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Abstract. We calculate analytically the probability density P (tm) of the time tm

at which a continuous-time Brownian motion (with and without drift) attains its

maximum before passing through the origin for the first time. We also compute the

joint probability density P (M, tm) of the maximum M and tm. In the driftless case,

we find that P (tm) has power-law tails: P (tm) ∼ t
−3/2

m for large tm and P (tm) ∼ t
−1/2

m

for small tm. In presence of a drift towards the origin, P (tm) decays exponentially for

large tm. The results from numerical simulations are in excellent agreement with our

analytical predictions.
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Introduction

In this paper, we derive the probability distribution of a random variable associated with

a Brownian motion, namely the time at which a Brownian motion attains its maximum

value before it crosses the origin for the first time. This random variable appears quite

naturally in different problems such as in queueing theory and in the evolution of stock

prices in finance.

Let us first consider, for example, a single-server discrete-time queueing process,

modelled as a simple random walk [1, 2] via:

ln = ln−1 + ξn,

where ln is the length of the queue at time n and ξn’s are independent and identically

distributed random variables each taking values +1 with probability p (signifying the

arrival of a new customer), −1 with probability q (indicating the departure of an already

served customer) or 0 with probability (1 − p − q). In the queueing language, this is

referred to as the Geo/Geo/1 queue [2].

n

busy period

ln

Figure 1. Queue with busy period.

Given l0, one calls busy period the period at the end of which the queue becomes

empty for the first time (see Fig. 1): during such a period, the server always has some

customers to serve. It is then natural to enquire about the time at which the queue is at

its longest during the busy period. In the random walk model where the queue length

ln is the position of the walker at time step n, this amounts to investigating the time at

which the position of the walker (initially positive) is farthest from the origin before it

crosses the origin for the first time.

Another area where the same variable appears quite naturally is in the evolution of

stock prices in finance. The evolution of a stock price Sn with time n is often modelled

by the exponential of a random walk [3, 4]. Starting from its initial value S0 the price

evolves with time stochastically. A natural question for an agent holding this stock is:

what is the suitable time for selling this stock? If the stock price goes below a threshold,

say R, it is too risky to wait any longer. Thus an agent can wait at most up to the
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time at which the ratio Sn/R crosses the level 1 from above. Within this time, the ratio

Sn/R will achieve its maximum at some intermediate time which is clearly the best time

to sell the stock. Assuming that the random variable ln = ln(Sn/R) performs a random

walk starting from its initial value l0 = ln(S0/R) > 0, one then wants to calculate the

probability distribution of the time at which the random walk is farthest from the origin

till its first-passage time through the origin, i.e., till the time at which Sn/R = 1, i.e.,

ln(Sn/R) = 0 indicating the first-passage through the origin.

In this paper, we will consider a further simplified case, namely a continuous-

time Brownian motion as opposed to the discrete-time random walk in the above two

problems. For a continuous-time Brownian motion we calculate explicitly, using path-

integral methods, the probability density of the time tm at which a Brownian motion

x(t) (starting from x(0) = x0 > 0) is farthest from the origin before it crosses the origin

for the first time. Algorithmically speaking, for each sample of the Brownian motion

starting at x0 we stop when it crosses the origin for the first time say at time t = tf
and locate the time 0 ≤ tm < tf at which the Brownian motion achieves its maximum

value. Note that both tf (the first-passage time) and tm varies from one sample to

another. We repeat it many times and then construct a histogram of the tm’s which

gives its probability density function P (tm). Even though the discrete-time problem is

more relevant, we expect the continuous-time result to provide the right asymptotics for

the discrete problem. As we will see below, the continuous-time problem, though still

non-trivial, is easier to handle analytically.

Note that for a Brownian motion or a Brownian bridge over a fixed time interval

[0, T ], the probability density P (τ, T ) of the time τ at which the process attains

its maximum is well known [5]. For example, for a zero-drift Brownian motion

over [0, T ] starting at the origin, the probability density P (τ, T ) = 1
T
g(τ/T ) where

g(x) = 1/[π
√

x(1 − x)] for x ∈ [0, 1] [5]. On the other hand, for a Brownian bridge over

the fixed interval [0, T ] and starting at the origin, the probability density of τ is uniform,

P (τ, T ) = 1/T for 0 ≤ τ ≤ T [5]. In contrast, in our case, the Brownian motion is not

over a fixed time interval, but rather over a variable time interval [0, tf ] where the upper

edge tf is the first-passage time which itself is a random variable [6] and hence varies

from sample to sample.

The statistical properties of the functionals (such as the area, the maximum etc.)

of a Brownian motion or its variants (such as a bridge, excursion, meander etc.) over

a fixed time interval have many applications in physics, graph theory, computer science

and they have been studied extensively (for recent reviews on Brownian functionals

see [7, 8]). In particular, the area under a Brownian excursion or meander has found

many recent applications in problems as diverse as fluctuating interfaces [9], graph

enumeration [10], lengths of internal paths in rooted planar trees [8, 11] or cost functions

in data storage via the “linear probing with hashing” algorithm [8, 12]. Similarly, the

statistical properties of functionals of Brownian motion restricted up to its first-passage

time (usually referred to as ‘first-passage functionals’) also have various applications, and

have appeared recently in many different contexts [1, 15, 16], including the computation
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of the time period of oscillation of an undamped particle in a random potential [14] and

the determination of the distribution of the lifetime of a comet in the solar system [8, 13].

The probability density of the area swept by an initially positive Brownian motion till

its first-passage time was computed exactly in [15], with an application to queuing

theory. In this paper, our focus is on the random variable tm which, though not quite

a functional in the strict sense, is an important random variable associated with such a

Brownian motion restricted up to its first-passage time.

M

x(t)

0 tm tf

Figure 2. Maximum before the first-passage through the origin for the zero-drift case.

In [15], the authors also computed directly the probability density P (M) of the

maximum M of a Brownian motion (starting at x0 > 0) before its first-passage time

through the origin, via a “backward” Fokker-Planck method and showed that it has

a power law behavior P (M) = x0/M
2 where M ≥ x0. In this paper, we extend this

work using a path decomposition method that allows us to obtain the joint probability

density P (M, tm) of the maximum M and the time tm at which the maximum occurs

before the first-passage time. By integrating over M , we then get the ‘marginal’ P (tm),

i.e. the probability density of tm. We calculate P (tm) explicitly both for a driftless and

drifted Brownian motion. We also compare the results of numerical simulations to our

analytical predictions and find excellent agreement.

1. Driftless Case

We consider a continuous-time Brownian motion evolving via dx/dt = ξ(t), where ξ(t)

is a white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′). We start by recalling the

quick derivation of P (M) given in [15]:

Let q(x) be the probability that a Brownian particle starting from x ∈ [0,M ] exits

the interval for the first time through 0, i.e., the probability that the maximum before



Time at which a Brownian motion is maximum before its first passage 5

the first-passage time is less than or equal to M . Writing φ∆t(∆x) for the distribution

function of a Brownian displacement in the time interval ∆t, we have:

q(x) =

∫

q(x+ ∆x)φ∆t(∆x) d∆x. (1)

Expanding q(x+ ∆x) for small values of ∆x, and using the fact that in the absence of

drift the mean value of ∆x is 0, one finds that q satisfies:

d2q

dx2
= 0, q(0) = 1, q(M) = 0, (2)

whose solution is:

q(x) = 1 − x

M
. (3)

As mentioned in its definition, it can easily be seen that q(x) also corresponds to the

probability that the maximum before the first-passage time is less than or equal to M ;

therefore, differentiating Eq. 3 with respect to M gives the probability density of M :

P (M) =
x

M2
. (4)

To compute the joint probability density P (M, tm) we proceed as follows. We first

assume that the maximum occurs at tm and then we split the Brownian path into two

parts (before/after tm, as shown in Fig. 3) and determine the weights of a path’s left-

hand side and right-hand side separately. Note that due to the Markovian property of

the Brownain path, once the position of the walker is specified at tm, the weights of

the left and the right parts become completely independent and the total weight is just

proportional to the product of the weights of the two separate parts. For the left part,

we have a process that propagates from x0 at t = 0 to M at t = tm without crossing

the level M in [0, tm] (since M is the maximum) and the level 0 (the origin). For the

right part, the process propagates from the value M at t = tm to 0 at t = tf where

tf ≥ tm without crossing the level M and the level 0 in between. We need to be careful,

however, because, as pointed out in [9], a Brownian walker that crosses a given level

once crosses it infinitely many times immediately after the first crossing. It is therefore

impossible to enforce the constraint x(tm) = M and simultaneously forcing the motion

to stay below M before or after tm (for a lattice walk, one does not have this problem

since the lattice constant provides a natural cut-off). Following the method used in [9],

we introduce a cut-off ǫ by imposing x(tm) = M − ε and consider all paths having a

maximum less than or equal to M and passing through M − ε at t = tm. We compute

their weight and then let ε go to 0 eventually.

On the right side of t = tm: we have to determine the weight of a path that starts at

M − ε and exits for the first time the interval [0,M ] through 0. This is given by Eq. 3:

q(M − ε) =
ε

M
(5)

On the left side of t = tm: we use a path integral treatment with the Feynman-

Kac formula (as in [9]) giving the weight of a path in terms of the propagator
〈

x0

∣

∣

∣
e−Ĥtm

∣

∣

∣
M − ε

〉

, where Ĥ = −1
2

∂2

∂x2 + V (x) with V (x) a square well having infinite
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M

x0
Part 1 Part 2

tm tf

ε

Figure 3. Splitting probabilities

barriers at x = 0 and x = M and V (x) = 0 for 0 < x < M (the infinite barriers at x = 0,

x = M enforce the condition that the path can penetrate neither at x = 0 nor at x = M).

The normalized eigenfunctions of Ĥ labelled by the integer n = 1, 2, 3, . . . are ψn(x) =
√

2
M

sin
(

nπx
M

)

with the associated eigenvalues En = n2π2/2M2. The eigenfunction

ψn(x) vanishes at both ends x = 0 and x = M of the box. The propagator can be easily

evaluated in this eigenbasis,
〈

x0

∣

∣

∣
e−Ĥtm

∣

∣

∣
M − ε

〉

=
∑∞

n=1 ψn(x0)ψn(M − ε) e−Entm and

one gets:

〈

x0

∣

∣

∣
e−Ĥtm

∣

∣

∣
M − ε

〉

=
2

M

∞
∑

n=1

sin
(nπx0

M

)

sin

(

nπ(M − ε)

M

)

e−
n2π2

2M2 tm . (6)

In the limit when ε→ 0, we get to leading order

〈

x0

∣

∣

∣
e−Ĥtm

∣

∣

∣
M − ε

〉

=
2π

M2
ε

∞
∑

n=1

(−1)n+1n sin
(nπx0

M

)

e−
n2π2

2M2 tm + O(ε2). (7)

Taking the product of Eqs. 5 and 7, we get the total weight of the path, to leading order

in small ε,

P (M, tm; ε) ∝ ε2 π

M3

∞
∑

n=1

(−1)n+1 n sin
(nπx0

M

)

e−
n2π2

2M2 tm . (8)

The proportionality constant is set by using the normalization constant:
∫ ∞

x0

dM

∫ ∞

0

dtmP (M, tm; ε) = 1.

It is easy to show that the proportionality constant A(ε) = ε−2. Thus, in the limit

ε→ 0, we finally obtain

P (M, tm) =
π

M3

∞
∑

n=1

(−1)n+1 n sin
(nπx0

M

)

e−
n2π2

2M2 tm (9)
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As a first check, let us show that
∫ ∞
0

dtm P (M, tm) = x0/M
2, thus recovering the

marginal P (M) of the maximum in Eq. 4. Integrating over tm, we get

P (M) =
2

πM

∞
∑

n=1

(−1)n−1

n
sin

(nπx0

M

)

=
x0

M2
(10)

where the last identity can be found (and derived easily) in [17].

Finally, from Eq. 9 an integration over M (note that M varies from x0 to ∞) yields

the desired marginal P (tm):

P (tm) = π

∫ ∞

x0

dM

M3

∞
∑

n=1

(−1)n+1 n sin
(nπx0

M

)

e−
n2π2

2M2 tm

=
1

πtm

∞
∑

n=1

(−1)n+1

n

∫ nπ

0

du cos(u)e
− u2

2x2
0

tm
. (11)

The sum in Eq. 11 can be expressed in terms of a known special function and we get

P (tm) =
1

2πtm

[

π −
∫ π

0

ϑ4

(

y

2
, e

−y2 tm
2x2

0

)

dy

]

(12)

where ϑ4(z, q) is the fourth of Jacobi’s Theta functions ([19]). Subsequently one can

obtain the large and small tm asymptotics of P (tm) from the exact expression in Eq. 12.

Large-tm asymptote: We first consider the case when tm ≫ x2
0. Changing variables in

Eq. 11 through z =
√

tm
2x2

0
u and letting z → 0 gives for tm ≫ x2

0:

P (tm) ≈ x0 log 2

t
3/2
m

√

1

2π
(13)

Small-tm asymptote: In the opposite limit tm ≪ x2
0, we start from Eq. 9 and first take

a Laplace transform:
∫ ∞

0

dtm e−stmP (M, tm) =
2

πM

∞
∑

n=1

(−1)n+1 n

(n2 + 2M2s
π2 )

sin
(nπx0

M

)

=
sinh(x0

√
2s)

M sinh(M
√

2s)
,

where the sum of the series can be found in [17]. Letting s become much larger than

x−2
0 and M−2, we obtain:

∫ ∞

0

dtm e−stmP (M, tm) ≈ e−
√

2s(M−x0)

M
,

which, after the Laplace inversion ([18]) yields:

P (M, tm) ≈ t
−3/2
m√
2π

(M − x0)

M
e−

(M−x0)2

2tm . (14)



Time at which a Brownian motion is maximum before its first passage 8

Integrating over M gives for tm ≪ x2
0:

P (tm) ≈ 1

x0

√
2πtm

(15)

Thus, P (tm) has power law behavior at both large and small tails. For large tm,

the probability density falls off as P (tm) ∼ t
−3/2
m , whereas for small tm it diverges as

P (tm) ∼ t
−1/2
m . The exact analytical form of P (tm) and its asymptotes from Eqs. 12, 13,

15 are plotted (using Mathematica) in Fig. 4 together with the points obtained from the

numerical simulation (with 1,000,000 realisations). They are in good agreement with

each other.

 0.01

 0.1

 1

 10

 0.1  1

P
(t

m
)

tm/x0
2

 Simulation (1,000,000 realisations)

 P(tm) [Eq. 12]

 Small-tm asymptote [Eq. 15]

 Large-tm asymptote [Eq. 13]

Figure 4. The probability density P (tm) and its asymptotes for the driftless case. In

the simulation, x0 was set to 1.
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2. In the Presence of a Negative Drift

We now consider a Brownian motion in the presence of a drift µ. For µ > 0, it is clear

that the walker will excape to ∞ with a nonzero probability. This means that with a

finite probability tm → ∞. Therefore this case is not much of interest in the present

context. Instead, we focus here on the opposite case where the drift is towards the

origin, i.e., µ < 0. The Langevin equation describing the motion becomes:

dx

dt
= −|µ| + ξ(t),

where ξ(t) is the Gaussian white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t−t′). We use

the same strategy as in the driftless case, i.e., splitting the motion into two independant

parts (before and after tm) and introducing a small cut-off ε.

On the right-hand side: Letting, as in the driftless case, q(x) be the probability that a

Brownian particle starting from x ∈ [0,M ] exits the interval for the first time through 0,

we have as before:

q(x) =

∫

q(x+ ∆x)φ∆t(∆x) d∆x. (16)

In the presence of a drift, the mean value of ∆x is no longer 0 and one can easily show

that the analogue of Eq. 2 now reads:

q′′(x) − 2|µ|q(x) = 0, q(0) = 1, q(M) = 0. (17)

The solution is:

q(x) =
sinh(|µ|(M − x))

sinh(|µ|M)
e|µ|x, (18)

and so we have:

q(M − ε) =
sinh(|µ|ε)
sinh(|µ|M)

e|µ|(M−ε). (19)

As in the driftless case, the probability density of M can be obtained by differentiation

of Eq. 18 with respect to M , as was done in [15]:

Pd(M) =
|µ| sinh(|µ|x)
sinh2(|µ|M)

e|µ|x, (20)

where we have added the subscript “d” to indicate that the density corresponds to the

drifted case.

On the left-hand side: We use the same path integral method as in the driftless case.

The weight of a path is now proportional to:

exp

[

−1

2

∫ tm

0

dτ

(

dx

dτ
+ |µ|

)2
]

= exp

[

−|µ|2
2
tm − |µ|

∫ tm

0

dτ
dx

dτ

]

exp

[

−1

2

∫ tm

0

dτ

(

dx

dτ

)2
]

. (21)



Time at which a Brownian motion is maximum before its first passage 10

The position of the Brownian particle at t = 0 and t = tm is known, so we can substitute

(M−ε)−x0 for
∫ tm
0
dτ dx

dτ
in the first exponential factor on the right-hand side of Eq. 21.

The propagator for the drifted case will therefore be equal to that for the driftless

case (given in Eq. 6) multiplied by the factor exp
[

|µ|x0 − |µ|2
2
tm − |µ|(M − ε)

]

, and will

be given by:

exp

[

|µ|x0 −
|µ|2
2
tm − |µ|(M − ε)

]

2

M

∞
∑

n=1

sin
(nπx0

M

)

sin

(

nπ(M − ε)

M

)

e−
n2π2

2M2 tm . (22)

As in the driftless case, we multiply the weights of the left and right side of tm
derived above (Eqs. 19 and 22), and take the ε→ 0 limit to obtain:

Pd(M, tm) =
|µ|Me|µ|x0− |µ|2

2
tm

sinh (|µ|M)
P (M, tm) (23)

where P (M, tm) is the joint density for the driftless case given in Eq. (9). Once again, by

integrating over tm, one can recover the marginal probability density of the maximum

Pd(M) derived originally in [15]. On the other hand, integrating over M gives the

marginal Pd(tm). We were not able to derive a compact expression for Pd(tm) as in

the driftless case, though the asymptotes of Pd(tm) can be derived explicitly as shown

below.

Small-tm asymptote: From Eq. 23, we can derive very quickly the behaviour of Pd(tm)

when tm ≪ x2
0. Substituting in Eq. 23 the asymptotic result for the driftless case from

Eq. 14 and integrating over M we get:

Pd(tm) ∼ |µ|e|µ|x0− |µ|2

2
tm

sinh(|µ|x0)
√

2πtm
(24)

Thus for small tm, Pd(tm) diverges as t
−1/2
m , as in the driftless case.

Large-tm asymptote: To study the behaviour of Pd(tm) when tm ≫ x2
0, we start from

the following expression for Pd(tm):

Pd(tm) =

∫ ∞

x0

dM Pd(M, tm)

=

∫ ∞

x0

dM
|µ|Me|µ|x0− |µ|2

2
tm

sinh (µM)
P (M, tm)

=

∫ ∞

x0

dM
|µ|πe|µ|x0− |µ|2

2
tm

sinh(|µ|M)M2

∞
∑

n=1

(−1)n+1n sin
(nπx0

M

)

e−
n2π2

2M2 tm . (25)

The series in Eq. 25 is dominated by the first term (n = 1) for large tm. Hence, retaining

only the n = 1 term and making a change of variable y = 1/M in the integral, we get:

π|µ|e|µ|x0− |µ|2

2
tm

∫ 1
x0

0

dy
sin(πx0y)

sinh(|µ|/y)e
−π2y2tm

2 .
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For large tm, the most important contribution to the integral comes from the small y

regime. Expanding the sin and sinh functions and keeping only the leading order term

reduces the integral to:

2π2x0|µ|e|µ|x0− |µ|2

2
tm

∫ 1
x0

0

dy y e
−tm

(

π2

2
y2+ |µ|

ytm

)

.

Letting h(y) = π2

2
y2 + |µ|

ytm
, we next use the saddle point method to obtain the leading

term via minimizing the function h and get:

Pd(tm) ∼
[

2

√

2

3
π

5
6x0|µ|

4
3 e|µ|x0

]

t−5/6
m e−

|µ|2

2
tm− 3

2
(|µ|π)2/3t

1/3
m (26)

Thus, as expected, the density Pd(tm) has an exponential decay for large tm in

presence of a negative drift. Figure 5 shows a plot of the asymptotes (Eq. 24 and 26)

together with the data from numerical simulation (1,000,000 realisations with |µ| = 0.1).

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10

P
(t m

)

tm/x0
2

 Simulation (1,000,000 realisations)

 Small-tm asymptote [Eq. 24]

 Large-tm asymptote [Eq. 26]

Figure 5. The simulated probability density P (tm) and its asymptotes in the presence

of a drift towards the origin (|µ| = 0.1). In the simulation, x0 was set to 1.
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3. Summary and Conclusion

In summary, we have obtained an exact expression for the probability density of the

time at which a Brownian motion attains its maximum before passing through the

origin for the first time, and studied the tails of this probability density both for the

driftless and for the drifted Brownian motion. This was done by first computing the

joint distribution P (M, tm) of the maximum M attained and the time tm at which

it is attained. In the context of the queuing theory, the result that P (tm) decreases

monotically with increasing tm suggests that the beginning of a busy period is more

likely to be the time at which a queue is at its longest.

It would be interesting to derive the explicit results, obtained here by the path

integral method, from the general theory of filtrations in Brownian motion developed

recently in [20, 21].

It would also be of interest to extend this calculation to the discrete-time random

walk case which remains a real challenge.
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