region of interest { |ξi| ≤ 7a (i = 1, 2, 3) }.

Single spherical scatterer, effect of data noise. Then, the effect of data
errors is considered for the spherical scatterer of radius 0.8a, by using synthetic
data uobs in the form uobs = utrue(1 + η), where η are random numbers with
zero mean and uniform distribution over the interval [−0.1, 0.1]. Figure 10
shows the distribution of T̂ in the three coordinate planes containing xtrue. A
comparison between Figs. 5 and 10 reveals that the distribution of T̂ is only
marginally affected by the data noise.

Box-shaped scatterer. The examples shown thus far illustrate the capa-
bility of T , here defined on the basis of an asymptotic analysis involving van-
ishing spherical obstacles, to identify the location of obstacles of finite extent
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having the same assumed shape. Now, the identification of a non-spherical,
box-shaped obstacle whose sides are aligned along the coordinale axes and of
finite size 0.8a× 0.8a× 1.6a and whose centroid is still xtrue = (2a, 3a, 2a),
is considered. Figure 11 shows the distribution of T̂ in the three coordinate
planes containing xtrue. The true obstacle is again satisfactorily located.

Single spherical scatterer, larger background domain. A last example
illustrates the case of a larger acoustic domain Ω(16a), instead of Ω(8a) con-
sidered up to this point, with the same wavelength λ = 3a as before. The ‘true’
scatterer (again a sphere of radius 0.8a) is still located at xtrue = (2a, 3a, 2a),
and hence is located at a larger distance (expressed in wavelengths) from the
measurement surfaces. The sampling grid S is now made of 150× 150× 150
regularly-spaced sampling points, with a grid spacing now of ∆xs = 32a/151.
Figure 12 shows the distribution of T̂ in the three coordinate planes con-
taining xtrue. Presumably as a result of greater remoteness (and hence lower
identifiability) of the scatterer, these distributions show, in addition to the
correct one, secondary spatial zones where the presence of a small scatterer
is also consistent with the data. Still, the lowest values of T̂ furnish a rea-
sonable indication of the true obstacle location, as seen on the 3-D plots of
iso-surfaces T = 0.55Tmin and T = 0.7Tmin of Fig. 13 for the truncated grid
defined by { |ξi| ≤ 14a (i = 1, 2, 3) }. Again, one notes that values of T close
to its minimum Tmin occur only in the vicinity of the correct obstacle location
(excluding, as before, regions close to the external surface S). From the 3-D
plots of Figure 14, similar remarks apply for the detection of a larger obstacle,
of radius 1.2a, in otherwise identical conditions.

Computational efficiency. Typical CPU times and GMRES iteration counts
are provided in Table 2. It is interesting to observe that the overall CPU times
for Ω(16a), which involves roughly 4 times as many nodal unknowns as Ω(8a),
are about 5 times higher than those for Ω(8a) (while the expected ratio for
traditional BEM would be 43 = 64), and that the GMRES iteration counts are
only fractionally higher for Ω(16a). All computations have been performed on
a Linux PC computer with one 3 GHz processor.

Table 2
CPU times and (in parentheses) GMRES iteration count for computing the true,
free and adjoint solutions on the boundary, and CPU times for computing the
topological sensitivity over the whole sampling grid S.

utrue on S∪Γtrue u on S û on S T on S
2L = 16a 1444s (435) 969s (282) 1163s (342) 852s
2L = 32a 6461s (439) 5615s (388) 6818s (476) 1860s
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6 Conclusion

In this article, a computationally fast qualitative technique for probing acous-
tic media for hidden hard obstacles on the basis of overdetermined boundary
data, based on the computation via the FM-BEM of the distribution of topo-
logical sensitivity of the cost functional associated with the inverse problem,
has been presented. Its usefulness has been demonstrated through results of
numerical experiments on the qualitative identification of hard obstacles in
a bounded acoustic domain, for configurations featuring O(105) nodal un-
knowns and O(106) sampling points, resulting in overall computing times of a
few hours on a 3 GHz PC computer. There is ample scope for increasing these
computational sizes and further enhancing computational efficiency. Besides,
the proposed approach can be developed for many other physical models, e.g.
elastodynamics or electromagnetic waves.
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Fig. 3. Identification of spherical hard scatterer of radius 0.2a: distribution of thresh-
olded topological sensitivity T̂ (xs) for sampling points xs in coordinate planes
ξ1 = xtrue

1 (a), x2 = xtrue
2 (b) and x3 = xtrue

3 (c).
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Fig. 4. Identification of spherical hard scatterer of radius 0.4a: distribution of thresh-
olded topological sensitivity T̂ (xs) for sampling points xs in coordinate planes
ξ1 = xtrue

1 (a), x2 = xtrue
2 (b) and x3 = xtrue

3 (c).
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Fig. 5. Identification of spherical hard scatterer of radius 0.8a: distribution of thresh-
olded topological sensitivity T̂ (xs) for sampling points xs in coordinate planes
ξ1 = xtrue

1 (a), x2 = xtrue
2 (b) and x3 = xtrue

3 (c).
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(a)

(b)

(c)

Fig. 6. Identification of spherical hard scatterer of radius 0.4a: iso-surfaces of T (xs)
for T = 0.55Tmin, computed on the entire search grid S (a) and on truncated search
grids such that { |ξi| ≤ 6.5a (i = 1, 2, 3) } (b) and { |ξi| ≤ 5a (i = 1, 2, 3) } (c). Values
of T (xs) lower than the iso-value are inside the iso-surface.
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(a)

(b)

(c)

Fig. 7. Identification of spherical hard scatterer of radius 0.8a, low-frequency excita-
tion (λ = 12a): distribution of thresholded topological sensitivity T̂ (xs) for sampling
points xs in coordinate planes ξ1 = xtrue

1 (a), x2 = xtrue
2 (b) and x3 = xtrue

3 (c).
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Fig. 8. Identification of two spherical hard scatterers of radius 0.8a: distribution of
thresholded topological sensitivity T̂ (xs) for sampling points xs in coordinate plane
ξ3 = xtrue

3 , with threshold C = 0.25 (a) or C = 0.5 (b).
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Fig. 9. Identification of two spherical hard scatterers of radius 0.8a: iso-surface
of T (xs) for T = 0.75Tmin on the truncated search grid such that
{ |ξi| ≤ 7a (i = 1, 2, 3) }. Values of T (xs) lower than the iso-value are inside the
iso-surface.
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Fig. 10. Identification of spherical hard scatterer of radius 0.4a, synthetic data with
10% noise: distribution of thresholded topological sensitivity T̂ (xs) for sampling
points xs in coordinate planes ξ1 = xtrue

1 (a), x2 = xtrue
2 (b) and x3 = xtrue

3 (c).
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Fig. 11. Identification of box-shaped scatterer: distribution of thresholded topolog-
ical sensitivity T̂ (xs) for sampling points xs in coordinate planes ξ1 = xtrue

1 (a),
x2 = xtrue

2 (b) and x3 = xtrue
3 (c).
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Fig. 12. Identification of spherical hard scatterer of radius 0.4a in large domain:
distribution of thresholded topological sensitivity T̂ (xs) for sampling points xs in
coordinate planes ξ1 = xtrue

1 (a), x2 = xtrue
2 (b) and x3 = xtrue

3 (c).
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(a)

(b)

Fig. 13. Identification of spherical hard scatterer of radius 0.4a embedded in large
domain Ω(16a): iso-surfaces of (a) T (xs) for T = 0.55Tmin and (b) T = 0.75Tmin

computed on the truncated search grid such that { |ξi| ≤ 14a (i = 1, 2, 3) }. Values
of T (xs) lower than the iso-value are inside the iso-surface.
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(a)

(b)

Fig. 14. Identification of spherical hard scatterer of radius 1.2a embedded in large
domain Ω(16a): iso-surfaces of (a) T (xs) for T = 0.55Tmin and (b) T = 0.75Tmin

computed on the truncated search grid such that { |ξi| ≤ 14a (i = 1, 2, 3) }. Values
of T (xs) lower than the iso-value are inside the iso-surface.
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