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Abstract

Following Obizhaeva and Wang (2005), we consider optimal execution strategies for

block market orders placed in a limit order book (LOB). Our main contribution is to

allow for a general shape of the LOB defined via a given density function and thus to

include the case of nonlinear price impact of market orders. In this setting, there are now

two possibilities of modeling the resilience of the LOB after a large market order: the

exponential recovery of the number of limit orders, i.e., of the volume of the LOB, or the

exponential recovery of the bid-ask spread. We consider both situations and, in each case,

derive explicit optimal execution strategies in discrete time. Applying our results to a

block-shaped LOB, we obtain a new closed-form representation for the optimal strategy,

which explicitly solves the recursive scheme given in Obizhaeva and Wang (2005). We

also provide some evidence for the robustness of optimal strategies with respect to the

choice of the shape function and the resilience-type.

∗Supported by Deutsche Forschungsgemeinschaft through the Research Center Matheon “Mathematics for

key technologies” (FZT 86).
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1 Introduction.

A common problem for stock traders consists in unwinding large block orders of shares,

which can comprise up to twenty percent of the daily traded volume of shares. Orders

of this size create significant impact on the asset price and, to reduce the overall market

impact, it is necessary to split them into smaller orders that are subsequently placed

throughout a certain time interval. The question at hand is thus to allocate an optimal

proportion of the entire order to each individual placement such that the overall price

impact is minimized.

Problems of this type were investigated by Bertsimas and Lo [7], Almgren and Chriss [2,

3], Almgren and Lorenz [4], and Obizhaeva and Wang [16], to mention only a few. For ex-

tensions to situations with several competing traders, see [9], [10], [18], and the references

therein.

The mathematical formulation of the corresponding optimization problem relies first of

all on specifying a stock price model that takes into account the often nonlinear feedback

effects resulting from the placement of large orders. In the majority of models in the

literature, large orders affect the stock price in the following two ways. A first part of

the price impact is permanent and forever pushes the price in a certain direction (upward

for buy orders, downward for sell orders). The second part, which is usually called the

temporary impact, has no duration and only instantaneously affects the trade that has

triggered it. It is therefore equivalent to a (possibly nonlinear) penalization by transaction

costs. Models of this type underlie the above-mentioned papers [7], [2], [3], [4], [9], [10],

and [18]. Also the market impact models described in Bank and Baum [6], Cetin et al. [11],

Frey [13], and Frey and Patie [14] fall into that category. While most of these models

start with the dynamics of the asset price process as a given fundamental, Obizhaeva and

Wang [16] recently proposed a market impact model that derives its dynamics from a

model of a limit order book (LOB). In this model, the ask part of the LOB consists of a

uniform distribution of shares to the right of the current best ask price. A buy market

order of a ‘large trader’ will now consume a block of shares located immediately to the

right of the best ask and thus increase the ask price by a linear proportion of the size of the

order. When the large trader is not active, the mid price of the LOB fluctuates according

to the actions of noise traders. In addition, the LOB will recover from the impact of the

buy order, i.e., it will show a certain resilience. The resulting price impact will neither be

instanteneous nor entirely permant but will decay on an exponential scale.

In this paper, we will pick up the LOB-based market impact model from [16] and

generalize it by allowing for a nonuniform distribution of shares within the LOB. Such a

nonuniform distribution of shares leads completely naturally to a nonlinear price impact

of market orders as found in an empirical study by Almgren et al. [5]; see also Almgren [1]

and the references therein. In this generalized LOB model, there are now two distinct

possibilities of modeling the resilience of the LOB after a large market order: the expo-

nential recovery of the number of limit orders, i.e., of the volume of the LOB (Model 1),

or the exponential recovery of the bid-ask spread (Model 2).

After introducing the generalized LOB with its two resilience modes, we consider the

problem of optimally executing a buy order for X0 shares within a certain timeframe [0, T ].

The focus on buy orders is for the simplicity of the presentation only, completely analo-

gous results hold for sell orders as well. While most other papers, including [16], focus on
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optimization within the class of deterministic strategies, we will here allow for dynamic

updating of trading strategies, that is, we optimize over the larger class of adapted strate-

gies. We will also allow for intermediate sell orders in our strategies. Our main results,

Theorem 4.1 and Theorem 5.1, will provide explicit solutions of this problem in Model 1

and Model 2, respectively. Applying our results to a block-shaped LOB, we obtain a new

closed-form representation for the corresponding optimal strategy, which explicitly solves

the recursive scheme given in [16]. Looking at several examples, we will also find some

evidence for the robustness of the optimal strategy.

The method we use in our proofs is different from the approach used in [16]. Instead

of using dynamic programming techniques, we will first reduce the model of a full LOB

with nontrivial bid-ask spreads to a simplified model, for which the bid-ask spreads have

collapsed but the optimization problem is equivalent. The minimization of the simplified

cost functional is then reduced to the minimization of certain functions that are defined

on an affine space. This latter minimization is then carried out by means of the Lagrange

multiplier method and explicit calculations.

The paper is organized as follows. In Section 2, we explain the two market impact

models that we derive from the generalized LOB model with different resilience modes.

In Section 3, we set up the resulting optimization problem. The main results for Models 1

and 2 are presented in the respective Sections 4 and 5. In Section 6, we consider the

special case of a uniform distribution of shares in the LOB as considered in [16]. In

particular, we provide our new explicit formula for the optimal strategy in a block-shaped

LOB as obtained in [16]. Section 7 contains numerical and theoretical studies of the

optimization problem for various nonconstant shape functions. The proofs of our main

results are given in the remaining Sections 8 through 11. More precisely, in Section 8 we

reduce the optimization problem for our two-sided LOB models to the optimization over

deterministic strategies within a simplified model with a collapsed bid-ask spread. The

derivations of the explicit forms of the optimal strategies in Models 1 and 2 are carried out

in the respective Sections 9 and 10. In Section 11 we prove the results for block-shaped

LOBs from Section 6.

2 Two market impact models with resilience.

In this section, we aim at modeling the dynamics of a LOB that is exposed to repeated

market orders by a large trader. The overall goal of the large trader will be to purchase

a large amount X0 > 0 of shares within a certain time period [0, T ]. Hence, emphasis is

on buy orders, and we concentrate first on the upper part of the LOB, which consists of

shares offered at various ask prices. The lowest ask price at which shares are offered is

called the best ask price.

Suppose first that the large trader is not active, so that the dynamics of the limit

order book are determined by the actions of noise traders only. We assume that the

corresponding unaffected best ask price A0 is a martingale on a given filtered probability

space (Ω, (Ft),F , P) and satisfies A0
0 = A0. This assumption includes in particular the

case in which A0 is a Bachelier model, i.e., A0
t = A0 + σWt for an (Ft)-Brownian motion

W , as considered in [16]. We emphasize, however, that we can take any martingale and

hence use, e.g., a geometric Brownian motion, which avoids the counterintuitive negative
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prices of the Bachelier model. Moreover, we can allow for jumps in the dynamics of A0

so as to model the trading activities of other large traders in the market.

Above the unaffected best ask price A0
t , we assume a continuous ask price distribution

for available shares in the LOB: the number of shares offered at price A0
t + x is given

by f(x) dx for a continuous density function f : R −→]0,∞[. We will say that f is the

shape function of the LOB. The choice of a constant shape function corresponds to the

block-shaped LOB model of Obizhaeva and Wang [16].

The shape function determines the impact of a market order placed by our large trader.

Suppose for instance that the large trader places a buy market order for x0 > 0 shares at

time t = 0. This market order will consume all shares located at prices between A0 and

A0 + DA
0+, where DA

0+ is determined by

∫ DA
0+

0
f(x)dx = x0.

Consequently, the ask price will be shifted up from A0 to

A0+ := A0 + DA
0+;

see Figure 1 for an illustration.
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Figure 1: The impact of a buy market order of x0 shares .

Let us denote by At the actual ask price at time t, i.e., the ask price after taking the

price impact of previous buy orders of the large trader into account, and let us denote by

DA
t := At − A0

t

the extra spread caused by the actions of the large trader. Another buy market order of

xt > 0 shares will now consume all the shares offered at prices between At and

At+ := At + DA
t+ − DA

t = A0
t + DA

t+,

where DA
t+ is determined by the condition

∫ DA
t+

DA
t

f(x)dx = xt. (1)
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Thus, the process DA captures the impact of market orders on the current best ask price.

Clearly, the price impact DA
t+−DA

t will be a nonlinear function of the order size xt unless

f is constant between DA
t and DA

t+. Hence, our model includes the case of nonlinear

impact functions; see Almgren [1] and Almgren et al. [5] for a discussion.

Another important quantity is the process

EA
t =

∫ DA
t

0
f(x)dx, (2)

of the number of shares ‘already eaten up’ at time t. It quantifies the impact of the large

trader on the volume of the LOB. By introducing the antiderivative

F (y) =

∫ y

0
f(x) dx (3)

of f , the relation (2) can also be expressed as

EA
t = F (DA

t ) and DA
t = F−1(EA

t ), (4)

where we have used our assumption that f is strictly positive to obtain the second identity.

The relation (1) is equivalent to

EA
t+ = EA

t + xt. (5)

We still need to specify how DA and, equivalently, EA evolve when the large trader

is inactive in between market orders. It is a well established empirical fact that order

books exhibit a certain resilience as to the price impact of large block orders; see, e.g.,

[8, 12, 15, 17] and the references therein. That is, at least a part of the price impact

will only be temporary. For modeling this resilience, we follow Obizhaeva and Wang [16]

in proposing an exponential recovery of the LOB. While in the case of a block-shaped

LOB as considered in [16] the respective assumptions of exponential recovery for DA and

for EA coincide, they provide two distinct possibilities for the case of a general shape

function. Since either of them appears to be plausible, we will discuss them both in the

sequel. More precisely, we will consider the following two models for the resilience of the

market impact:

Model 1: The volume of the order book recovers exponentially, i.e., E evolves according

to

EA
t+s = e−ρsEA

t (6)

if the large investor is inactive during the time interval [t, t + s[.

Model 2: The extra spread DA
t decays exponentially, i.e.,

DA
t+s = e−ρsDA

t (7)

if the large investor is inactive during the time interval [t, t + s[.

Here the resilience speed ρ is a positive constant, which for commonly traded bluechip

shares will often be calibrated such that the half-life time of the exponential decay is in the

order of several minutes. Note that the dynamics of both DA and EA are now completely

specified in either model.
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Up to now, we have only described the effect of buy orders on the upper half of the

LOB. Since the overall goal of the larger trader is to buy X0 > 0 shares up to time T , a

restriction to buy orders would seem to be reasonable. However, we do not wish to exclude

the a priori possibility that, under certain market conditions, it could be beneficial to also

sell some shares and to buy them back at a later point in time. To this end, we also need

to model the impact of sell market orders on the lower part of the LOB, which consists

of a certain number of bids for shares at each price below the best bid price. As for ask

prices, we will distinguish between an unaffected best bid price, B0
t , and the actual best

bid price, Bt, for which the price impact of previous sell orders of the large trader is taken

into account. All we assume on the dynamics of B0 is

B0
t ≤ A0

t at all times t. (8)

The distribution of bids below B0
t is modeled by the restriction of the shape function

f to the domain ] −∞, 0]. More precisely, for x < 0, the number of bids at price B0
t + x

is equal to f(x) dx. The quantity

DB
t := Bt − B0

t ,

which usually will be negative, is called the extra spread in the bid price distribution. A

sell market order of xt < 0 shares placed at time t will consume all the shares offered at

prices between Bt and

Bt+ := Bt + DB
t+ − DB

t = B0
t + DB

t+,

where DB
t+ is determined by the condition

xt =

∫ DB
t+

DB
t

f(x)dx = F (DB
t+) − F (DB

t ) = EB
t+ − EB

t , (9)

for EB
s := F (DB

s ). Note that F is defined via (3) also for negative arguments. If the large

trader is inactive during the time interval [t, t+ s[, then the processes DB and EB behave

just as their counterparts DA and EA, i.e.,

EB
t+s = e−ρsEB

t in Model 1,

DB
t+s = e−ρsDB

t in Model 2.
(10)

3 The cost minimization problem.

When placing a single buy market order of size xt ≥ 0 at time t, the large trader will

purchase f(x) dx shares at price A0
t +x, with x ranging from DA

t to DA
t+. Hence, the total

cost of the buy market order amounts to

πt(xt) :=

∫ DA
t+

DA
t

(A0
t + x)f(x) dx = A0

t xt +

∫ DA
t+

DA
t

xf(x) dx. (11)

For a sell market order xt ≤ 0, we have

πt(xt) := B0
t xt +

∫ DB
t+

DB
t

xf(x) dx. (12)
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In practice, very large orders are often split into a number of consecutive market orders

to reduce the overall price impact. Hence, the question at hand is to determine the size

of the individual orders so as to minimize a cost criterion. So let us assume that the large

trader needs to buy a total of X0 > 0 shares until time T and that trading can occur at

N + 1 equidistant times tn = nτ for n = 0, . . . , N and τ := T/N . An admissible strategy

will be a sequence ξ = (ξ0, ξ1, . . . , ξN ) of random variables such that

• ∑N
n=0 ξn = X0,

• each ξn is measurable with respect to Ftn ,

• each ξn is bounded from below.

The quantity ξn corresponds to the size of the market order placed at time tn. Note that

we do not a priori require ξn to be positive, i.e., we also allow for intermediate sell orders,

but we assume that there is some lower bound on sell orders.

The average cost C(ξ) of an admissible strategy ξ is defined as the expected value of

the total costs incurred by the consecutive market orders:

C(ξ) = E

[ N∑

n=0

πtn(ξn)
]
. (13)

Our goal in this paper consists in finding admissible strategies that minimize the average

cost within the class of all admissible strategies. Note that the value of C(ξ) depends on

whether we choose Model 1 or Model 2, and it will turn out that also the quantitative—

though not the qualitative—features of the optimal strategies will be slightly model-

dependent.

Before turning to the statements of our results, let us introduce the following standing

assumption for our further analysis: the function F is supposed to be unbounded in the

sense that

lim
x↑∞

F (x) = ∞ and lim
x↓−∞

F (x) = −∞. (14)

4 Main theorem for Model 1.

We will now consider the minimization of the cost functional C(ξ) in Model 1, in which

we assume an exponential recovery of the LOB volume; cf. (6).

Theorem 4.1 (Optimal strategy in Model 1).

Suppose that the function

h1(u) := F−1(u) − e−ρτF−1(e−ρτu)

is one-to-one. Then there exists a unique optimal strategy ξ(1) = (ξ
(1)
0 , . . . , ξ

(1)
N ). The

initial market order ξ
(1)
0 is the unique solution of the equation

F−1
(
X0 − Nξ

(1)
0

(
1 − e−ρτ

))
=

h1(ξ
(1)
0 )

1 − e−ρτ
, (15)

the intermediate orders are given by

ξ
(1)
1 = · · · = ξ

(1)
N−1 = ξ

(1)
0

(
1 − e−ρτ

)
, (16)
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and the final order is determined by

ξ
(1)
N = X0 − ξ

(1)
0 − (N − 1)ξ

(1)
0

(
1 − e−ρτ

)
.

In particular, the optimal strategy is deterministic. Moreover, it consists only of nontrivial

buy orders, i.e., ξ
(1)
n > 0 for all n.

Some remarks on this result are in order. First, the optimal strategy ξ(1) consists only

of buy orders and so the bid price remains unaffected, i.e., we have EB
t ≡ 0 ≡ DB

t . It

follows moreover that the process E := EA is recursively given by the following Model 1

dynamics:

E0 = 0,

Etn+ = Etn + ξ(1)
n , n = 0, . . . , N, (17)

Etk+1
= e−ρτEtk+ = e−ρτ (Etk + ξ

(1)
k ), k = 0, . . . , N − 1.

Hence, by (15) and (16),

Etn+ = ξ
(1)
0 and Etn+1

= e−ρτξ
(1)
0 for n = 0, . . . , N − 1. (18)

That is, once ξ
(1)
0 has been determined via (15), the optimal strategy consists in a sequence

of market orders that consume exactly that amount of shares by which the LOB has

recovered since the preceding market order, due to the resilience effect. At the terminal

time tN = T , all remaining shares are bought. In the case of a block-shaped LOB, this

qualitative pattern was already observed by Obizhaeva and Wang [16]. Our Theorem 4.1

now shows that this optimality pattern is actually independent of the LOB shape, thus

indicating a certain robustness of optimal strategies.

Remark 4.2 According to (4) and (18), the extra spread D := DA of the optimal strategy

ξ(1) satisfies

Dtn+ = F−1 (Etn+) = F−1(ξ
(1)
0 ).

For n = N we moreover have that

DtN+ = F−1 (EtN+) = F−1
(
EtN + ξ

(1)
N

)

= F−1
(
ξ
(1)
0 e−ρτ + X0 − ξ

(1)
0 − (N − 1)ξ

(1)
0

(
1 − e−ρτ

))

= F−1
(
X0 − Nξ

(1)
0

(
1 − e−ρτ

))
.

Hence, the left-hand side of (15) is equal to DtN +.

We now comment on the conditions in Theorem 4.1.

Remark 4.3 (When is h1 one-to-one?) The function h1 is continuous with h1(0) = 0

and h1(u) > 0 for u > 0. Hence, h1 is one-to-one if and only if h1 is strictly increasing.

We want to consider when this is the case. To this end, note that the condition

h′
1(u) =

1

f(F−1(u))
− e−2ρτ

f(F−1(e−ρτu))
> 0

8
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Figure 2: A shape function f for which the corresponding function h1 is not one-to-one.

is equivalent to

ℓ(u) := f(F−1(e−ρτu)) − e−2ρτf(F−1(u)) > 0. (19)

That is, the function h1 will be one-to-one if, for instance, the shape function f is de-

creasing for u > 0 and increasing for u < 0.

We now want to give an example of a shape function f such that the corresponding

function h1 is not one-to-one. To this end, let us assume for simplicity that there exists

an n ∈ {2, 3, . . . } such that e−ρτ = 1
n
. We set

f(x) :=





1 x ∈ [0,
1

2
n2+1

n−1 )

1 + n2(x −
1

2
n2+1

n−1 ) x ∈
[ 1

2
n2+1

n−1 ,
1

2
n2+1

n−1 + 1
]

n2 + 1 x ∈
( 1

2
n2+1

n−1 + 1,∞
)

;

see Figure 2. For u := (
1

2
n2+1

n−1 + 1) + 1
2n2 we then have F−1(u) =

1

2
n2+1

n−1 + 1 as well as

F−1(e−ρτu) = F−1
(u

n

)
=

1
2n2 + 1

n − 1
.

Hence, we get

f
(
F−1

(
e−ρτu

))
= 1 <

(
1 +

1

n2

)
= e−2ρτf

(
F−1(u)

)
,

which tells us according to (19) that the corresponding function h1 is not strictly increasing.

Remark 4.4 (Continuous-time limit of the optimal strategy). One can also investigate

the asymptotic behavior of the optimal strategy when the number N of trades in ]0, T ]

tends to infinity. It is not difficult to see that h1/(1 − e−ρτ ) converges pointwise to

h∞
1 (x) := F−1(x) +

x

f(F−1(x))
.

9



Observe also that N(1−e−ρτ ) → ρT . Since for any N we have ξ
(1)
0 ∈]0,X0[, we can extract

a subsequence that converges and its limit is then necessarily solution of the equation

F−1(X0 − ρTx) = h∞
1 (x).

If this equation has a unique solution ξ
(1),∞
0 we deduce that the optimal initial trade con-

verges to ξ
(1),∞
0 when N −→ ∞. This is the case, for example, if h∞

1 is strictly increasing

and especially when f is decreasing. In that case, Nξ
(1)
1 converges to ρTξ

(1),∞
0 and ξ

(1)
N

to ξ
(1),∞
T := X0 − ξ

(1),∞
0 (1 + ρT ). Thus, in the continuous-time limit, the optimal strat-

egy consists in an initial block order of ξ
(1),∞
0 shares at time 0, continuous buying at the

constant rate ρξ
(1),∞
0 during ]0, T [, and a final block order of ξ

(1),∞
T shares at time T .

5 Main theorem for Model 2.

We will now consider the minimization of the cost functional

C(ξ) = E

[ N∑

n=0

πtn(ξn)
]

in Model 2, where we assume an exponential recovery of the extra spread; cf. (7).

Theorem 5.1 (Optimal strategy in Model 2).

Suppose that the function

h2(x) := x
f(x) − e−2ρτf(e−ρτx)

f(x) − e−ρτf(e−ρτx)

is one-to-one and that the shape function satisfies

lim
|x|→∞

x2 inf
y∈[e−ρτx,x]

f(y) = ∞. (20)

Then there exists a unique optimal strategy ξ(2) = (ξ
(2)
0 , . . . , ξ

(2)
N ). The initial market order

ξ
(2)
0 is the unique solution of the equation

F−1
(
X0 − N

[
ξ
(2)
0 − F

(
e−ρτF−1(ξ

(2)
0 )

)])
= h2

(
F−1(ξ

(2)
0 )

)
, (21)

the intermediate orders are given by

ξ
(2)
1 = · · · = ξ

(2)
N−1 = ξ

(2)
0 − F

(
e−ρτF−1(ξ

(2)
0 )

)
, (22)

and the final order is determined by

ξ
(2)
N = X0 − Nξ

(2)
0 + (N − 1)F

(
e−ρτF−1(ξ

(2)
0 )

)
.

In particular, the optimal strategy is deterministic. Moreover, it consists only of nontrivial

buy orders, i.e., ξ
(2)
n > 0 for all n.

10



Since the optimal strategy ξ(2) consists only of buy orders, the processes DB and EB

vanish, and D := DA is given by

D0 = 0,

Dtn+ = F−1
(
ξ(2)
n + F (Dtn)

)
, n = 0, . . . , N (23)

Dtk+1
= e−ρτDtk+, k = 0, . . . , N − 1.

Hence, induction shows that

Dtn+ = F−1(ξ
(2)
0 ) and Dtn+1

= e−ρτF−1(ξ
(2)
0 ) for n = 0, . . . , N − 1.

By (4), the process E := EA satisfies

Etn+ = ξ
(2)
0 and Etn+1

= F
(
e−ρτF−1(ξ

(2)
0 )

)
for n = 0, . . . , N − 1.

This is very similar to our result (18) in Model 1: once ξ
(1)
0 has been determined via (15),

the optimal strategy consists in a sequence of market orders that consume exactly that

amount of shares by which the LOB has recovered since the preceding market order. At

the terminal time tN = T , all remaining shares are bought. The only differences are in

the size of the initial market order and in the mode of recovery. This qualitative similarity

between the optimal strategies in Models 1 and 2 again confirms our observation of the

robustness of the optimal strategy.

Remark 5.2 At the terminal time tN = T , the extra spread is given by

DtN + = F−1 (EtN +) = F−1
(
EtN + ξ

(2)
N

)

= F−1
(
X0 − N

[
ξ
(2)
0 − F

(
e−ρτF−1(ξ

(2)
0 )

)])
,

and this expression coincides with the left-hand side in (21).

Let us now comment on the conditions assumed in Theorem 5.1. To this end, we first

introduce the function

F̃ (x) :=

∫ x

0
yf(y)dy. (24)

Remark 5.3 If F̃ is convex then condition (20) in Theorem 5.1 is satisfied. This fact

admits the following short proof. Take y∗ ∈ [e−ρτx, x] realizing the infimum of f in

[e−ρτx, x]. Then

x2 inf
y∈[e−ρτ x,x]

f(y) = x2f(y∗) ≥ y∗ (y∗f(y∗)) . (25)

Due to the convexity of F̃ , its derivative F̃ ′(x) = xf(x) is increasing. It is also nonzero

iff x 6= 0. Therefore the right-hand side of (25) tends to infinity for |x| → ∞.

However, the convexity of F̃ is not necessary for condition (20) as is illustrated by the

following simple example.
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Example 5.4 Let us construct a shape function for which (20) is satisfied even though

F̃ need not be convex. To this end, take any continuous function b : R →]0,∞[ that is

bounded away from zero. Then let

f(x) :=





b(1) |x| ≤ 1
b(x)√
|x|

|x| > 1.

This shape function clearly satisfies condition (20). Taking for example b(x) = 1+ε cos(x)

with 0 < ε < 1, however, gives a nonconvex function F̃ . Moreover, by choosing ε small

enough, we can obtain h′
2(x) > 0 so that the shape function f satisfies the assumptions of

Theorem 5.1.

We now comment on the condition that h2 is one-to-one. The following example shows

that this is indeed a nontrivial assumption.

Example 5.5 We now provide an example of a shape function f for which the corre-

sponding function h2 is not one-to-one. First note that h2(0) = 0 and

lim
ǫ↓0

h2(ǫ) − h2(0)

ǫ
=

1 − e−2ρτ

1 − e−ρτ
> 0. (26)

Since h2 is continuous, it cannot be one-to-one if we can find x−, x+ > 0 such that h2(x−) <

0 and h2(x+) > 0. To this end, we assume that there exist n ∈ {2, 3, . . . } such that e−ρτ =
1
n

and take

f(x) :=





(n + 1) x ∈
[
0, 1

n

)

(n + 1) − n2

n−1

(
x − 1

n

)
x ∈

[
1
n
, 1

]

1 x ∈ (1,∞);

see Figure 3. Furthermore, we define x− := 1 and x+ := 1
n

to obtain

h2(x−) =
n2 − (n + 1)

−n
< 0 and h2(x+) =

n + 1

n2
> 0.

PSfrag repla
ements
x

f(x)
1

n+ 1
0 x+ = 1n x� = 1

Figure 3: A shape function f for which the function h2 is not one-to-one.
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Remark 5.6 (Continuous-time limit of the optimal strategy). As in Remark 4.4, we can

study the asymptotic behavior of the optimal strategy as the number N of trades in ]0, T [

tends to infinity. First, we can check that h2 converges pointwise to

h∞
2 (x) := x(1 +

f(x)

f(x) + xf ′(x)
),

and that N(x−F (e−ρτF−1(x))) tends to ρTF−1(x)f(F−1(x)), provided that f is contin-

uously differentiable. Now, suppose that the equation

F−1(X0 − ρTF−1(x)f(F−1(x))) = h∞
2 (F−1(x))

has a unique solution on ]0,X0[, which we will call ξ
(2),∞
0 . We can check that ξ

(2),∞
0 is

the only one possible limit for a subsequence of ξ
(2)
0 , and it is therefore its limit. We can

then show that Nξ
(2)
1 converges to ρTF−1(ξ

(2),∞
0 )f(F−1(ξ

(2),∞
0 )) and ξ

(2)
N to

ξ
(2),∞
T := X0 − ξ

(2),∞
0 − ρTF−1(ξ

(2),∞
0 )f(F−1(ξ

(2),∞
0 )).

Thus, in the continuous-time limit, the optimal strategy consists in an initial block order of

ξ
(2),∞
0 shares at time 0, continuous buying at the constant rate ρF−1(ξ

(2),∞
0 )f(F−1(ξ

(2),∞
0 ))

during ]0, T [, and a final block order of ξ
(2),∞
T shares at time T .

6 Closed form solution for block-shaped LOBs

and additional permanent impact.

In this first example section, we consider a block-shaped LOB corresponding to a constant

shape function f(x) ≡ q for some q > 0. In this case, there is no difference between Models

1 and 2. Apart from our more general dynamics for A0, the main difference to the market

impact model introduced by Obizhaeva and Wang [16] is that, for the moment, we do not

consider a permanent impact of market orders. In Corollary 6.4, we will see, however,

that our results yield a closed-form solution even in the case of nonvanishing permanent

impact.

By applying either Theorem 4.1 or Theorem 5.1 we obtain the following Corollary; a

detailed proof can be found in Section 11.

Corollary 6.1 (Closed-form solution for block-shaped LOB).

In a block-shaped LOB, the unique optimal strategy ξ∗ is

ξ∗0 = ξ∗N =
X0

(N − 1)(1 − e−ρτ ) + 2
and ξ∗1 = · · · = ξ∗N−1 =

X0 − 2ξ∗0
N − 1

. (27)

The preceding result extends [16, Proposition 1] in several aspects. First, we do not

focus on the Bachelier model but admit arbitrary martingale dynamics for our unaffected

best ask price A0. Second, only static, deterministic buy order strategies are considered

in [16], while we here allow our admissible strategies to be adapted and to include sell

orders. Since, a posteriori, our optimal strategy turns out to be deterministic and posi-

tive, it is clear that it must coincide with the optimal strategy from [16, Proposition 1].
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Our strategy (27) therefore also provides an explicit closed-form solution of the recursive

scheme obtained in [16]. We recall this recursive scheme in (31) below.

On the other hand, Obizhaewa and Wang [16] allow for an additional permanent impact

of market orders. Intuitively, in a block-shaped LOB with f ≡ q > 0, the permanent

impact of a market order xt means that only a certain part of the impact of xt decays

to zero, while the remaining part remains forever present in the LOB. More precisely,

the impact of an admissible buy order strategy ξ on the extra spread DA is given by the

dynamics

DA
t = λ

∑

tk<t

ξk +
∑

tk<t

κe−ρ(t−tk)ξk, (28)

where λ < 1/q is a constant quantifying the permanent impact and

κ :=
1

q
− λ (29)

is the proportion of the temporary impact. Note that, for λ = 0, we get back our

dynamics (6) and (7), due to the fact that we consider a block-shaped LOB. It will be

convenient to introduce the process Xt of the still outstanding number of shares at time

t when using an admissible strategy:

Xt := X0 −
∑

tk<t

ξk. (30)

We can now state the result by Obizhaeva and Wang.

Proposition 6.2 [16, Proposition 1] In a block-shaped LOB with permanent impact λ,

the optimal strategy ξOW in the class of deterministic strategies is determined by the

forward scheme

ξOW
n =

1

2
δn+1 [ǫn+1Xtn − φn+1Dtn ] , n = 0, . . . , N − 1, (31)

ξOW
N = XT ,

where δn, ǫn and φn are defined by the backward scheme

δn :=
( 1

2q
+ αn − βnκe−ρτ + γnκ2e−2ρτ

)−1

ǫn := λ + 2αn − βnκe−ρτ (32)

φn := 1 − βne−ρτ + 2γnκe−2ρτ .

with αn, βn and γn given by

αN =
1

2q
− λ and αn = αn+1 −

1

4
δn+1ǫ

2
n+1,

βN = 1 and βn = βn+1e
−ρτ +

1

2
δn+1ǫn+1φn+1, (33)

γN = 0 and γn = γn+1e
−2ρτ − 1

4
δn+1φ

2
n+1.

It is a priori clear that for λ = 0 the explicit optimal strategy obtained in Corollary 6.1

must coincide with the strategy ξOW obtained via the recursive scheme (31) in Proposi-

tion 6.2. To cross-check our results with the ones in [16], we will nevertheless provide an

explicit and independent proof of the following proposition. It can be found in Section 11.
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Proposition 6.3 For λ = 0, the optimal strategy (27) of Corollary 6.1 solves the recur-

sive scheme (31) in Proposition 6.2.

Let us now extend our results so as to obtain the explicit solution of (31) even with

nonvanishing permanent impact. To this end, we note that the optimal strategy ξOW =

(ξOW
0 , . . . , ξOW

N ) is obtained in [16] as the unique minimizer of the cost functional

COW
λ,q : R

N+1 → R

defined by

COW

λ,q (x0, . . . , xN )

= A0

N∑

i=0

xi +
λ

2

( N∑

i=0

xi

)2
+ κ

N∑

k=0

( k−1∑

i=0

xie
−ρ(k−i)τ

)
xk +

κ

2

N∑

i=0

x2
i ,

where κ is as in (29). Now we just have to observe that

COW
λ,q (x0, . . . , xN ) =

λ

2

( N∑

i=0

xi

)2
+ COW

0,κ−1(x0, . . . , xN ).

Therefore, under the constraint
∑N

i=0 xi = X0, it is equivalent to minimize either COW

λ,q or

COW

0,κ−1. We already know that the optimal strategy ξ∗ of Corollary 6.1 minimizes COW
0,q .

But ξ∗ is in fact independent of q. Hence, ξ∗ also minimizes COW

0,κ−1 and in turn COW
λ,q . We

have therefore proved:

Corollary 6.4 The optimal strategy ξ∗ of Corollary 6.1 is the unique optimal strategy

in any block-shaped LOB with permanent impact λ < 1/q. In particular, it solves the

recursive scheme (31).

The last part of the assertion of Corollary 6.4 is remarkable insofar as the recursive

scheme (31) depends on both q and λ whereas the optimal strategy ξ∗ does not.

7 Examples.

In this section, we consider various example shape functions, which are listed in Table 1

together with numerical values for their optimal strategies. It is remarkable that the op-

timal strategies vary only very slightly when changing the shape function or the resilience

mode. This observation provides further evidence for the robustness and stability of the

optimal strategy, and this time not only on a qualitative but also on a quantitative level.

We check in Subsection 7.1 that the shape functions in Table 1 satisfy the assumptions

of both Theorem 4.1 and Theorem 5.1. In particular, the existence of an optimal strategy

is guaranteed in each case.
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Example Model 1 Model 2

number f(x) ξ
(1)
0 ξ

(1)
1 ξ

(1)
N ξ

(2)
0 ξ

(2)
1 ξ

(2)
N

0 q 10,223 8,839 10,223 10,223 8,839 10,223

1 q√
|x|+1

10,257 8,869 9,925 10,756 8,724 10,726

2 q

|x|+1
10,303 8,909 9,520 13,305 8,154 13,305

3 qe|x| 10,139 8,767 10,962 9,735 8,947 9,741

4 q

10
|x| + q 10,211 8,829 10,326 10,130 8,860 10,131

5 q

10
x2 + q 10,192 8,812 10,498 10,101 8,868 10,091

Table 1: The table shows optimal strategies for various choices of the shape function f . We

set X0 = 100, 000 and q = 5, 000 shares, ρ = 20, T = 1 and N = 10.

1 2 3 4 5

2000

4000

6000

8000

10000

12000

14000

16000PSfrag repla
ements
0

0
1 12 23

3

4
4
5

5; 000 x

f(x)

Figure 4: Plots of the shape functions in Table 1 for q = 5, 000 shares. The numbers on the

right-hand side refer to the example numbers in Table 1.
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Example g(x) −g′(x)x

3 exp(−x (1 − e−ρτ )) ≤ e−1

4 e−ρτ x+10
x+10

≤ 1
4
(1 − e−ρτ )

5 e−2ρτ x2+10
x2+10

≤ 1
2
(1 − e−2ρτ )

Table 2: h2 is one-to-one for Example 3 to 5.

7.1 Assumption Checking.

First note that our standing assumption (14) is satisfied, i.e., all shape functions in Ta-

ble 1 have unbounded antiderivatives F . Let us continue by checking the assumptions of

Theorem 4.1, where h1 has to be one-to-one. According to Remark 4.3, there is nothing

to show in case of Example 1 and 2. For Example 3, 4 and 5, we only need to show that

h1 is increasing on [0,∞) due to the fact that the examples satisfy h1(u) = −h1(|u|) for

u < 0. For the third shape function in Table 1, we have

h′
1(x) =

e−ρτx + q − e−2ρτ (x + q)

(x + q) (e−ρτx + q)
for x > 0,

which is obviously positive since all variables are positive. For Examples 4 and 5 we

consider the positivity of the function ℓ from (19) on [0,∞). In the case of Example 4 we

get

ℓ(x) =

√
q

5

[√
5q + e−ρτx − e−2ρτ

√
5q + x

]
> 0,

and although ℓ for Example 5 gets quite complicated, its positivity can be shown by plot-

ting it for different choices of q and ρ.

We now turn to Theorem 5.1. First, condition (20) is clearly satisfied by each example.

We still have to verify that h2 : R+ → R+is one-to-one. This is enough because in our

examples we have h2(u) = −h2(|u|) for u ≤ 0. In case of Example 2, h2 is a parabola.

For the remaining examples we write

h2(x) = x
1 − e−2ρτg(x)

1 − e−ρτg(x)
with g(x) :=

f(e−ρτx)

f(x)
.

Hence, h2 is strictly increasing, and therefore one-to-one, if

(1 − e−2ρτg(x))
(
1 − e−ρτg(x)

)
> −g′(x)xe−ρτ

(
1 − e−ρτ

)
for x > 0. (34)

In case of Example 1 we have g(x) =
√

x+1
e−ρτx+1 which is increasing and satisfies (34). For

Examples 3 to 5 we use that g as stated in Table 2 is decreasing and therefore we get (34)

provided that

eρτ − e−ρτ > −g′(x)x for x > 0. (35)

According to Table 2, (35) is satisfied for Example 4 and 5. In case of Example 3, (35) is

true if ρτ > 0.2.
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8 Reduction to the case of deterministic strate-

gies.

In this section, we prepare for the proofs of Theorems 4.1 and 5.1 by reducing the mini-

mization of the cost functional

C(ξ) = E

[ N∑

n=0

πtn(ξn)
]

with respect to all admissible strategies ξ to the minimization of certain cost functions

C(i) : R
N+1 → R, where i = 1, 2 refers to the model under consideration.

To this end, we introduce simplified versions of the model dynamics by collapsing

the bid-ask spread into a single value. More precisely, for any admissible strategy ξ, we

introduce a new pair of processes D and E that react on both sell and buy orders according

to the following dynamics.

• We have E0 = D0 = 0 and

Et = F (Dt) and Dt = F−1(Et). (36)

• For n = 0, . . . , N , regardless of the sign of ξn,

Etn+ = Etn + ξn and Dtn+ = F−1 (ξn + F (Dtn)) . (37)

• For k = 0, . . . , N − 1,

Etk+1
= e−ρτEtk+ in Model 1,

Dtk+1
= e−ρτDtk+ in Model 2.

(38)

The values of Et and Dt for t /∈ {t0, . . . , tN} will not be needed in the sequel. Note that

E = EA and D = DA if ξ consists only of buy orders, while E = EB and D = DB if ξ

consists only of sell orders. In general, we will only have

EB
t ≤ Et ≤ EA

t and DB
t ≤ Dt ≤ DA

t . (39)

We now introduce the simplified price of ξn at time tn by

πtn(ξn) := A0
tnξn +

∫ Dtn+

Dtn

xf(x) dx, (40)

regardless of the sign of ξn. Using (39) and (8), we easily get

πtn(ξn) ≥ πtn(ξn) with equality if ξk ≥ 0 for all k ≤ n. (41)

The simplified price functional is defined as

C(ξ) := E

[ N∑

n=0

πtn(ξn)
]
.

We will show that, in Model i ∈ {1, 2}, the simplified price functional C has a unique

minimizer, which coincides with the corresponding optimal strategy ξ(i) as described in
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the respective theorem. We will also show that ξ(i) consists only of buy orders, so that

(41) will yield C(ξ(i)) = C(ξ(i)). Consequently, ξ(i) must be the unique minimizer of C.

Let us now reduce the minimization of C to the minimization of functionals C(i) defined

on deterministic strategies. To this end, let us use the notation

Xt := X0 −
∑

tk<t

ξk for t ≤ T and XtN+1
:= 0. (42)

The accumulated simplified price of an admissible strategy ξ is

N∑

n=0

πtn(ξn) =

N∑

n=0

A0
tnξn +

N∑

n=0

∫ Dtn+

Dtn

xf(x) dx.

Integrating by parts yields

N∑

n=0

A0
tnξn = −

N∑

n=0

A0
tn(Xtn+1

− Xtn) = X0A0 +

N∑

n=1

Xtn(A0
tn − A0

tn−1
). (43)

Since ξ is admissible, Xt is a bounded predictable process. Hence, due to the martingale

property of the unaffected best ask process A0, the expectation of (43) is equal to X0A0.

Next, observe that, in each Model i = 1, 2, the simplified extra spread process D

evolves deterministically once the values ξ0, ξ1(ω), . . . , ξN (ω) are given. Hence, there exists

a deterministic function C(i) : R
N+1 → R such that

N∑

n=0

∫ Dtn+

Dtn

xf(x) dx = C(i)(ξ0, . . . , ξN ). (44)

It follows that

C(ξ) = A0X0 + E
[
C(i)(ξ0, . . . , ξN )

]
.

We will show in the respective Sections 9 and 10 that the functions C(i), i = 1, 2, have

unique minima within the set

Ξ :=
{

(x0, . . . , xN ) ∈ R
N+1

∣∣
N∑

n=0

xn = X0

}
,

and that these minima coincide with the values of the optimal strategies ξ(i) as provided in

Theorems 4.1 and 5.1. This concludes the reduction to the case of deterministic strategies.

We will now turn to the minimization of the functions C(i) over Ξ. To simplify the

exposition, let us introduce the following shorthand notation in the sequel:

a := e−ρτ . (45)

9 The optimal strategy in Model 1.

In this section, we will minimize the function C(1) of (44) over the set Ξ of all deterministic

strategies and thereby complete the proof of Theorem 4.1. To this end, recall first the

definition of the two processes E and D as given in (36)–(38). Based on their Model 1
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dynamics, we will now obtain a formula of the cost function C(1) of (44) in terms of the

functions F and F̃ . It will be convenient to introduce also the function

G(x) := F̃
(
F−1(x)

)
. (46)

Then we have for any deterministic strategy ξ = (x0, . . . , xN ) ∈ Ξ that

C(1)(x0, . . . , xN ) =
N∑

n=0

∫ Dtn+

Dtn

xf(x)dx

=

N∑

n=0

(
F̃

(
F−1 (Etn+)

)
− F̃

(
F−1 (Etn)

))

=
N∑

n=0

(
G (Etn + xn) − G (Etn)

)
(47)

= G (x0) − G (0)

+G (ax0 + x1) − G (ax0)

+G
(
a2x0 + ax1 + x2

)
− G

(
a2x0 + ax1

)

+ . . . (48)

+G
(
aNx0 + · · · + xN

)
− G

(
aNx0 + · · · + axN−1

)
.

The derivative of G is

G′(x) = F̃ ′
(
F−1(x)

)
(F−1)′(x) = F−1(x)f

(
F−1(x)

) 1

f(F−1(x))
= F−1(x). (49)

Hence, G is twice continuously differentiable, positive and convex. The cost function C(1)

is also twice continuously differentiable.

Lemma 9.1 We have C(1)(x0, . . . , xN )−→ + ∞ for |ξ| → ∞, and therefore there exists

a local minimum of C(1) in Ξ.

Proof: Using (49) and the fact that F−1(x) is increasing, we get that for all x ∈ R

and c ∈ (0, 1]

G(x) − G(cx) ≥ (1 − c) · |F−1(cx)| · |x|. (50)

Let us rearrange the sum in (48) in order to use inequality (50). We obtain

C(1)(x0, . . . , xN )

= G
(
aNx0 + aN−1x1 + · · · + xN

)
− G (0)

+

N−1∑

n=0

[
G

(
anx0 + · · · + xn

)
− G

(
a(anx0 + · · · + xn)

)]

≥ G
(
aNx0 + aN−1x1 + · · · + xN

)
− G (0)

+(1 − a)
N−1∑

n=0

∣∣F−1
(
a(anx0 + · · · + xn)

)∣∣ |anx0 + · · · + xn| .

Let us denote by T1 : R
N+1 → R

N+1 the linear mapping

T1(x0, . . . , xn) =
(
x0, ax0 + x1, . . . , a

Nx0 + x1a
N−1 + · · · + xN

)
.
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It is non trivial and therefore the norm of T1(x0, . . . , xN ) tends to infinity as the norm

of its argument goes to infinity. Because F is unbounded, we know that both G(x) and

|F−1(ax)||x| tend to infinity for |x| → ∞. Let us introduce

H(x) = min(G(x), |F−1(ax)||x|).

Then also H(x)−→ + ∞ for |x| → ∞, and we conclude that

C(1)(x0, . . . , xN ) ≥ (1 − a)H(|T1(x0, . . . , xN )|∞) − G(0),

where | · |∞ denotes the ℓ∞-norm on R
N+1. Hence, the assertion follows.

We now consider Equation (15) in Theorem 4.1, which we recall here for the conve-

nience of the reader:

F−1 (X0 − Nx0 (1 − a)) =
h1(x0)

1 − a
.

This equation is solved by x0 if and only if x0 is a zero of the function

ĥ1(x) := h1(x) − (1 − a)F−1
(
X0 − Nx(1 − a)

)
. (51)

Lemma 9.2 Under the assumptions of the Theorem 4.1, ĥ1 has at most one zero x0,

which, if it exists, is necessarily positive.

Proof: It is sufficient to show that ĥ1 is strictly increasing. We know that h1(0) = 0,

h1(x) > 0 for x > 0, and h1 is continuous and one-to-one. Consequently, h1 must be

strictly increasing and therefore

ĥ′
1(x) = h′

1(x) +
N(a − 1)2

f
(
F−1 (X0 + Nx (a − 1))

) > 0.

Furthermore, if there exists a solution x0, then it must be positive since

ĥ1(0) = (a − 1)F−1(X0) < 0.

Theorem 4.1 will now follow by combining the following proposition with the arguments

explained in Section 8.

Proposition 9.3 The function C(1) : Ξ → R has the strategy ξ(1) from Theorem 4.1 as

its unique minimizer. Moreover, the components of ξ(1) are all strictly positive.
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Proof: Thanks to Lemma 9.1, there is at least one optimal strategy ξ∗ = (x∗
0, . . . , x

∗
N ) ∈ Ξ,

and standard results give the existence of a Lagrange multiplier ν ∈ R such that

∂

∂xj
C(1)(x∗

0, . . . , x
∗
N ) = ν for j = 0, . . . , N .

Now we use the form of C(1) as given in (48) to obtain the following relation between the

partial derivatives of C(1) for j = 0, . . . , N − 1:

∂

∂xj
C(1)(x0, . . . , xN ) = a

[
∂

∂xj+1
C(1)(x0, . . . , xN ) − G′

(
a(ajx0 + · · · + xj)

)]

+ G′
(
ajx0 + · · · + xj

)

Recalling (49), we obtain

h1

(
ajx∗

0 + · · · + x∗
j

)
= ν (1 − a) for j = 0, . . . , N − 1.

Since h1 is one-to-one we must have

x∗
0 = h−1

1 (ν (1 − a))

x∗
j = x∗

0 (1 − a) for j = 1, . . . , N − 1 (52)

x∗
N = X0 − x∗

0 − (N − 1)x∗
0 (1 − a) .

Note that these equations link all the trades to the initial trade x0. Due to the dynam-

ics (37) and (38), it follows that the process E of ξ∗ is given by

Etn = a (ax0 + x0 (1 − a)) = ax0. (53)

Consequently, by (47),

C(1)(x∗
0, . . . , x

∗
N ) = G(x∗

0) − G(0) + (N − 1)
[
G (ax∗

0 + x∗
0(1 − a)) − G(ax∗

0)
]

+G
(
ax∗

0 + X0 − x∗
0 − (N − 1)x∗

0(1 − a)
)
− G(x∗

0a)

= N
[
G(x∗

0) − G(x∗
0a)

]
+ G

(
X0 + Nx∗

0(a − 1)
)
− G(0)

=: C
(1)
0 (x∗

0).

It thus remains to minimize the function C
(1)
0 (x) with respect to x. Thanks to the existence

of an optimal strategy in Ξ for C(1), we know that C
(1)
0 (x) has at least one local minimum.

Differentiating with respect to x0 gives

∂C
(1)
0 (x)

∂x
= N

[
F−1(x) − aF−1 (ax) + (a − 1) F−1 (X0 + Nx (a − 1))

]

= Nĥ1(x). (54)

Lemma 9.2 now implies that C
(1)
0 can only have one local minimum, which is also positive

if it exists. This local minimum must hence be equal to x∗
0, which establishes both the

uniqueness of the optimal strategy as well as our representation.

Finally, it remains to prove that all market orders in the optimal strategy are strictly

positive. Lemma 9.2 gives ξ
(1)
0 = x∗

0 > 0 and then (52) gives ξ
(1)
n = x∗

n > 0 for n =

1, . . . , N − 1. As for the final market order, using the facts that (54) vanishes at x = x∗
0

and F−1 is strictly increasing gives

0 = F−1(x∗
0) − aF−1(ax∗

0) − (1 − a)F−1(ax∗
0 + x∗

N )

> (1 − a)
[
F−1(ax∗

0) − F−1(ax∗
0 + x∗

N )
]
,

which in turn implies x∗
N > 0.
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10 The optimal strategy in Model 2.

In this section, we will minimize the function C(2) of (44) over the set Ξ of all deterministic

strategies and thereby complete the proof of Theorem 4.1. To this end, recall first that the

definitions of D and E are given by (36)–(38). Based on their Model 2 dynamics dynamics,

we will now obtain a formula of the cost function C(2) of (44) in terms of the functions

F , F̃ , and G, where G is as in (46). For any deterministic strategy ξ = (x0, . . . , xN ) ∈ Ξ,

C(2)(x0, . . . , xN ) =

N∑

n=0

∫ Dtn+

Dtn

xf(x)dx

=

N∑

n=0

(
G (xn + F (Dtn)) − F̃ (Dtn)

)
. (55)

Lemma 10.1 We have C(2)(x0, . . . , xN )−→ +∞ for |ξ| → ∞, and therefore there exists

a local minimum of C(2) in Ξ.

Proof: We rearrange the sum in (55):

C(2)(x0, . . . , xN ) = F̃
(
aF−1(xN + F (DtN ))

)

+

N∑

n=0

[
F̃

(
F−1(xn + F (Dtn))

)
− F̃

(
aF−1(xn + F (Dtn))

)]

≥
N∑

n=0

[
F̃

(
F−1(xn + F (Dtn))

)
− F̃

(
aF−1(xn + F (Dtn))

)]
. (56)

For the terms in (56), we have the lower bound

F̃ (x) − F̃ (ax) =

∣∣∣∣
∫ x

ax

yf(y)dy

∣∣∣∣ ≥
1

2
(1 − a2)x2 inf

y∈[ax,x]
f(y) ≥ 0.

Let

H(x) =
1

2
(1 − a2)F−1(x)2 inf

y∈[aF−1(x),F−1(x)]
f(y).

Then we have H(x)−→ + ∞ for |x| → ∞, due to (20) and (14). Besides, we have

C(2)(x0, . . . , xN ) ≥ H(|T2(ξ)|∞)

where | · |∞ denotes again the ℓ∞-norm on R
N+1, and T2 is the (nonlinear) transformation

T2(ξ) =
(
x0, x1 + F−1(Dt1), . . . , xN + F−1(DtN )

)
.

It is sufficient to show that |T2(ξ)|∞−→∞ when |ξ| → ∞. To prove this, we suppose by

way of contradiction that there is a sequence ξk such that |ξk|∞ −→ ∞ and T2(ξ
k) stays

bounded. Then, all coordinates in the sequence (T2(ξ
k))k are bounded, and in particular

(xk
0)k is a bounded sequence. Therefore, Dk

t1
= aF−1(xk

0) is also a bounded sequence.

The second coordinate xk
1 +F−1(Dk

t1
) being also bounded, we get that (xk

1)k is a bounded

sequence. In that manner, we get that (xk
n)k is a bounded sequence for any n = 0, . . . , N ,

which is the desired contradiction.
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Lemma 10.2 (Partial derivatives of C(2)).

We have the following recursive scheme for the derivatives of C(2)(x0, . . . , xN ) for i =

0, . . . , N − 1:

∂

∂xi
C(2) = F−1 (xi + F (Dti)) +

af
(
Dti+1

)

f (F−1 (xi + F (Dti)))

[
∂

∂xi+1
C(2) − Dti+1

]
. (57)

Proof: From (23) we get the following scheme for Dtn for a fixed n ∈ 1, . . . , N :

Dtn

‖
aF−1(xn−1+ F (Dtn−1

))

‖
. . .

aF−1(xi+1+ F (Dti+1
))

‖
aF−1(xi+ F (Dti))

‖
. . .

aF−1(x0).

Therefore the following relation holds for the partial derivatives of Dtn :

∂

∂xi
Dtn =

af(Dti+1
)

f (F−1 (xi + F (Dti)))

∂

∂xi+1
Dtn , i = 0, . . . , n − 2. (58)

Furthermore, according to (55) and (49),

∂

∂xi
C(2) = F−1 (xi + F (Dti)) + (59)

+

N∑

n=i+1

f(Dtn)
∂

∂xi
Dtn

[
F−1 (xn + F (Dtn)) − Dtn

]

for i = 0, . . . , N . Combining (59) and (58) yields (57).

Lemma 10.3 Under the assumptions of the Theorem 5.1, equation (21) has at most one

solution x0 > 0. Besides, the function g(x) := f(x) − af(ax) is positive.

Proof: Uniqueness will follow if we can show that both h2 ◦ F−1 and

ĥ2(x) := −F−1
(
X0 − N

[
x − F

(
aF−1(x)

)])

are strictly increasing. Moreover, h2 ◦ F−1(0) = 0 and ĥ2(0) < 0 so that any zero of

h2 ◦ F−1 + ĥ2 must be strictly positive.

The function h2 is one-to-one, has zero as fixed point, and satisfies (26). It is therefore

strictly increasing, and since F−1 is also strictly increasing, we get that h2 ◦F−1 is strictly

increasing. It remains to show that ĥ2 is strictly increasing. We have that

ĥ′
2(x) = N

f
(
F−1(x)

)
− af

(
aF−1(x)

)

f (F−1(x)) f (F−1 (X0 − N [x − F (aF−1(x))]))
,
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is strictly positive, because, as we will show now, the numerator of this term is positive.

The numerator can be expressed as g(F−1(x)) for g as in the assertion. Hence, establishing

strict positivity of g will conclude the proof. To prove this we also define g2(x) :=

f(x) − a2f(ax) so that

h2(x) = x
g2(x)

g(x)
.

Both functions g and g2 are continuous and have the same sign for all x ∈ R due to the

properties of h2 explained at the beginning of this proof. Because of g(x) < g2(x) for all

x ∈ R, we infer that there can be no change of signs, i.e., either g(x) > 0 and g2(x) > 0

for all x ∈ R or g(x) < 0 and g2(x) < 0 everywhere. With g(0) = f(0)(1 − a) > 0 we

obtain the positivity of g.

Theorem 5.1 will now follow by combining the following proposition with the arguments

explained in Section 8.

Proposition 10.4 The function C(2) : Ξ → R has the strategy ξ(2) from Theorem 5.1 as

its unique minimizer. Moreover, the components of ξ(2) are all strictly positive.

Proof: The structure of the proof is similar to the one of Theorem 4.1 although the

computations are different. Thanks to Lemma 10.1, we know that there exists an optimal

strategy ξ∗ = (x∗
0, . . . , x

∗
N ) ∈ Ξ. There also exists a corresponding Lagrange multiplier ν

such that
∂

∂xi
C(2)(x∗

0, . . . , x
∗
N ) = ν, i = 0, . . . , N.

From (57), we get

ν = h2

(
F−1 (x∗

i + F (Dti))
)
, i = 0, . . . , N − 1.

Since h2 is one-to one, this implies in particular that x∗
i + F (Dti) does not depend on

i = 0, . . . , N − 1. It follows from (23) also Dti+ = F−1(x∗
i + F (Dti)) is constant in i, and

so

Dti+ = Dt0+ = F−1(x∗
0) and Dti+1

= aF−1(x∗
0). (60)

Hence,

x∗
0 = F

(
h−1

2 (ν)
)
,

x∗
i = x∗

0 − F (Dti) = x∗
0 − F

(
aF−1(x∗

0)
)

for i = 1, . . . , N − 1, (61)

x∗
N = X∗

0 − x∗
0 − (N − 1)

[
x∗

0 − F
(
aF−1(x∗

0)
)]

.

These equations link all market orders to the initial trade x∗
0. Using (61) and once

again (60), we find that C(2)(x∗
0, . . . , x

∗
N ) is equal to

C
(2)
0 (x∗

0) := C(2)
(
x∗

0, x
∗
0 − F (aF−1(x∗

0)), . . . ,X0 − Nx∗
0 + (N − 1)F (aF−1(x∗

0))
)

= N
[
G(x∗

0) − F̃
(
aF−1(x∗

0)
)]

+ G
(
X0 + N

[
F

(
aF−1(x∗

0)
)
− x∗

0

])
.

The initial trade x∗
0 must clearly be a local minimum of C

(2)
0 and thus ∂

∂x
C

(2)
0 (x∗

0) = 0.

Therefore,

0 = N

[
D0+ − a2D0+

f(Dt1)

f(D0+)
+ DtN+

(
a

f(Dt1)

f(D0+)
− 1

)]
,
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which is equivalent to

DtN + = D0+
f(D0+) − a2f(Dt1)

f(D0+) − af(Dt1)
. (62)

This is just equation (21), which has at most one solution, due to Lemma 10.3. This

concludes the proof of the existence and the representation of the optimal strategy ξ(2) in

Theorem 5.1.

Finally, we need to show the strict positivity of the optimal strategy. Thanks to the

positivity of the optimal x∗
0, we get

x∗
i = x∗

0 − F (aF−1(x∗
0)) > 0

for i = 1, . . . , N −1. So it only remains to show that x∗
N > 0. We infer from (62) and (60)

that

DtN + = D0+
f(D0+) − a2f(aD0+)

f(D0+) − af(aD0+)
= D0+

[
1 +

af(aD0+) − a2f(aD0+)

f(D0+) − af(aD0+)

]
.

The fraction on the right is strictly positive due to Lemma 10.3. Hence,

DtN + > D0+ =
1

a
DtN > DtN ,

which implies x∗
N > 0.

11 Optimal strategy for block-shaped LOB.

Here we prove the results of Section 6.

Proof of Corollary 6.1: For a constant LOB shape f ≡ q we have F (x) = qx and F−1(x) =
x
q
. Since the corresponding functions h1 and h2 are one-to-one and F̃ (x) = q

2x2 is convex,

we can apply either Theorem 4.1 or Theorem 5.1. Hence, the optimal initial trade ξ∗0 can

be computed by solving the equations (15) or (21). As explained in the remarks following

Theorems 4.1 and 5.1, the left-hand sides of these equations are equal to DtN+. We have

D0+ =
ξ∗0
q

,

Dt1 = a
ξ∗0
q

, (63)

DtN + = a
ξ∗0
q

+
X0 − ξ∗0 − (N − 1)ξ∗0 (1 − a)

q
.

Equating the left-hand side of (15) or (21) with DtN + of (63), we get

ξ∗0 =
X0

(N − 1) (1 − a) + 2
.

This is equivalent to

X0 = ξ∗0 [(N − 1) (1 − a) + 2] . (64)

Applying Theorem 4.1 and 5.1, we know that ξ∗1 = · · · = ξ∗N−1 = ξ∗0(1−a). With this fact

and (64) we can compute

ξ∗N = X0 − (N − 1)(1 − a)ξ∗0 − ξ∗0 = ξ∗0 .
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Our next aim is to prove Proposition 6.2, i.e., to show that the strategy (27) satisfies the

recursion (31). The key point is that we have indeed explicit formulas for the coefficients

in the backward schemes of Proposition 6.2:

Lemma 11.1 The coefficients αn, βn, and γn from (33) are explicitly given by

αn =

(
1 + a−1

)
− qλ

[
(N − n)

(
a−1 − 1

)
+ 2

(
1 + a−1

)]

2q [(N − n) (a−1 − 1) + (1 + a−1)]
(65)

βn =
1 + a−1

[(N − n) (a−1 − 1) + (1 + a−1)]

γn =
(N − n)

(
1 − a−1

)

2κ [(N − n) (a−1 − 1) + (1 + a−1)]
.

The explicit form of the sequences δn, ǫn and φn from (32) is

δn =
2a−2

[
(N − n)

(
a−1 − 1

)
+

(
1 + a−1

)]

κ [(N − n) (1 − a−2) + (N − n + 2) (a−3 − a−1)]
(66)

ǫn =
κ

(
a−1 − a

)

[(N − n) (a−1 − 1) + (1 + a−1)]

φn =
(N − n + 1)

(
a−1 − a

)
− (N − n)

(
1 − a2

)

[(N − n) (a−1 − 1) + (1 + a−1)]
.

Proof: We show by backward induction that the explicit formulas given in (65) for α, β

and γ follow from (33) and (32). For n = N it emanates from (65) that

αN =

(
1 + a−1

)
− 2qλ

(
1 + a−1

)

2q (1 + a−1)
=

1

2q
− λ, βN = 1, and γN = 0,

as desired.

As induction hypothesis we take our expressions for αn+1, βn+1 and γn+1 from (65).
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We show first that they imply (66). Indeed, by (32) we have

δ−1
n+1 =

1

2q
+ αn+1 − βn+1κa + γn+1κ

2a2

=

1
q
a−2

[
(N − n + 1)a−1 − (N − n − 3)

]
− λa−2

[
(N − n + 1)a−1 − (N − n − 3)

]

2a−2 [(N − n − 1) (a−1 − 1) + (1 + a−1)]

+
−2κ

(
a−1 + a−2

)
+ κ(N − n − 1)

(
1 − a−1

)

2a−2 [(N − n − 1) (a−1 − 1) + (1 + a−1)]

=
κ

[
(N − n − 1)

(
1 − a−2

)
+ (N − n + 1)

(
a−3 − a−1

)]

2a−2 [(N − n − 1) (a−1 − 1) + (1 + a−1)]

ǫn+1 = λ + 2αn+1 − βn+1κa

=

1
q

(
1 + a−1

)
− λ

(
1 + a−1

)
− κ (a + 1)

[(N − n − 1) (a−1 − 1) + (1 + a−1)]

=
κ

(
a−1 − a

)

[(N − n − 1) (a−1 − 1) + (1 + a−1)]

φn+1 = 1 − βn+1a + 2γn+1κa2

=

[
(N − n − 1)

(
a−1 − 1

)
+

(
1 + a−1

)]
− (a + 1) + (N − n − 1)

(
a2 − a

)

[(N − n − 1) (a−1 − 1) + (1 + a−1)]

=
(N − n)

(
a−1 − a

)
− (N − n − 1)

(
1 − a2

)

[(N − n − 1) (a−1 − 1) + (1 + a−1)]

Putting these terms into the three equations in (33), we get the desired result (65) by

another longish calculation.

Proof of Proposition 6.2. We can deduce the following formulas from the preceding lemma:

δnǫn =
2

(N − n)(1 − a) + 2
, δnφn =

2

κ

(N − n)(1 − a) + 1

(N − n)(1 − a) + 2
. (67)

They will turn out to be convenient in (31).

Let us now consider the optimal strategy (ξ∗0 , . . . , ξ∗N ) from (27). We consider the

associated processes Dt := DA
t and Xt as defined in (28) and (30). For n = 0, we have

ξ∗0 =
X0

(N − 1)(1 − a) + 2
=

1

2
δ1ǫ1

and it satisfies (31) because D0 = 0. For n ≥ 1, we can show easily by induction on n

that Dtn = aκξ∗0 . From (27), we get that ξ∗n = (1 − a)ξ∗0 for n 6∈ {0, N}, and therefore we

get

Xtn = X0 − ξ∗0 − (n − 1)(1 − a)ξ∗0 = [(N − n)(1 − a) + 1]ξ∗0 .

Using these formulas, and combining with (67), it is now easy to check that for n ∈
{1, . . . , N − 1},

ξ∗n =
1

2
[δn+1ǫn+1Xtn − δn+1φn+1Dtn ] ,

which shows that the optimal strategy given in (27) solves (31).
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