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Abstract

A simple two-state model is proposed to explicitly derive the ionic contribution

to the frequency dependent dielectric permittivity of clay. This model is based

on a separation of timescales, and accounts for the two possible solvation modes

(inner/outer-sphere complexes) for ions in the interlayer spacing, and a possible

chemical exchange between both forms. The influence on the permittivity of ther-

modynamic (distribution constant Kd) and dynamic (diffusion coefficient, chemical

relaxation rate) parameters is discussed. In turn, this model is used to analyze ex-

perimental data obtained with Na-Montmorillonite for two relative humidities. The

values of the parameters extracted from these measurements, and their variation

with water content, show that the proposed model is at least reasonable.

Introduction

Clay minerals, and particularly smectites, have received a great deal of attention in the last

decades, both for their potential use for various applications -among them the in-depth

storage of nuclear waste- and for their interest as a paragon for complex heterogeneous

materials. They now stand for a “case-study” of water under extreme confinement con-

ditions, although numerous questions remain to be solved.

Smectites are 2:1 layered silicates that consist of negatively charged stacks separated

by galleries containing charge-compensating cations. Under humid atmosphere, the clay
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swells as a result of the ions hydration, which forces the interlayer distance to increase. As

the water content increases, one, then two or more water layers can develop, depending

mainly on the nature of the cation. The ions can then diffuse along the sheets. This

movement is of particular interest, since it governs among others the ionic retention prop-

erties of clays, which are crucial in the waste disposal context. Diffusion can be coupled

to an adsorption/desorption exchange at the clay surface, when several solvation modes

exist for the cation: it has been shown that sodium ions can form either inner or outer

sphere complexes with the clay surface, in proportions that vary with clay type and water

content [1, 2, 3].

On the experimental side however, ion dynamics is rather more complicated to probe

than that of the water. Difficulties arise for several reasons, depending on each technique,

as will be briefly discussed later, but one common feature is related to the dynamics itself:

the timescale involved is too long for “fast” techniques such as neutron quasi-elastic scat-

tering (QENS), and too short for “slow” techniques such as radioactive tracer diffusion.

Indeed diffusion of an ion with a typical diffusion coefficient of D ' 10−10 m2s−1 over

the distance separating it from the next cation (L ' 1nm) takes place on the nanosecond

range, and despite the short time needed for a particular ion to adsorb onto or desorb

from the surface, such an event is rare so that the chemical exchange between different

types of complexes is even longer than the nanosecond, too long to be observed in sim-

ulations (see section 1.3). Diffusion would be just in the higher limit of the timescales

accessible with QENS (spin echo experiments), but the incoherent scattering cross section

of proton is much higher than that of the cation, so that the experimental signal is almost

entirely due to the water [4]. At the other extreme, tracer diffusion experiments provide

information over times longer than the second, and any microscopic information is lost

by a time averaging process [5, 6]. Furthermore, during such a long time, an ion can

explore not only the interlayer space, but also the various porosities that exist at different

length scales. Finally, such experiments require to equilibrate the sample with reservoirs

containing the tracers, and are therefore well defined only for water-saturated sample, in

which pore diffusion might be the dominant mechanism.

Only nuclear magnetic resonance (NMR) on the one hand, and broadband dielectric

spectroscopy (BDS) on the other hand, allow so far to explore intermediate timescales.

Both techniques have their own advantages and drawbacks. Nuclear quadrupolar relax-

ometry (NQR) has proved very useful to trace the diffusion of a given type of ion (7Li+,
23Na+, 133Cs+) [7, 8], but the presence of paramagnetic impurities (FeIII) in the clay sheets

disturbs the local magnetic fields [9], so that the usual sequences, involving magnetic field

gradients, used for NQR cannot be employed when the cations are located in the vicinity

of the clay sheets; it is therefore relevant only for studies of very hydrated (gels) samples,
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in which a majority of ions is not perturbed by the sheets. BDS has the advantage of

being sensitive to all charge fluctuations, as will be explained in detail later, regardless of

the charge’s environment, and can therefore provide information on the ionic dynamics

in the interlayer, and on structure (grain length, nature -”bound” vs. “free”- of water).

However, no distinction can a priori be made between different cations bearing the same

charge in a heteroionic clay; this makes its use for heteroionic clays more difficult to

interpret.

The timescales accessible to BDS ranges from approximately 10 ps to 10 ms. The

processes involved over this wide range are diverse, which makes this technique very rich,

but at the same time very difficult to analyze. The assignment of each relaxation to a

particular mode of charge fluctuation remains particularly challenging, unless a separation

of timescales can be established. Early BDS studies of clays focused either on very high

frequencies (over 10 GHz), where water reorientation is the dominant mechanism for

charge fluctuation, or on very low frequencies (1-10 kHz), where the “static” conductivity

was investigated. The influence of clay type, cation, and water content on both properties

were analyzed [10]. The intermediate frequency region, and particularly the 1 MHz -

1 GHz, was only rarely discussed, and more thought of as a nuisance disturbing the water

signal [11]. On the contrary, we argue that valuable information on the ionic dynamics

could be extracted from the analysis of the dielectric spectra in this frequency range, since

it corresponds precisely to the relevant timescale. More recently, investigations covering

the whole frequency range where carried out, but mainly on clay suspensions [12].

The scope of the present paper is to suggest a model that would allow to extract

microscopic information from the intermediate frequency region (1 MHz - 1 GHz). This

model accounts for the cation diffusion in the interlayer gallery and for a possible adsorp-

tion/reaction at the clay surface. Association is a critical factor governing the dynamics

of the ions, since free/bound species have different mobilities. The present model is in

principle not restricted to clay minerals, but could be relevant for any water containing

lamellar structure, such as V2O5 [13], and its one-dimensional version could be applied

for example to hydrated zeolites. The microscopic parameters extracted from the experi-

mental data obtained with compacted Na-Montmorillonite samples at low water content

suggest that this model is at least reasonable.

The paper is organized as follows. In section 1, the microscopic model for the inter-

layer is first described, and the relation between charge fluctuations (charge dynamical

structure factor Scc(k, ω)) and dielectric spectroscopy is presented. In Section 2, Scc(k, ω)

is explicitly derived in the framework of the considered microscopic model, and the corre-

sponding frequency dependent conductivity and permittivity are then deduced. Section 3

describes the influence of the two main parameters on the expected BDS spectra. Finally,
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the model is used in Section 4 to analyze the experimental data obtained on compacted

Na-Montmorillonite samples, and its relevance is discussed.

1 Theoretical considerations

1.1 Microscopic model

Although the question of the nature of the current carriers in the interlayer gallery has

been the subject of a passionate debate [14, 10], it is now accepted that the cations

rather than the protons (that would originate from cation - induced water dissociation)

are responsible for electrical conduction in compacted clays [15]. We restrict ourselves

to homoionic clays, where only one type of cation is present. Cations are not the only

charged species, because the sheets bear themselves negative charges, but the latter don’t

contribute to any charge transport, since at low water content they cannot move. The

situation is here completely different from the case of clay suspensions, in which both types

of charges (ions and clay particles) are mobile, though with very different mobilities. We

furthermore restrict our discussion to the case where no salt is added to the clay. This

can be achieved by appropriate washing of the sample with deionized water, as will be

explained in section 4.

Even with only one type of cation, modeling the interlayer dynamics remains challeng-

ing. Indeed, there has been evidences that the ions can adopt two solvation modes [1, 2, 3]:

they can form with the clay surface either inner-sphere complexes (ISC) in which oxygen

atoms from the sheet lattice are involved in the first coordination layer of the cation, or

outer-sphere complexes (OSC) in which all oxygen atoms of the first coordination shell

belong to water molecules. This may not be the case for all cations (Cs+ shows only

ISC), but is true at least for Na+. Fully solvated ions (OSC) are able to diffuse in the

interlayer gallery, while bound cations are not. These different mobilities will be shown

to have an influence on the dielectric properties of the material. This behavior is similar

to that observed in micellar solutions, for which some cations diffuse freely around the

micelles, while other are located near the micelle surface, resulting in different mobilities,

and leading to a complex dielectric response [16, 17].

The cation density profiles can be obtained by numerical simulation of the interlayer.

They show that the distribution of ions depends strongly on the water content. We will

adopt a two-state model for the cation distribution in the interlayer, which is consistent

with the ISC/OSC distinction: a particular ion can be either stuck on the clay surface

(ISC), or diffusing in the interlayer gallery (OSC), with a diffusion coefficient D. This

microscopic model is schematically pictured in figure 1. Because a particular ion can

diffuse freely in the interlayer space, and adsorb onto or desorb from the clay surface,
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with rate constants k+ (adsorption) and k− (desorption), the two types of cations can be

represented by a chemical equilibrium:

Cdiffuses freely � Qfixed (1)

The motion perpendicular to the sheets is assumed to be entirely described in terms of

this chemical exchange. The fraction of adsorbed cations is determined by the distribution

constant Kd:

Kd =
fixed

free
=

k+

k−

(2)

while the relaxation rate of the chemical equilibrium (1) is simply:

kχ =
1

τχ

= k+ + k− (3)

We would like to draw the reader’s attention to the fact that Kd does not strictly cor-

respond to the usual definition, since the latter also involves cations in the mesopores,

while the present model only considers cations in the interlayer. Its significance, however,

remains the same, namely the ratio of bound vs. mobile ions. We are aware that the

description of the exchange in terms of first order kinetic processes might not be the most

relevant [18], but it is the most simple, and will therefore be used as a first stage in the

modelling of the coupling between diffusion and reaction.

Within this two-state model, the first level of approximation consists in averaging

over water degrees of freedom (fast motion compared to that of ions, with a contribution

to the dielectric properties over the GHz). Thus, the only particles explicitly described

in this model are the ions. The second level of approximation is to adopt a mean-field

treatment, whereby an ion evolves in the average potential created by its surrounding,

which encompasses the clay stacks, the water molecules and the other ions. The structural

defects, responsible for the negative charge of the sheets, are assumed to be homogeneously

distributed, separated by an average distance L fixed by the layer charge density (σSL
2 =

z, with z the charge of the cation; z = e for Na+).

In order to account for the correlations induced by the (rather complex) interactions

between ions, we need to evaluate the average potential to which a particular ion is

submitted. The main feature of the interaction between ions is that electrostatic repulsion

prevents them from getting too close to each other. The simplest approximation consists

in considering an infinite well-potential, which amounts to defining a distance of closest

approach δ between the ions, and neglecting the “long-ranged” correlations. This distance

is of course shorter than the average distance between charges L. If correlations between

ions are weak, δ � L, so that the width of the well-potential is approximately L. A

more repulsive potential would result in a shorter width, which could be extracted from
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the distribution or correlation functions obtained by simulations. This average potential

corresponds in fact to a state of confinement in a two-dimensional cage of width L.

The dynamics of the ions in the interlayer space is therefore governed by a coupling

between diffusion along the sheets and reaction with the clay surface. Before going any

further in the description of this dynamics, we would like to present now how it relates

to the dielectric properties of the material, by briefly recalling some results of electrody-

namics and linear response theory.

1.2 Dielectric properties

Electrical properties of a medium can be described in terms of its frequency dependent

conductivity σ(ω), which is a complex quantity, relating the induced electrical current

to an applied electric field by j(ω) = σ(ω)E(ω). Usually, only the real part of the con-

ductivity is analyzed in BDS experiments; on the contrary, both the real and imaginary

parts of the permittivity ε(ω) = ε′(ω)− iε′′(ω) are generally interpreted on a so-called Ar-

gand diagram representing ε′′ as a function of ε′. Conductivity is linked to the electrical

permittivity through the relation:

σ(ω) = σdc + iωε0ε(ω) (4)

where σdc is the static conductivity. For insulating materials such as clays, static con-

ductivity is negligible with respect to other conduction mechanisms, which are time-

dependent, and arise over various timescales. In the following study of relatively high

frequency conductivity, σdc can be omitted. Thus, descriptions in terms of conductivity

and permittivity are equivalent. More precisely, the general framework of linear response

theory relates the conductivity to the equilibrium fluctuations of the electrical current

through the Kubo formula [19]:

Re[σ(ω)] = lim
k→0

1

V kBT

1

2

∫ ∞

−∞

〈jc,k(t) · jc,−k(0)〉eiωtdt (5)

where 〈...〉 denotes an ensemble average, and

jc,k(t) =
∑

i

zivi(t) × e−ik·ri(t) (6)

is the space Fourier transform of the charge current (ri(t) and vi(t) are the position and

velocity of ion i at time t). With the definition of the time Fourier transform used in (5),

we obtain the real part of the conductivity; the imaginary part can then be computed

from the Kramers-Kronig relations.

The k → 0 limit, so-called “hydrodynamic limit”, implies that the present derivation

is also considered in the ω → 0 limit. The significance of this condition will be discussed

in more detail in the next section.

6



On the timescale considered, the dominant charge fluctuation mechanism is the trans-

lation of the ions in the interlayer. The dipolar (water molecules) reorientation develops

on a shorter timescale, and is averaged (to zero) on the nanosecond scale. At the other

extreme, translation of the negatively charged clay sheets is very long compared to that

of ions, and its contribution to charge fluctuations is negligible on comparatively “short”

times: if any at all, this motion should be at least as slow as the slowest observed re-

laxation, in the kHz range, attributed to grain polarization. Therefore, in the 1-1000

ns range, the charge current is only related to the ion density current; in the case of

homoionic clays, we simply have:

σ(ω) = lim
k→0

z2

V kBT

1

2

∫ ∞

−∞

〈jk(t) · j−k(0)〉eiωtdt (7)

We now recall the classical derivation of the link between current and density fluctu-

ations (see e.g. ref. [19]). The total ionic density ρ(r, t) (both fixed and mobile ions) is

linked to the density current through the continuity equation:

∂tρ(r, t) + ∇ · j(r, t) = 0 (8)

In Fourier space, this reads:

∂tρk(t) − ik · jk(t) = 0 (9)

Thus (l is the longitudinal component):

k2〈jkl(t)j−kl(0)〉 = 〈ρ̇kl(t)ρ̇−kl(0)〉 (10)

The r.h.s. of equation (10) is the second order time derivative of the intermediate scat-

tering function

〈ρ̇k(t)ρ̇−k(0)〉 = − d2

dt2
〈ρk(t)ρ−k(0)〉 = −N

d2

dt2
F (k, t) (11)

F is the total intermediate scattering function, which encompasses both fixed and mobile

cations. It can be split in self and distinct parts:

Fs(k, t) =
1

N
〈
∑

i

e−ik·(ri(t)−ri(0))〉 (12)

Fd(k, t) =
1

N
〈
∑

i

∑

j 6=i

e−ik·(ri(t)−rj (0))〉 (13)

In the 1MHz - 1GHz region, the density fluctuations are assumed to be related to

individual ionic motion, because collective effects develop on a longer timescale, exactly as

long-wavelength phonons in solids as compared to local atomic vibrations. Therefore, the

distinct contribution can be neglected in the evaluation of F (k, t) in this frequency range.
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Valuable information on slower dynamics could be inferred from the lowest frequency part

of dielectric spectra (ω < MHz), but we will not consider it here. At time t = 0, we simply

have Fs(k, 0) = 1. Equation (10) combined with (11) reads in Fourier space:

〈jkj−k〉(ω) = ω2NS(k, ω)

k2
(14)

with S(k, ω) the dynamical structure factor, time Fourier transform of F (k, t). The real

conductivity (σ = σ′ + iσ′′) can finally be cast in the form:

σ′(ω) =
z2N

V kBT
lim
k→0

ω2S(k, ω)

k2
(15)

1.3 Timescale separation - hydrodynamic approach

We would like to draw the reader’s attention to the following point: there is no incon-

sistency in using the hydrodynamic limit (k, ω → 0) for a motion which was said to be

“fast” (local vs. collective movements).

On the one hand, the low frequency limit defining the hydrodynamic approach con-

siders times which are longer than:

1. the characteristic time of collisions between ions and the solvent, i.e. the “inertial”

time for the ions velocity relaxation due to momentum transfer with the solvent;

this allows a description of the ionic movements in terms of simple diffusion. Reori-

entation of solvent molecules are also ruled out of this description because they are

too fast to be observed at this timescale.

2. the characteristic time of the elementary act of the chemical reaction, namely the

motion of a particular ion perpendicularly to the surface, from the middle to the

edge of the gallery (or the way back); this justifies a description of the chemical

reaction in terms of a stochastic process, with well-defined rate constants.

The former is of order of picoseconds (as well as solvent reorientation), the latter is more

difficult to estimate, but is shorter than the nanosecond (probably even shorter), because

the interlayer spacing is very small. This doesn’t imply anything for kχ, because a fast

elementary act can be rare. This is what makes such an exchange difficult to observe

in molecular dynamics simulations, since the duration of a simulation run (hundreds of

picoseconds) does not garantuee that such an event will occur during the run.

On the other hand, the considered motion is “fast” compared to other processes leading

to charge fluctuations: the above-mentioned collective motions, which manifest themselves

on length-scales larger than the average inter-ionic distance, or the grain polarization,

need more time to develop, and the local motions considered here are thus comparatively

“fast”, and correspond to higher frequencies.
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There is therefore no contradiction to use the hydrodynamic approach for processes

that are fast compared to others, as soon as they are slow enough to meet the criterion

defining the framework of this approach. We will need to verify that the characteristic

times extracted with this model from the experiments indeed satisfy this assumption.

Anticipating the results, we can say that the deduced diffusion times are in the nanosecond

range (far beyond picoseconds), and the deduced chemical relaxation time even longer,

which justifies this treatment.

2 Conductivity - Permittivity

In this section, we derive explicitly S(k, ω) for this reaction/diffusion model, in the consid-

ered frequency range, and then compute the corresponding conductivity and permittivity.

2.1 Dynamic structure factor S(k, ω)

Within our mean-field treatment, the evolution of the system is governed by the following

coupled equations:

∂tC = D∇2C − k+C + k−Q (16)

∂tQ = k+C − k−Q (17)

These equations are simply the continuity equations for mobile (C) and fixed (Q)

species, incorporating both diffusion flux (for mobile C only) and chemical reaction. This

system is solved with appropriate boundary conditions, with the help of an analogy be-

tween the present system and one obeying the same evolution equations, but for a particle

confined in a box [20, 21]. Without loss of generality we now focus on the one-dimensional

case; the generalization to two-dimensional confinement is trivial and will be given at the

end of this section.

The boundary conditions suggest to expand the two functions C(x, t) and Q(x, t)

between x = 0 and x = L on a basis of periodic functions with zero derivative in x = 0, L

(no concentration gradient).

C(x, t) = C0 +
∞

∑

n=1

Cn cos
nπx

L
(18)

C0 =
1

L

∫ L

0

C(x, t)dx ; Cn =
2

L

∫ L

0

C(x, t) cos
nπx

L
dx (19)

To obtain F (k, t), we first compute Cn(t) and Qn(t) using equations (16) and (17), together

9



with the initial conditions:

C(x, t = 0) =
Ctot

1 + Kd

δ(x − x0) (20)

Q(x, t = 0) =
CtotKd

1 + Kd

δ(x − x0) (21)

Then we average over the initial conditions (i.e. all x0 between 0 and L). Each harmonic

(n > 1) verifies:

dCn

dt
= − [kdiff, n + k+] Cn + k−Qn (22)

dQn

dt
= k+Cn − k−Qn (23)

where the following diffusion rate constant was introduced:

kdiff, n =
1

τdiff , n

= D
(nπ

L

)2

(24)

The solution of the linear system (22-23) reads:

F (k, t) = A0(kL) +

∞
∑

n=1

(αn,1e
λn,1t + αn,2e

λn,2t)An(kL) (25)

with































































αn,1 =
(kdiff, n − kχ +

√
∆)(kdiff, n + kχ −

√
∆)

4kχ

√
∆

αn,2 =
(kdiff, n + kχ +

√
∆)(−kdiff, n + kχ +

√
∆)

4kχ

√
∆

λn,1 = − 1

τn,1
= −1

2
(kdiff, n + kχ +

√
∆)

λn,2 = − 1

τn,2
= −1

2
(kdiff, n + kχ −

√
∆)

∆ = k2
diff, n + k2

χ + 2

(

Kd − 1

Kd + 1

)

kχkdiff, n

(26)

and for the amplitudes:

A0(kL) = 2
1 − cos kL

(kL)2
(27)

An(kL) =
(2kL)2

[(kL)2 − (nπ)2]2
[1 − (−1)n cos kL]

One can check that the normalization condition F (k, t = 0) = 1 is satisfied (non trivial).

This relies among others on the fact that αn,1 + αn,2 = 1 for each n. Next, we have:

S(k, ω) = A0(kL)πδ(ω) +
∞

∑

n=1

An(kL)

[

αn,1τn,1

1 + (ωτn,1)2
+

αn,2τn,2

1 + (ωτn,2)2

]

(28)
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The first term is an elastic contribution to the structure factor, and it does not cor-

respond to any charge transport; it should not be taken into account in deriving the

frequency dependent conductivity.

Each term of the remaining series reveals two characteristic times, which are a com-

bination of diffusion and reaction rate constants also involving the distribution constant

Kd. The relative weights of each term are a function of only two parameters: the ratio

of the diffusion and reaction constants µ = kχ/kdiff , and the distribution constant Kd.

A discussion of the influence of both parameters is given in Section 3. The terms of the

series decrease very fast with n, due to the n4 in the denominator. We keep only the n = 1

term, and it is easy to verify numerically that the other give a negligible contribution to

the sum, at least for k → 0.

Generalization to a square cage in 2D along x and y is straightforward: the sum

now runs over two indexes m and n, each term being weighted by Am(kxL)An(kyL), and

combining the constants αm,n,1 (αm,n,2) and τm,n,1 (τm,n,2) obtained by replacing kdiff, n by

km,n = kdiff, m + kdiff, n = D(m2 + n2)π2/L2. For the above-mentioned reason, the only

terms (m, n) = (0, 1) and (1, 0) can be retained.

Finally, the contribution in the third dimension (normal to the sheets) is neglected,

since any motion along that direction is supposed to be encompassed in the adsorp-

tion/desorption scheme. This is justified by the small amplitude of this motion with

respect to that along the sheets: the smaller the displacement, the smaller the contribu-

tion to charge fluctuations. When the interlayer distance becomes large, the contribution

of ionic motion normal to the charged surfaces can be important[22], but it is not relevant

here.

2.2 Conductivity σ(ω)

The total dynamic charge structure factor S(k, ω) is now completely specified. Let us

now consider the k → 0 limit in order to obtain the conductivity. The only terms of

interest are (0, 1) and (1, 0) which are identical, and in the considered limit we have

A1(kL) ' 8/π4(kL)2. Averaging over all possible orientations of the sheets introduces a

factor of 2/3, which finally gives:

σ′(ω) =
2

3

8

π4

Nz2

V kBT
L2

[

α1,1τ1,1ω
2

1 + (ωτ1,1)2
+

α1,2τ1,2ω
2

1 + (ωτ1,2)2

]

(29)

Introducing the characteristic diffusion time τdiff = L2/π2D, this can be written as

σ′(ω) =
2

3

8

π2

Nz2D

V kBT
τdiff

[

α1,1τ1,1ω
2

1 + (ωτ1,1)2
+

α1,2τ1,2ω
2

1 + (ωτ1,2)2

]

(30)
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where one recognizes the Nernst-Einstein expression of conductivity σNE = Nz2D/V kBT ,

though it is not completely relevant here. Indeed, the Nernst-Einstein expression is valid

for a solution at infinite dilution and for “infinite” time. Thus the corresponding diffusion

coefficient is not necessarily the same as the “short-time” diffusion coefficient considered

in this model. The 8/π2 factor, close to 1, comes from the truncation of the series;

reporting the amplitudes of all terms of the series on the first one, as usually done in

neutron time of flight (TOF) experiments -retaining only an elastic contribution and a

unique quasi-elastic peak- one would find exactly 1 instead [4].

As already mentioned, only the real part is generally analyzed, while both the real

and imaginary permittivity are interpreted. Therefore, we don’t give here the imaginary

part of the conductivity and now turn to the complex dielectric permittivity.

2.3 Permittivity ε(ω)

Ionic contribution to the permittivity ε = ε′ − iε′′ is obtained through relation (4): taking

the real part, we have

σ′(ω) = σdc + ωε0ε
′′(ω) ' ωε0ε

′′(ω) (31)

in the frequency range considered, since clays are insulating materials. Thus,

ε′′(ω) =
2

3

8

π2

σNEτdiff

ε0

[

α1,1τ1,1ω

1 + (ωτ1,1)2
+

α1,2τ1,2ω

1 + (ωτ1,2)2

]

(32)

The real part can be obtained using Kramers-Kronig relation. Indeed, for a complex

f(ω) = f ′(ω) + if ′′(ω) describing a linear and causal process (such as permittivity) the

following relations hold:

f ′(ω) =
1

π

∫ ∞

−∞

f ′′(ω′)dω′

ω′ − ω
(33)

f ′′(ω) = − 1

π

∫ ∞

−∞

f ′(ω′)dω′

ω′ − ω
(34)

The integrals are to be understood as principal values for the divergence at ω ′ = ω. One

can summarize the results as:

ε(ω) =
2

3

8

π2

σNEτdiff

ε0

[

α1,1

1 + iωτ1,1
+

α1,2

1 + iωτ1,2

]

(35)

with the parameters given in (26) for n = 1.

The total width satisfies ∆ε = 16σNEτdiff/3πε0 because α1,1 +α1,2 = 1. Replacing σNE

and τdiff by their expressions, and using NL/V = 1/l (reciprocal interlayer distance), we

simply have:

∆ε =
16

3π4

z2

ε0kBT
× 1

l
' 40 nm

l
(36)
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∆ε is according to this model of this order of a few tens to a few hundreds (l is of the

order of a few Å), which is verified experimentally. Furthermore, the prediction that ∆ε

should decrease with increasing interlayer spacing (and therefore with increasing water

content) will be shown to be verified experimentally in section 4.

3 Discussion

In practice, one can extract from the BDS spectra the characteristic times (τ1,1 and τ1,2)

and the corresponding relative amplitudes (α1,1 and α1,2). This makes a set of three

independent parameters (because α1,1 + α1,2 = 1). These can be inserted in equations

(26), which are then solved for the three unknowns Kd, kχ and kdiff , or equivalently Kd,

τχ and τdiff . This will be done from experimental data in the section 4. In this section,

we discuss the general form of the expected permittivity in the framework of the present

model, and the influence of the two main parameters (the distribution constant Kd and

the rate ratio µ = kχ/kdiff) on both types of diagrams which are commonly used to analyze

BDS data, namely the Argand and Bode diagrams.

3.1 Analytical results

Permittivity is entirely specified by the two characteristic times τ1,1 = 1/ωHF and τ1,2 =

1/ωLF and the relative amplitudes α1,1 = αHF (α1,2 = αLF is then 1−αHF), the subscripts

referring to high and low frequencies respectively. All three parameters are given by

equations (26), and we now discuss their dependence on Kd and µ.

The equilibrium properties are fixed by the distribution Kd: when adsorption on the

surface is weak, Kd � 1, whereas for strong adsorption Kd � 1. Now for a given Kd, the

ionic dynamics is controlled by the ratio µ = kχ/kdiff. Large values of µ correspond to a

“fast” chemical exchange, i.e. a particular ion can adsorb and desorb many times before

it reaches the next cation, while small µ values correspond to “slow” exchange, i.e a free

ion moves back and forth many times between its neighbors before it eventually adsorbs

onto the surface. Slow and fast exchange give rise to very different dielectric responses.

When the chemical exchange is slow (µ � 1), the two relaxations can be shown to be

characterized by ωHF ' kdiff , with amplitude αHF ' 1/(1 + Kd), and ωLF ' kχ/(1 + Kd),

with amplitude αLF ' Kd/(1 + Kd). Thus, the lower frequency (exchange in that case)

depends on Kd, while the higher frequency (diffusion) doesn’t. Furthermore, the con-

tribution of each mechanism depends on the relative weights of free and fixed species.

For weak adsorption (Kd � 1), only the high frequency relaxation, diffusion in that

case, is observed. For strong adsorption (Kd � 1), only the slow process, i.e. adsorp-

tion/desorption, contributes significantly to the dielectric response. Between these two
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limiting cases, all relative amplitudes can occur.

When the chemical exchange is fast (µ � 1), the characteristics are now: ωHF ' kχ,

with amplitude αHF ' 0, and ωLF ' kdiff/(1 + Kd), with amplitude αLF ' 1. Therefore,

the only observable contribution corresponds to diffusion, but with the diffusion rate (or

equivalently the diffusion coefficient) weighted by the fraction of mobile cations. Fixed

and mobile cations can be thought of in that case as two sides of a single entity, with an

average diffusion coefficient Deff = D/(1 + Kd).

These results, which constitute the main findings of the present article, are now illus-

trated in the two common representations used to analyze BDS data, namely the Argand

and Bode diagrams.

3.2 Argand diagram

The Argand diagram consist in a parametric plot as a function frequency in the (ε′,ε′′)

plane. It is very convenient because a single Debye relaxation process contributing to a

permittivity:

ε(ω) =
∆ε

1 + iωτ
(37)

appears as a semi-circle in this representation, with diameter ∆ε and the frequency at the

point corresponding to the maximum of imaginary part is 1/τ . It is therefore straightfor-

ward to deduce both parameters with this type of diagrams. A distribution of relaxation

time can also be easily extracted from this type of representation, if they are not too

close to each other. The interested reader can refer to the numerous publications on the

subject [23]. We only want to discuss the possibility of extracting several well-defined

characteristic times.

Argand plots of the permittivity, as expected from the present calculations as a func-

tion of µ are represented in figure 2 for Kd = 0.1, 1.0 and 10. ∆ε is independent of Kd

and µ, and was fixed to unity without loss of generality. Lower frequencies are located

to the right side of the figures (close to Re ε = 1), while higher frequencies appear on the

left side. Lines along the log µ axis correspond to the same frequency.

The analytical results just presented are clearly demonstrated: for slow exchange (fore-

ground), two distinct relaxations are observed, whose relative amplitudes depend on Kd:

for weak adsorption, the higher frequency dominates, while in the strong adsorption case,

the lower frequency gives the dominant contribution; for equipartition between mobile

and fixed cations, both processes contribute equally. For fast exchange (background),

only one relaxation is observable. Even for slow exchange, if the distribution constant is

too large (Kd → ∞) or too small (Kd → 0) only the dominant mechanism is observable,

because of the Kd dependence of the relative weights.
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To gain insight in the frequency dependence of the dielectric relaxations, we now turn

to the analysis in terms of Bode diagrams.

3.3 Bode diagram

A Bode diagram consist in a plot of ε′′ (or ε′) as a function of frequency (log ω). It helps to

assign precisely the frequencies corresponding to each relaxation process. Bode diagrams

are represented in figure 3 for Kd = 0.1, 1 and 10. The previous remarks on the slow and

fast exchanges are also obvious from this description.

It is obvious from this representation that the dominant relaxation process depends on

Kd. For increasingly fast exchange, the characteristic frequency reaches a limit, which is

seen to satisfy ωlimτdiff ' 1, 0.5 and 0.1 for Kd = 0.1, 1 and 10, which correspond exactly

to the announced value of 1/(1+Kd). The relaxation is in that case due to diffusion only,

with a diffusion coefficient weighted by the fraction of mobile cations.

For very slow exchange, the higher characteristic frequency is ωHF ' kdiff , whatever

the values of Kd and µ, whereas ωLF is proportional to µ (i.e. kχ), as can be seen from

the slope of 1 in the (log ω,log µ) base plane; the proportionality constant is 1/(1 + Kd),

as can be inferred from the values for µ = 10−2, namely ωLFτdiff ' 10−2, 5.10−3 and

10−3 for Kd = 0.1, 1 and 10 respectively. The dominant relaxation mechanism goes from

diffusion for weak adsorption (Kd � 1), to exchange for strong adsorption (Kd � 1);

for intermediate values of the distribution constant, both mechanisms give a significant

contribution.

4 Experimental determination of Kd and kinetic con-

stants from BDS

In order to test the validity of the present theory, we performed BDS experiments in the

40Hz to 5GHz range on Na-Montmorillonite samples with two different water contents.

4.1 Materials and method

Natural Montmorillonite was obtained by purification of commercial bentonite MX-80.

The size fraction < 2µm was prepared by dispersion of 40g of bentonite in 1L of deion-

ized water, followed by centrifugation at appropriate velocities in order to remove min-

eralogical impurities and redispersed in pH 5 water at 80◦C under stirring for 12h. Na

saturation of the montmorillonite suspension was carried out by dispersing the sediment

in NaCl 10−1 Mol L−1 solution, stirring for 12h (repeated twice), and repeated wash-

ing with deionized water until complete removal of chloride anions is achieved (AgNO3
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tested). Since no anions are present, no cations other than that balancing the struc-

tural charge of the clay sheets can be found in the sample. The resulting sample was

then dried at 80◦C for three days and crushed. The powder is then stored under dry

atmosphere. The structure of the resulting material is, as calculated by Sauzeat et al.

[24], (Si7.96Al0.04)(Al3.1Mg0.56FeIII
0.18FeII

0.16)O20(OH)4Na0.76. The quality of purification was

controlled by X-ray diffraction.

Starting with a dry sample is a crucial point, since the high complexity of the smectite

hydration mechanism renders the reproducibility of the hydration step rather difficult.

Indeed, the final state depends not only on the applied relative humidity (RH), but also

on the initial hydration state. Berend [25, 26] showed that starting from the dry state

(roughly one water molecule per cation), equilibration with an atmosphere of 43% RH

and 85% RH leads mainly to a water monolayer and bilayer respectively. Dry samples

were therefore introduced for 2 weeks in a closed chamber with a given RH, obtained by

equilibration over a saturated solution (K2CO3 for 43% and KCl for 85%). The amounts

of water adsorbed by the samples were controlled by measuring the weight uptake.

The samples are then compacted in pellets with a diameter of 3mm and a thickness

of 1mm, under a pressure of 700MPa. Electrical contact with the measurement cell was

achieved by the presence of a gold sheet (thickness 0.1µm) on both faces of the pellets.

The same cell was used for both low and high frequency measurements. The study of real

and imaginary parts of the complex dielectric permittivity was performed in the frequency

range of 40Hz to 5GHz with two different automatic devices:

- 40Hz to 110MHz: LF impedance analyzer model Hewlett Packard HP4294A

- 45MHz to 5GHz: RF impedance analyzer model Hewlett Packard HP8510

The raw data were subsequently analyzed using a home-made program, and the de-

convolution of the Argand and Bode diagrams lead to the number of relaxation and the

characteristic time and amplitude of each process. As an illustration of the deconvolution

process, figure 4 and 5 show the Argand diagram obtained with the Na-Montmorillonite

sample equilibrated at 43% RH and 85%RH respectively. In 4a (5a), the whole diagram

is shown, but only the slowest relaxation (R1) is visible, because of its much larger ampli-

tude (compared to the others, see table 1). In order to distinguish the other relaxations,

one need proceed to the deconvolution of R1. The three faster relaxations are represented

in 4b (5b), together with the corresponding angular frequencies, and the deconvoluted sig-

nal corresponding to each remaining relaxations (R2, R3 and R4). Note the difference in

scale between 4a (5a) and 4b (5b). Although it is not obvious from figure 4a (5a) because

of the scale used here, the line is a portion of circle. The fact that some deconvoluted

signals overlap (R2 and R3 in figure 4b, R3 and R4 in figure 5b) is related to the quality
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of the deconvolution. This is a source of uncertainty associated with the treatment of the

signal (see section 4.2).

4.2 Results

For each sample (RH 43% and 85%), four relaxations can be observed in the accessible

frequency range, whose characteristics (ωi and ∆εi) are reported in table 1. The slowest

relaxation is attributed to grain polarization [15], while the fastest is attributed to water

reorientation (as for bulk electrolytes), as was explained earlier. Both intermediate relax-

ations are assumed to correspond to the frequencies discussed in the present model. The

validity of this assumption will be questioned in the next section.

The present model has been used to compute the values of the distribution constant

Kd (and the fraction of adsorbed cations Kd/(1 + Kd)), the diffusion relaxation time τdiff

(and the diffusion coefficient D) and the chemical relaxation time. The diffusion coefficient

was calculated from τdiff and the average L value for this clay sample, deduced from the

structural charge density (σS ≈ 0.262 Cm−2) to be L ≈ 8 Å.

The results reveal that the fraction of immobile cation is relatively high (75%) for the

lower RH and decreases with increasing water content, as had already been inferred from

the density profiles obtained by microscopic simulations [27, 28]. Moreover, both diffusion

and reaction are seen to be accelarated by the further hydration, which seems reasonable,

since it is expected to facilitate all ionic movements.

A critical test is the comparison of the deduced diffusion coefficient with that obtained

by molecular dynamics simulations of Na-Montmorillonite with a monolayer or a bilayer of

water. The typical duration simulated in a molecular dynamics run is a little bit shorter

than the nanosecond, but it remains reasonable to make a tentative comparison. The

values of references [27, 28] are also reported in table 2 (Dsim). The diffusion coefficients

deduced from the present model compare relatively good to that obtained by MD simu-

lations. Although both experimental values are lower than the simulated ones, the order

of magnitude is correct, and the variation with water content as well. This indicates that

the present model is at least reasonable. Neutron Scattering Experiments have shown

that the diffusion coefficient of water is overestimated [29] by the simulation results of

references [27, 28]. This might be an indication that finding a lower value than that

obtained from simulation is not entirely due to an underestimate by the present method.

As mentioned above, another possible limitation of the comparison with simulation

results is the short duration of the simulation runs (typically 500ps), while the evaluated

τdiff are of the order of 1ns (see table 2). In particular, there is no hope to compare

the value of τχ with simulations, because the latter cannot be deduced from simulations.

Indeed, the adsorption/desorption events are to rare to be observed in simulations, and
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consequently no valuable dynamic information on the exchange process can be accessed

by simulations. Furthermore, it is difficult to determine quantitatively the fraction of

adsorbed cations (or Kd) from simulations, because the counter-ion profile is continuous,

and the partition between free and bound cations is somewhat arbitrary. Such an issue is

commonly encountered in the context of ionic association in bulk electrolytes[30]. There-

fore, we restrict our comparison to the qualitative behavior of the profile upon increasing

the water content, which was said to be in agreement with simulations.

It is difficult to provide a quantitative estimate of the uncertainty affecting the values

given in table 2. It arises from a combination of three factors: (1) experimental uncer-

tainty, directly related to the measurements, (2) uncertainty arising from signal processing

(deconvolution), namely in assigning the values of α1,1, τ1,1 and τ1,2, (3) the uncertainty

on these three values is transfered on the values of Kd, D and τχ. The experimental

uncertainty is expected to be small compared to that arising from the deconvolution, and

is neglected. The latter is estimated to be of the order of 10 to 20% for τ1,1 and τ1,2,

but much larger for the relative weights (α1,1), of the order of 50%. The fact that some

deconvoluted signals overlap in figures 4b and 5b reflects that uncertainty. Interestingly,

the transfer of these uncertainties to the values of Kd, D and τχ plays in our favor, be-

cause the latter are less affected by errors on α1,1 than on τ1,1 and τ1,2. This is due to the

particular analytical form of equations (26). A quantitative estimate is rather difficult,

but an upper bound would be of the order of 50%, which means that we can be confident

about the order of magnitude. As a comparison, the estimated error on the diffusion

coefficient obtained by MD simulations is of the order of 10 to 15%[31].

4.3 Discussion

The values of Kd, D and τχ, as extracted from the present model, as well are their

evolution with water content, seem to be reasonable. Therefore, there is a hope that it

provides relevant information on the microscopic dynamics of the ion in the interlayer.

However, there are a number of limitations in the confidence that we can give to these

results, which we now want to address.

First, as was already mentioned the present model is relevant for homoionic clays only,

since a mixture of ions would introduce even more uncertainty in the assignement of the

various relaxations.

Second, all the above results are related only to the interlayer contribution. In order

to be able to compare the present theory to experiments, one would need to average the

interlayer contribution with that of the clay sheets, which can be in this frequency region

considered as frequency independent and small: it arises from the from atomic vibrations

and electronic polarization, at much higher frequencies (IR and UV), and the value of the
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corresponding ε∞ is less than a few units, as can be inferred from the limit value of ε for

the BDS experiments. Therefore, we neglect the contribution of the sheets, and the value

of the average permittivity of the sample is just that of the interlayer. This neglect might

induce some deviations from the real situation.

More problematic is the contribution of cations located in the mesopores: if the latter

are “empty” (i.e. are free of water), their contribution to the permittivity is that of

vacuum, and is thus negligible. If they contain water (and that is the case), at least water

adsorbed on their surface, the situation is not clear at all: this water solvates the cations

facing the pores, and they can participate significantly to the overall charge fluctuations.

A condition for this contribution to be negligible as well is that the number of such cations

is much lower than that located in the interlayer galleries, which amounts to assuming

that the clay stacks involve many sheets, i.e. assuming a high degree of crystallinity.

Measurements on better defined clays, such as synthetic fluorohectorites, might give

useful information to address this point. First experimental investigations on such clays,

which are better defined in terms of layer charge density, particle size and hydration

states[32], suggest that the prediction that ∆ε decreases with increasing water content

(see section 2.3) is also verified in that case. This would give further credit to the present

model, despite its great simplicity. Further experimental investigations will be presented

elsewhere, since the purpose of the present article is more to lay out the theoretical model

used to analyze the experimental data. A study with more relative humidities would also

be helpful. Indeed, while for the first hydration stages the swelling of the interlayer occurs

stepwise, the pore filling by water is continuous, so that a qualitative difference should be

observable for the two types of cations with varying RH.

Another point that we want to underline is that we did not take the distribution of

relaxation times into account. We have deconvoluted the experimental signal assuming a

discrete sum of Debye relaxations, whereas a better way to proceed would be to fit the

dielectric response to a sum of so-called Cole-Cole relaxations. Briefly, it introduces an

additional parameter α characterizing the width of the frequency dispersion around each

relaxation frequency. An improvement of the model would be to account for the possibility

of a non-zero width around each relaxation frequency. Two sources of a distribution of

relaxation times could be found in inhomogeneities in the layer charge distribution and in

inter-stratification i.e. simultaneous presence of mono- and bilayers, which are two known

features of Montmorillonite clays [26].

Finally, we have interpreted the data assuming that both intermediate relaxations

were due to the interlayer cations; however, we have shown that if the chemical exchange

is too fast, or if the distribution constant is too extreme (Kd → 0 or Kd → ∞), only one

relaxation is visible. Therefore, our treatment assumes a priori that the exchange is not

19



too fast, and that the equilibrium between fixed and mobile cations is not too displaced

on either side. If only one relaxation is attributed to the cations, then the question of the

assignement of the other observed one is raised.

With all these caveat in mind, we nevertheless wish to underline the innovative charac-

ter of the present theory. To our knowledge, it is the first attempt to extract microscopic

information on ion dynamics in the interlayer gallery of compacted clay sample from

broadband dielectric spectroscopy in the MHz to GHZ range. Despite its simplicity, the

model accounts for the two possible modes of solvation (inner/outer sphere complexes),

and suggest a simple experimental determination of all characteristics of the chemical

exchange between both forms: both thermodynamic (distribution constant Kd) and dy-

namic (chemical relaxation rate kχ and diffusion coefficient D) parameters can be assigned

independently in a single experiment. Not many other techniques can pretend to provide

such informations, either because the relevant timescale not accessible to other spectro-

scopies (UV, IR, QENS), or because specific technical limitations prevent their use for

compacted clays at low water content (NQR). The advantage of BDS is that it covers a

large frequency range, and therefore provides information on dynamics over various time

and space scales, which is necessary for multi-scale materials such as clays.

5 Conclusion

The ionic contribution to the complex permittivity, in the MHz-GHz range, of compacted

clay at low relative humidity, was analytically calculated from a simple two-state model,

which accounts for the two possible solvation modes of the compensating cations in the

clay interlayer gallery, and for the possible chemical exchange between these two forms.

The local ionic dynamics was decorrelated from that (faster) of water, and that (slower)

of collective ionic dynamics (giving rise to grain polarization). Based on this separation

of timescale, the electric conductivity and dielectric permittivity were related to the ionic

dynamic structure factor, and evaluated analytically.

The influence of the relative rates of diffusion and exchange on the one hand, and of

the distribution constant Kd between fixed and mobile cations on the other hand, on the

Argand and Bode diagrams -commonly used to analyze BDS data- was discussed. For

slow exchange, the dominant mechanism is diffusion for weak adsorption, and exchange

for strong adsorption; for intermediate values of Kd, both mechanisms give a significant

contribution. For fast exchange, the only observable relaxation is due to diffusion, with a

diffusion coefficient weighted by the fraction of mobile cations.

A method was suggested to extract both thermodynamic (Kd) and dynamic (diffusion

coefficient D and chemical relaxation rate kχ) informations from experimental data. This
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method was applied to experiments performed on Na-Montmorillonite at two relative

humidities, and the results suggests that despite its simplicity, and the various limitations

that were discussed, the present model may provide reasonable information on the local

ionic dynamics.
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[26] J.M. Cases, I. Bérend, M. Francois, J.P. Uriot, F. Thomas, J. E.

Poirier, Langmuir 8, 2730 (1992).

[27] V. Marry, P. Turq, T. Cartailler, D. Levesque, J. Chem. Phys. 117, 3454

(2002).

[28] V. Marry,P. Turq, J. Phys. Chem. B 107, 1832 (2003).
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Figure 1: Schematic representation of the microscopic two-state model: in the interlayer

spacing, cations can either be fixed (Q) or diffusing along the sheets (C). A particular ion

exchanges between both states with rate constants k+ (adsorption) and k− (desorption).

The distribution constant between fixed and mobile cations is simply Kd = k+/k−.

RH ωi (rd.s−1) ∆εi

43%

2.3 103 2.9 105

2.6 107 74

7.0 108 19

3.5 109 3

85%

2.8 104 5.0 105

1.6 108 49

1.5 109 17

1.8 1010 6

Table 1: Experimental relaxation frequencies and amplitudes for Na-Montmorillonite

equilibrated at 43% and 85% relative humidity.

RH Kd % adsorbed τdiff (ns) τχ (ns) D (m2s−1) Dsim (m2s−1)

43% 2.8 75 1.6 8.8 4.10−11 7.10−11

85% 1.4 60 0.8 2.1 8.10−11 6.10−10

Table 2: Parameters deduced from the present model for Na-Montmorillonite equilibrated

at 43% and 85% relative humidity. D is obtained from τdiff and the mean inter-ionic

distance L (see text). The diffusion coefficients obtained by simulation are reported from

references [27, 28].
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(b)    Kd  =  1.0
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(c)    Kd  =  10

0 0.2 0.4 0.6 0.8 1
Re ε

 −2
 −1

 0
 1

 2

log µ
0

0.1

0.2

0.3

0.4

0.5
Im ε

Figure 2: Argand diagrams for Kd = 0.1 (a), 1.0 (b) and 10 (c). For slow exchange

(µ � 1), two relaxations are visible, whose relative weights depend on Kd (see text).

For fast exchange (µ � 1), a single relaxation is observed. Lines along the log µ axis

correspond to isofrequency curves.
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(b)    Kd  =  1.0
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(c)    Kd  =  10
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Figure 3: Bode diagrams for Kd = 0.1 (a), 1.0 (b) and 10 (c). For slow exchange (µ � 1),

the dominant mechanism is diffusion for weak adsorption (a), and exchange for strong

adsorption (c); for intermediate values of the distribution constant, both mechanisms give

a significant contribution (b). For fast exchange (µ � 1), the relaxation is due to diffusion

only, with a diffusion coefficient weighted by the fraction of mobile cations (see text).
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Figure 4: Experimental Argand diagram (crosses) obtained with Na-Montmorillonite at

43% relative humidity, and deconvoluted signal for the four relaxations (lines). The whole

diagram is presented in (a), but only the first relaxation R1, which corresponds to lower

frequencies, is visible. In (b), the experimental signal is shown after deconvolution of R1

(note the difference in scale); the contribution of the three remaining relaxations is given,

together with the corresponding angular frequencies (in rd.s−1). The parameters of the

deconvolution are summarized in table 1.
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Figure 5: Same as figure 4 for Na-Montmorillonite at 85% relative humidity. The param-

eters of the deconvolution are summarized in table 1.
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