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Abstract

In this paper, we argue that many environmental processes are more naturally defined in the
context of continuous-time differential equation models, normally derived by the application of
natural laws, such as mass and energy conservation. As a result, there are advantages if such
models are estimated directly in this continuous-time differential equation form, rather than
being formulated and estimated as discrete-time models. This paper discusses these advantages
and briefly describes the key features of the two toolboxes for use with MATLAB® which support
the advanced time-domain methods for directly identifying linear continuous-time models from
discrete-time data. The arguments presented in the paper are finally illustrated by a practical
example in which the proposed data-based approach to direct CT modelling is applied to a set
of rainfall-flow data.
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INTRODUCTION

Most mathematical models of environmental systems are formulated on the basis of natu-
ral laws, such as dynamic conservation equations, often expressed in terms of continuous-
time (CT), linear or nonlinear differential equations. Paradoxically, Transfer Function
(TF) models, which have been growing in popularity over the last decade because of their
ability to characterise environmental data in an efficient parametric (parsimonious) form,
are almost always presented in the alternative, discrete-time (DT) terms. One reason
for this paradox is that environmental data are normally sampled at regular intervals
over time, so forming discrete-time series that are in a most appropriate form for DT
modelling (Young 1984, Ljung 1999). Another is that most of the technical literature on
the statistical identification and estimation (calibration) of TF models deals with these
DT models. Closer review of the literature, however, reveals apparently less well-known
publications dealing with estimation methods that allow for the direct identification of
CT (differential equation) models from discrete-time, sampled data (Young 1981, Garnier
et al. 2003, H. Garnier and L. Wang 2008).



This paper first discusses the formulation, identification and estimationl] of linear CT mod-
els. It then briefly describes the main features of the user-friendly CAPTAIN and CON-
TSID toolboxes for MATLAB® which support the computationally efficient CT model
identification algorithms. In addition, we present a practical example, where the proposed
data-based approach to direct CT modelling is applied to a typical set of effective rainfall-
flow data. Our main aim is to demonstrate the many advantages of direct continuous-time
model estimation, in relation to its discrete-time alternative, and so encourage its practical
application.

CONTINUOUS-TIME MODELS

For simplicity of presentation, the theoretical basis for the statistical identification and
estimation of linear, continuous-time models from discrete-time, sampled data can be
outlined by considering the case of a linear, single input, single output system. It should
be noted, however, that the analysis extends straightforwardly to multiple input systems
and, in a more complex manner, to full multivariable systems
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Here A(s) and B(s) are the following polynomials in the derivative operator s = d/dt
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B(s) = bos™ + b1s™ 1 + ... 4 byp_15 + by, (3)

in which n and m can take on any positive integer values with m < n ; 7 is any pure
time delay in time units ; u(t) and z(¢) denote, respectively, the deterministic input and
output signals of the system. Of course, the model ([l) can also be written in the following
differential equation form, which is often more familiar to physical scientists
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The structure of the CT model is denoted by the triad [n m 7]. In most practical situa-
tions, the observed input and output signals u(t) and y(¢) will be sampled in discrete-time.
In the case of uniform sampling, at a constant sampling interval T}, these sampled signals
will be denoted by u(t;) and y(¢x) and the output observation equation then takes the
form,

y(tk) = x(tk) + g(tk) k= L. 7N (5)

where x(t)) is the sampled value of the unobserved, noise-free output z(¢). Given the
discrete-time, sampled nature of the data, the measured output is assumed to be con-
taminated by a noise or stochastic, discrete-time disturbance signal £(¢;). This noise is
assumed to be independent of the input signal u(tx) and it represents the aggregate ef-
fect of all the stochastic inputs to the system, including distributed unmeasured inputs,
measurement errors and modelling error. If (¢;) has rational spectral density, then it can
be modelled as an Auto-Regressive (AR) or Auto-Regressive, Moving-Average (ARMA)
process but this restriction is not essential.

!The statistical meaning of these terms will be used here, where ‘identification’ is taken to mean the
specification of an identifiable model structure and ‘estimation’ relates to the estimation of the parameters
that characterize this identified model structure.



The objective is then to identify a suitable model structure defined by the triad [n m 7]
for () and estimate the parameters that characterize this structure, based on the sampled
input and output data ZV = {u(t;); y(tk)}]kvzl.

IDENTIFICATION METHODS FOR DATA-BASED CT MODELLING

The problem of identifying continuous-time models, based on discrete-time sampled data
can be approached in two main ways:

e The direct approach: here, it is necessary to identify the most appropriate CT
model structure ; and then directly estimate the TF parameters a;,b;, and 7 that
characterise this structure. Of course, some approximation will be incurred in this
estimation procedure because the inter-sample behaviour of input signal u(t) is not
known and it must be interpolated over the sampling interval in some manner.

e The ndirect approach: here, a DT model for the original CT system is first ob-
tained by applying a conventional stochastic DT model identification and estimation
procedure. This estimated DT model is then converted to a CT model, again using

some assumption about the nature of the input signal u(t) over the sampling interval
Ts.

Various statistical methods of identification and estimation have been proposed to im-
plement the two approaches outlined above and these have been formulated in both the
time and frequency domains. However, only estimation in the time domain will be con-
sidered here, and only one direct, statistically efficient estimation method will be briefly
discussed (and later used in the practical example section): the Refined Instrumental Vari-
able method for Continuous-time Systems (RIVC) (Young et al. 2008). The RIVC method
and its simplified version SRIVC (when the additive measurement noise is assumed to be
white) are the only time-domain methods that can be interpreted in optimal statistical
terms, so providing an estimate of the parametric error covariance matrix and, therefore,
estimates of the confidence bounds on the parameter estimates. The SRIVC/RIVC al-
gorithms are available in both the CAPTAIN and CONTSID toolboxes which are briefly
described in the next section.

This paper also promotes the Data-Based Mechanistic (DBM) modelling philosophy
(see (Young 1998) and the prior references therein) based on the direct identification and
estimation of a CT model. This involves the application of an advanced method of direct
continuous-time TF model estimation and identification and the interpretation of this
estimated model in physically meaningful terms. This DBM modelling approach can be
contrasted with ‘black-box’ modelling, since DBM models are only deemed credible if, in
addition to explaining the time series data in a statistically efficient, parsimonious manner,
they also provide an acceptable physical interpretation of the system under study. They
can also be contrasted with ‘grey-box’ models, because the model structure is inferred
inductively from the data, rather than being assumed a priori before model identification
and estimation in a hypothetico-deductive manner (see the discussion in (Young 2002)).



SOFTWARE SUPPORT FOR DATA-BASED CT MODELLING

The CONTSID toolbox

The CONtinuous-Time System IDentification (CONTSID) toolboxt for MATLAB® sup-
ports continuous-time transfer function or state-space model identification directly from
regularly or irregularly time-domain sampled data, without requiring the determination of
a discrete-time model. The motivation for developing the CONTSID toolbox was first to
fill in a gap, since no software support was available to both serve the cause of direct time-
domain identification of continuous-time linear models and also provide the potential user
with a platform for testing and evaluating all of the available data-based CT modelling
techniques. In this latter regard, it includes most of the direct deterministic methods, the
stochastic SRIVC/RIVC techniques, as well as output error and subspace-based meth-
ods. The toolbox is designed as an add-on to the Mathwork’s System IDentification (SID)
toolbox and has been given a similar setup (Garnier et al. 2008).

The CAPTAIN toolbox

The Computer Aided Program for Time series Analysis and Identification of Noisy sys-
tems (CAPTAIN)H for MATLAB® is a more general toolbox intended not only for the
identification of CT and DT transfer function models but also for DBM modelling, in-
cluding the extrapolation, interpolation and smoothing of nonstationary and nonlinear
time series (see e.g. Taylor et al., 2007). The CT (and DT) identification algorithms are
all based on Refined Instrumental Variable (RIV) estimation (Young 1984). In particular,
CT model identification is provided by the SRIVC/RIVC algorithms mentioned above.

ADVANTAGES OF DIRECT DATA-BASED CT MODELLING

As noted in the previous section, there are two fundamentally different time-domain
approaches to the problem of estimating a CT model of a continuous-time system from
its sampled input-output data. The indirect approach has the advantage that it uses well-
established DT model identification methods (Ljung 1999). Examples of such methods are
the maximum likelihood and prediction error methods, which are known to give consistent
and statistically efficient estimates under very general conditions.

On the surface, the choice between the two approaches may seem trivial. However, some
recent studies have exposed some serious shortcomings of the indirect route through DT
models. Indeed, an extensive analysis aimed at comparing direct and indirect approaches
has been presented recently. The simulation model used in this analysis provides a very
good test for CT and DT model estimation methods: it was first suggested by Rao
and Garnier (Rao and Garnier 2002) (see also (Garnier et al. 2003, Rao and Garnier
2004)); and further, independent investigations confirmed the results (Ljung 2003). This
simulation example illustrates some of the difficulties that may appear in DT modelling
under less standard conditions, such as rapidly sampled data or relatively wide-band
systems:

e relatively high sensitivity to the initialization. DT model identification often re-
quires computationally costly minimization algorithms without even guaranteeing

’http://www.cran.uhp-nancy.fr/contsid.
Shttp://www.es.lancs.ac.uk/cres/captain.



convergence (to the global optimum). In fact, in many cases, the initialization pro-
cedure for the identification scheme can be a key factor in obtaining satisfactory
estimation results when compared to the direct methods discussed in the present
paper, which do not suffer from this problem;

numerical issues in the case of fast sampling because the eigenvalues lie close to the
unit circle in the complex domain, so that the model parameters are more poorly
defined in statistical terms;

a priori knowledge of the relative degree is not easy to accommodate;

there is no inherent data prefiltering.

Further, the question of parameter transformation between a DT description and a CT
representation is non-trivial. First, the zeros of the DT model are not as easily translatable
to CT equivalents as the poles. Second, due to the discrete nature of the measurements,
they do not contain all the information about the CT signals. In order to describe the
signals between the sampling instants some additional assumptions have to be made: for
example, assuming that the excitation signal is constant between the sampling intervals
(the zero-order hold assumption). Violation of these assumptions may lead to severe
estimation errors.

The advantages of direct CT identification approaches over the alternative DT identifica-
tion methods can be summarized as follows:

they provide directly differential equation models whose parameters can be inter-
preted immediately in physically meaningful terms. As a result, they are of direct
use to scientists and engineers who most often derive models in differential equa-
tion terms based on natural laws and who are much less familiar with ‘black-box’
discrete-time models;

they can estimate fractional time-delay systems;

the estimated model is defined by a unique set of parameter values that are not
dependent on the sampling interval Tj;

there is no need for conversion from discrete to continuous-time, as required in the
indirect route based on initial DT model estimation;

the direct continuous-time methods can handle easily the case of irregularly sampled
data;

Any a priori knowledge of the relative degree is easy to accommodate and, therefore,
allows for the identification of more parsimonious models than in discrete-time;

they offer distinct advantages when applied to systems with widely separated modes;

the methods promoted in this paper for CT model estimation include inherent data
pre-filtering;

they are well suited to situations of over-sampling. This is particularly interesting
since today’s data acquisition equipment can provide nearly continuous-time mea-
surements and, therefore, make it possible to acquire data at very high sampling
frequencies. Note that as mentioned in Ljung (2003), the use of prefiltering and



decimation strategies may lead to better results in the case of DT modelling but
these are not so obvious or straightforward for a practitioner; while the direct CT
methods are free of these difficulties (indeed, the estimation is superior in just these
conditions)

Given these advantages, it is clear that, if a CT model is required, it is much better for
the practitioner to utilise a direct approach to model identification and estimation.

PRACTICAL EXAMPLE: RAINFALL-FLOW MODELLING

This example concerns the modelling of the daily ‘effective rainfall’-flow data from the
ephemeral River Canning in Western Australia, as shown in Figure[Il Effective rainfall is
a nonlinear transformation of measured rainfall that is a function of the soil-water storage
in the catchment and provides a measure of the rainfall that is effective in causing flow
variations (rather than that retained by the soil). Further information on the modelling
of rainfall-flow processes is given in (Young 2002) and the references therein. Another
hydrological example is discussed in a recent, related tutorial paper (Young and Garnier
2006) that reinforces the results reported here. The best SRIVC identified TF model,
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Figure 1: A typical set of effective rainfall and flow data

based on the data in Figure [Il takes the form
bos? + bys + by
y(t) = $2+a1s+ as “
with SRIVC parameter estimates,
a; = 0.457(0.032); ao = 0.025(0.005)
by = 0.0138(0.002); b; = 0.051(0.002); b, = 0.0046(0.0008)

(t) + () (6)



where the figures in parentheses are the estimated standard errors. The coefficient of
determination, based on the simulated output of this model, is B2 = 0.980 (i.e. 98% of the
flow variance is explained by the model output). Following the DBM modelling approach,
the model ([6]) can be interpreted in a physically meaningful manner as a parallel pathway
process with an instantaneous pathway (rainfall affecting flow within one day); a ‘quick’
flow pathway reflecting surface water processes, modelled as a first order process with a
time constant (residence time) of 2.5 days; and a ‘slow-flow” pathway, again modelled as
a first order process reflecting ground water effects, this time with a much longer time
constant of 15.9 days (see the above references for a more detailed explanation).

Indirect estimation produced mixed results. Two cases were considered: without (OE) and
with noise (PEM) model parameter estimation. In the first case, the indirectly identified
CT model, based on SRIV estimation of the DT model has virtually the same parameter
estimates and R2 as the SRIVC estimated CT model. The indirectly identified model
based on PEM(OE) estimation is almost as good, with R% = 0.979. However, as expected,
the indirectly identified model based on ARX estimation is quite poor, with R% = 0.959.
In the second case, the RIV-based estimation with AIC identified AR(4) model is only
a little different from that obtained without noise model parameter estimation, with
R% = 0.979. However, all reasonable PEM-based estimation results (MA(2), AR(4) and
ARMA (2,4) noise models) are worse, with R% = 0.959, R% = 0.933 and R2 = 0.932,
respectively. More importantly in practical terms, none of these PEM-based models
identify the long time constant and so would be rejected on physical grounds. Indeed, for
the MA(2) noise model (the most common ARMAX model form), the eigenvalues have
different signs which cannot be interpreted at all in physically meaningful terms.

CONCLUSIONS

This paper has outlined an approach to Data-Based Mechanistic (DBM) modelling of
environmental systems based on methods for the direct identification and estimation of
continuous-time (transfer function or differential equation) models. It has also argued that
such models are more appropriate to the modelling of environmental systems than their
more widely known discrete-time equivalents. The main advantage of these methods, over
the alternative discrete-time equivalents, is that they provide differential equation models
whose parameters can be interpreted immediately in physically meaningful terms, as our
example has shown. Consequently, they are of direct use to scientists and engineers who
most often derive models in differential equation terms based on natural laws and who are
much less familiar with ‘black-box’ discrete-time models. Moreover, the continuous-time
methods can be adapted easily to handle the case of irregularly sampled data or non-
integral time delays that are often encountered in the modelling of environmental systems.
They are also much superior when applied to rapidly sampled data, where discrete-time
methods often perform poorly because the eigenvalues lie close to the unit circle in the
complex domain, leading to estimation problems. These advantages, together with the
parsimony that is a natural consequence of DBM CT transfer function modelling, should
mean that any relationships between the CT model parameters and physical measures of
the environmental process should be clearer and better defined statistically.

This data-based DBM CT modelling approach has proven successful in many practical
applications and the most powerful statistical identification and estimation methods are
available in the user-friendly CAPTAIN and CONTSID toolboxes.
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