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Determinants related to binomial coefficients

modulo 2 and 4

Roland Bacher

Abstract: We study a few determinants related to reductions modulo 2
and 4 of binomial and q−binomial coefficients evaluated at q = 1,−1 and

i.1

1 Introduction

The main results of this paper are computations of a few determinants re-
lated to binomial coefficients. The most interesting example, discovered
after browsing through [5], is obtained by considering binomial coefficients
modulo 4. We include related results contained in [2] and [3].

The next section recalls mostly well-known facts concerning binomial
and q−binomial coefficients and states the main results. It contains also a
(new?) formula for evaluating q−binomials coefficients at roots of unity.

Section 3 describes the algebra of recurrence matrices which is a conve-
nient tool for proofs.

Section 4 proves formulae for the determinant of the reduction modulo
2 of the symmetric Pascal matrix (already contained in [2]) and of a deter-
minant related to the 2−valuation of the binomial coefficients (essentially
contained in [3]).

Section 5 is devoted to the proof of the main result, a determinant as-
sociated to the “Beeblebrox reduction” (defined as β(n) = 0 if n ∈ 2Z and
β(n) = ±1 ≡ n (mod 4) for odd n) of binomial coefficients. It contains also
a digression on the “lower triangular Beeblebrox matrix” and an associated
group.

Section 6 contains a proof of a (new?) formula for evaluating q−binomial
coefficients at roots of unity. This formula yields easily some determinants
associated to the reduction modulo 2 and the Beeblebrox reduction of (real
and imaginary parts) of q−binomial coefficients evaluated at q = −1 and
q = i.

1Math. Class: 05A10,05A30,11B65,11B85,15-99 Keywords: binomial coefficient,

q−binomial coefficient, determinant, recurrence matrix
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2 Main results

2.1 Reductions modulo 2

Let P (n) be the integral symmetric n × n matrix with coefficients Ps,t ∈
{0, 1}, 0 ≤ s, t < n defined by

Ps,t ≡

(

s+ t

s

)

(mod 2)

where
(

s+t
s

)

= (s+t)!
s! t! denotes the usual binomial coefficient involved in the

expansion (x+ y)n =
∑n

k=0

(

n
k

)

xkyn−k.

The evaluation
(s+t

s

)

(mod 2) can be computed using a Theorem of Lu-
cas (see [9], page 52) which yields the equality

(

n

k

)

≡
∏

j=0

(

νj

κj

)

(mod p)

where p is an arbitrary prime number and where n =
∑

j=0 νjp
j, k =

∑

j=0 κjp
j with νj, κj ∈ {0, 1, . . . , p−1}. Another formula (due to Kummer)

for
(n
k

)

(mod 2) will be presented in Section 2.2 below.
Let ds(n) =

∑

j=0 νj ∈ N denote the digit-sum of a natural integer with

binary expansion n =
∑

j=0 νj2
j , ν0, ν1, · · · ∈ {0, 1}.

Theorem 2.1. We have

det(P (2n)) = (−1)n

and
det(P (2n + 1)) = (−1)n+ds(n) .

Remark 2.2. The infinite symmetric integral matrix P̃ with coefficients
P̃s,t =

(s+t
s

)

given by the binomial coefficients is sometimes called the Fermat

matrix. The trivial identities
∑

k=0

(

s
k

)(

t
k

)

=
∑

k=0

(

s
k

)(

t
t−k

)

=
(

s+t
t

)

show

det(P̃ (n)) = 1 where P̃ (n) is the symmetric n×n submatrix with coefficients
(s+t

s

)

, 0 ≤ s, t < n of P̃ .

2.2 2−valuations

We denote by v2 : Q∗ −→ N the 2−valuation of a rational number. We
have thus α = 2−v2(α) n

m with odd n,m ∈ Z for α ∈ Q. Let V (n) be the
symmetric n× n matrix with coefficients Vs,t ∈ {±1,±i} given by

Vs,t = iv2((s+t
s )), 0 ≤ s, t < n .

The p−valuation vp(
(s+t

s

)

) of a binomial coefficient can be computed

using a Theorem of Kummer stating that vp(
(

s+t
s

)

) equals the number of
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carries occuring during the addition of the integers s =
∑

j=0 σjp
j and

t =
∑

j=0 τjp
j (with σj , τj ∈ {0, 1, . . . , p − 1}), written in base p. More

precisely, Kummer deduces the formula

vp(

(

s+ t

s

)

) =
1

p− 1

∑

j=0

(σj + τj − uj)

(see [8], page 116) where s =
∑

j=0 σjp
j, t =

∑

j=0 τjp
j , s + t =

∑

j=0 ujp
j

(with σj , τj, uj ∈ {0, 1, . . . , p− 1}) from the identity

vp(x!) =
1

p− 1



x−
∑

j=0

ξjp
j





(see Lehrsatz, page 115 of [8]) where x =
∑

j=0 ξjp
j ∈ N with ξj ∈ {0, 1, . . . , p−

1} and where p is a prime number.
In order to state the next result, we need the regular folding sequence

f : {1, 2, . . . } −→ {±1} defined recursively by f(2n) = 1 and f(2n + a) =
−f(2n − a) for 1 ≤ a < 2n, see [1].

Theorem 2.3. We have

det(V (2n)) = (−1)n
2n−1
∏

k=1

(1 − f(k)i) ∈ Z[i]

and

det(V (2n + 1)) = (−1)n+ds(n)
2n
∏

k=1

(1 − f(k)i) ∈ Z[i]

(with ds(
∑

j=0 νj2
j) =

∑

j=0 νj denoting the binary digit-sum).

Remark 2.4. The paper [3] deals with the Hankel matrix H defined by
Hs,t = iv2(s+t), 0 ≤ s, t related by H = DVD to the complex conjugate V of
the matrix V involved in Theorem 2.3 where D is the diagonal matrix with
diagonal entries ids(0), ids(1), ids(2), . . . .

Let us also mention that slight extensions of the computations occuring in
our proof of Theorem 2.3 establish the existence of nice continued J−fraction
expansions for the formal power series (cf. [3])

∞
∏

k=0

(1 + ix2k
) ,

1

x

(

1 + i

2
+

1 − x

i− 1

∞
∏

k=0

(1 + ix2k
)

)

,

1

x2

(

1 + i

2
+
i− 1

2
x+

1 − x2

i− 1

∞
∏

k=0

(1 + ix2k
)

)

.
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2.3 Beeblebrox reduction

The idea (and the “Beeblebrox” terminology) of considering the “Beeblebrox
reduction” of binomial coefficients are due to Granville, see [5] and [6].

We define the “Beeblebrox reduction” as the multiplicative map β : Z −→
{0,±1} given by

β(x) =







0 if x ≡ 0 (mod 2)
1 if x ≡ 1 (mod 4)
−1 if x ≡ 3 (mod 4)

or equivalently by β(2Z) = 0, β(4Z ± 1) = ±1.
The following result allows fast computations of β(

(n
k

)

).

Theorem 2.5. We have

β(
(2n
2k

)

) = β(
(n

k

)

)

β(
( 2n
2k+1

)

) = 0

β(
(2n+1

2k

)

) = (−1)k β(
(n

k

)

)

β(
(2n+1
2k+1

)

) = (−1)n(k+1) β(
(n

k

)

)

We denote by Z(n) (where the letter Z stands for Zaphod Beeblebrox,
following the amusing terminology of [5] and [6]) the symmetric Beeblebrox
matrix of size n× n with coefficients Zs,t ∈ {−1, 0, 1} for 0 ≤ s, t < n given
by the Beeblebrox reduction Zs,t = β(

(s+t
s

)

) of binomial coefficients.
Define f : N −→ ±3Z by f(0) = 1, f(1) = −1 and recursively by

f(2a + b) =

{

3f(b) if 2b < 2a

1
3f(b) otherwise

for n = 2a + b ≥ 2 where 0 ≤ b < 2a.

Theorem 2.6. We have

det(Z(n)) =
n−1
∏

k=0

f(k) ∈ ±3N .

Remark 2.7. One has the equality

f(n) = (−1)n3e1(n) , n ∈ N

for e1, e2, e3 : N −→ Z recursively given by e1(0) = e2(0) = 0, e3(0) = 1 and

e1(2n) = e2(n) e1(2n + 1) = (2e1 − e2)(n)
e2(2n) = e2(n) e2(2n + 1) = e3(n)
e3(2n) = (−2e1 + 2e2 + e3)(n) e3(2n + 1) = (2e1 − e2)(n)

for n > 0.
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2.4 q−binomials

The expansion (x + y)n =
∑n

k=0

(n
k

)

q
xkyn−k involving two non-commuting

variables x, y related by yx = qxy where q is a central variable defines the
q−binomials coefficients

(

n

k

)

q

=

∏n
j=1(1 − qj)

(

∏k
j=1(1 − qj)

)(

∏n−k
j=1 (1 − qj)

) ∈ N[q] .

An ordinary binary coefficient
(s+t

s

)

can be identified with the number of
lattice paths with steps (1, 0) and (0,−1) starting at (0, s) and ending at
(t, 0). Similarly, the coefficient of qc in the q−binomial

(s+t
s

)

q
counts the

number of such paths delimiting a polygon of area c in the first quadrant
{(x, y) ∈ R2 | x, y ≥ 0}.

Reflecting all paths contributing to
(

s+t
s

)

q
with respect to the diagonal

line x = y yields the equality
(

s+ t

s

)

q

=

(

s+ t

t

)

q

.

Rotating all paths contributing to
(s+t

s

)

q
by a half-turn centered on

1
2(t, s) shows the identity

(

s+ t

s

)

q

= qst

(

s+ t

s

)

q−1

.

Partitioning all paths contributing to
(s+t

s

)

q
accordingly to the nature of

their first step (horizontal or vertical) shows the recursive formula
(

s+ t

s

)

q

= qs

(

s+ t− 1

s

)

q

+

(

s+ t− 1

s− 1

)

q

or equivalently
(n
k

)

q
= qk

(n−1
k

)

q
+
(n−1
k−1

)

q
which is the q−version of the

celebrated recurrence relation
(n
k

)

=
(n−1

k

)

+
(n−1
k−1

)

for ordinary binomial
coefficients.

Cutting all lattice paths γ contributing to
(s+t

s

)

q
along the line s = t in

two lattice paths shows the formula

∑

k

qk2

(

s

k

)

q

(

t

k

)

q

=

(

s+ t

s

)

q

where k ∈ {0, 1, . . . ,min(s, t)}. This identity amounts to the matrix iden-
tity Pq = LqDqL

t
q where Pq is the infinite symmetric matrix with coef-

ficients
(s+t

s

)

q
, 0 ≤ s, t, where Lq is the lower triangular unipotent ma-

trix with coefficients
(

s
t

)

q
, 0 ≤ s, t and where Dq is diagonal with diag-

onal coefficients 1, q, q4, q9, q16, q25, . . . . Denoting by Pq(n) the submatrix
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(

s+t
s

)

q
, 0 ≤ s, t < n formed by the first n rows and columns of Pq we

have the identity det(Pq(n)) = q
∑n−1

j=0
j2

which specialises to the identity
det(P1(n)) = 1 of Remark 2.2.

The following result which I have been unable to locate in the literature
is somewhat analogous to the formula

(

a

b

)

≡

(

⌊a/p⌋

⌊b/p⌋

) (

a (mod p)

b (mod p)

)

(mod p)

(where p is a prime number and where a (mod p), b (mod p) ∈ {0, 1, . . . , p−
1}) due to Lucas (see [9] and Section 2.1. It shows that the evaluation of
q−binomial coefficients at roots of 1 reduces essentially to evaluations of
ordinary binomial coefficients.

Theorem 2.8. If ω = e2iπk/n is a primitive n−th root of 1 (ie. (k, n) = 1
with k ∈ Z and n ∈ N) then

(

a

b

)

ω

=

(

⌊a/n⌋

⌊b/n⌋

)

1

(

a (mod n)

b (mod n)

)

ω

for all a, b ∈ N where a (mod n), b (mod n) ∈ {0, 1, . . . , n− 1}.

This Theorem can be used to obtain formulae for determinants of the
symmetric matrices obtained by considering the reduction modulo 2 or the
Beeblebrox reduction of (the real and imaginary part of)

(

s+t
s

)

q
, 0 ≤ s, t < n

evaluated at q = −1 and q = i.

3 The algebra of recurrence matrices

Recurrence matrices, introduced in [3], are a convenient tool for proving
our main results. Recurrence matrices are closely related to rational for-
mal power series in free non-commutative variables and can be considered
as generalisations of finite state automata or of iterated tensor products.
They arise also naturally in the context of “automata groups”, a notion
generalising a famous group of Grigorchuk, see [7]. The following exposition
is limited to the strictly necessary technicalities for our purpose. Gener-
alisations (e.g. by replacing the field of complex numbers by an arbitrary
commutative field or by considering sequences of square matrices of size
kn ×kn, n ∈ N for k ∈ {1, 2, 3, . . . }) are fairly straightforward and contained
in [3] or with more details in the draft [4].

3.1 Recurrence matrices

Consider the vector space

A =

∞
∏

n=0

M2n×2n(C)
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whose elements are sequences A = A[0], A[1], A[2], . . . withA[n] ∈M2n×2n(C)
denoting a complex square matrix of size 2n × 2n. The obvious product

AB = A[0]B[0], A[1]B[1], A[2]B[2], . . .

turns A into an associative algebra. Denoting by

ρ(0, 0)A, ρ(0, 1)A, ρ(1, 0)A, ρ(1, 1)A ∈ A

the four “corners” of

A = A[0],

(

(ρ(0, 0)A)[0] (ρ(0, 1)A)[0]
(ρ(1, 0)A)[0] (ρ(1, 1)A)[0]

)

,

(

(ρ(0, 0)A)[1] (ρ(0, 1)A)[1]
(ρ(1, 0)A)[1] (ρ(1, 1)A)[1]

)

, . . .

obtained (after deletion of the 1 × 1 matrix A[0]) by considering for all
n ≥ 1 the 2n−1 × 2n−1 submatrix defined by the first or last 2n−1 rows
and by the first or last 2n−1 columns of A[n] we get four linear endomor-
phisms ρ(s, t), 0 ≤ s, t ≤ 1 of the vector space A. The endomorphisms
ρ(s, t) ∈ End(A) are called shift maps. Using a hopefully suggestive syn-
thetic notation, an element A ∈ A can thus be written as

A = A[0],

(

ρ(0, 0)A ρ(0, 1)A
ρ(1, 0)A ρ(1, 1)A

)

with A[0] ∈ C and ρ(0, 0)A, ρ(0, 1)A, ρ(1, 0)A, ρ(1, 1)A ∈ A.
Definition A subspace V ⊂ A is recursively closed if ρ(s, t)V ⊂ V for all

four shift maps ρ(0, 0), ρ(0, 1), ρ(1, 0), ρ(1, 1).
The recursive closure A of an element A ∈ A is the intersection of all

recursively closed subspaces containing A. The complexity of A ∈ A is the
dimension dim(A) ∈ N ∪ {∞} of the recursive closure A ⊂ A.

An element A ∈ A is a recurrence matrix if its recursive closure A is of
finite dimension. We denote by R ⊂ A the subset of all recurrence matrices.

Proposition 3.1. (i) We have dim(λA) = dim(A) for all λ ∈ C∗ and for
all A ∈ A.

(ii) We have dim(A+B) ≤ dim(A) + dim(B) for all A,B ∈ A.
(iii) We have dim(AB) ≤ dim(A) dim(B) for all A,B ∈ A.

Proof (i) and (ii) are obvious.
Denoting by ΣA B = {

∑

XiYi |Xi ∈ A,Yi ∈ B} the vector space
spanned by all products XY, X ∈ A,Y ∈ B, we have AB ∈ ΣA B.

For

XY = (X[0]Y [0]),

(

ρ(0, 0)(XY ) ρ(0, 1)(XY )
ρ(1, 0)(XY ) ρ(1, 1)(XY )

)

∈ ΣA B

7



with X ∈ A,Y ∈ B, the computation

ρ(0, 0)(XY ) = (ρ(0, 0)X)(ρ(0, 0)Y ) + (ρ(0, 1)X)(ρ(1, 0)Y )
ρ(0, 1)(XY ) = (ρ(0, 0)X)(ρ(0, 1)Y ) + (ρ(0, 1)X)(ρ(1, 1)Y )
ρ(1, 0)(XY ) = (ρ(1, 0)X)(ρ(0, 0)Y ) + (ρ(1, 1)X)(ρ(1, 0)Y )
ρ(1, 1)(XY ) = (ρ(1, 0)X)(ρ(0, 1)Y ) + (ρ(1, 1)X)(ρ(1, 1)Y )

shows thatXY ∈ ΣA B is recursively closed of dimension ≤ dim(A) dim(B).
The obvious inclusion AB ⊂ ΣA B implies now assertion (iii). 2

Corollary 3.2. The set R of recurrence matrices is a subalgebra of A.

3.2 Presentations

SettingXs,tA = ρ(s, t)A for 0 ≤ s, t ≤ 1, the shift maps ρ(s, t) ∈ End(A), 0 ≤
s, t ≤ 1 define a representation of the free non-commutative monoid {X0,0,X0,1,X1,0,X1,1}

∗

in four generators X0,0,X0,1,X1,0,X1,1 on the vector space A. Restrictions
to recursively closed subspaces V ⊂ A yield subrepresentations. In particu-
lar, a recurrence matrix A is completely determined by the description of the
action of the four generating shift maps ρ(s, t), 0 ≤ s, t ≤ 1 on A together
with the linear augmentation map X 7−→ X[0] ∈ C for X ∈ A.

Remark 3.3. The above action (recursively defined by

(Xs1,j1Xs2,t2 · · ·Xsl,tl)A = (Xs1,j1Xs2,t2 · · ·Xsl−1,tl−1
)(ρ(sl, tl)A) , )

associates an element A ∈ A bijectively with a formal power series
∑

X∈{X0,0,X0,1,X1,0,X1,1}∗

((XA)[0])X ∈ C〈〈X0,0,X0,1,X1,0,X1,1〉〉

in four free non-commuting variables X0,0,X0,1,X1,0,X1,1. Recursive ma-
trices correspond under this bijection to rational formal power series in
C〈〈X0,0,X0,1,X1,0,X1,1〉〉.

The recursive closure A of A ∈ A corresponds to the linear span of
XA, X ∈ {X0,0,X0,1,X1,0,X1,1}

∗.

3.3 Recursive presentations

In the sequel of this paper we use recursive presentations in order to de-
scribe a recurrence matrix A ∈ R. A recursive presentation of A ∈ A is
given by choosing a basis A1 = A, . . . , Aa of A (or more generally of any
finite-dimensional recursively closed vector space containing A) and by the
recursive identities for Aj, 1 ≤ j ≤ a given by

Aj [0] ∈ C,

(

ρ(0, 0)Aj =
∑a

k=1 ρ(0, 0)k,jAk ρ(0, 1)Aj =
∑a

k=1 ρ(0, 1)k,jAk

ρ(1, 0)Aj =
∑a

k=1 ρ(1, 0)k,jAk ρ(1, 1)Aj =
∑a

k=1 ρ(1, 1)k,jAk

)

which define A1, . . . , Aa ∈ R uniquely.
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3.4 Saturation level

Given an element A = A[0], A[1], A[2], · · · ∈ A, we denote by πl(A) = A[l]
the projection of A onto its square matrix of size 2l × 2l. Similarly,

π≤l(A) = π0(A), π1(A), . . . , πl(A) = A[0], A[1], . . . , A[l] ∈ ⊕l
j=0M2j×2j (C)

denotes the projection of the sequence A onto its first l + 1 matrices.
The saturation level of a finite dimensional subspace V ⊂ A is the small-

est integer N ∈ N such that K≤N (V) = K≤N+1(V) where K≤l(V) ⊂ V is the
kernel of the projection π≤l : V −→ ⊕l

j=0M2j×2j .

Proposition 3.4. We have K≤N (V) = {0} for the saturation level N of a
finite-dimensional subspace V ⊂ A which is recursively closed.

In particular, π≤N : V −→ ⊕N
j=0M2j×2j is injective.

Proof The obvious inclusion ρ(s, t)K≤l+1(V) ⊂ K≤l(V) implies that
K≤N (V) = K≤N+1(V) ⊂ V is recursively closed. Since the restriction
to K≤N+1(V) of the augmentation map π0 : A −→ C is obviously triv-
ial, we have (XK)[0] = 0 for all X ∈ {X0,0,X0,1,X1,0,X1,1}

∗ and for all
K ∈ K≤N (V). This shows K≤N (V) = {0}. 2

Proposition 3.4 enables us to do effective computations in the algebra
R of recurrence matrices: It allows to extract a basis from a finite (lin-
early dependent) generating set S spanning a recursively closed vector space
V ⊂ R. Similarly, given an element A ∈ V with V recursively closed given
by a finite generating set, it allows the construction of a basis for A. For ele-
ments A,B ∈ R described by (recursive) presentations with respect to bases
A1, . . . , Aa and B1, . . . , Bb of A and B, it allows the algorithmic construc-
tion of bases of the recursively closed vector spaces A±B, respectively AB,
since they are included in the recursively closed vector spaces spanned by
A ± B,A1, . . . , Aa, B1, . . . , Bb, respectively AB,AiBj , 1 ≤ i ≤ a, 1 ≤ j ≤ b
which contain A±B, respectively AB.

Moreover, identities in R can be proven by finite computations: proving
for example the identity AB = C (with suitable A,B,C ∈ R given by
finite presentations) boils down to the computation of the saturation level
N of the vector space AB + C followed by the verification of the identity
π≤N (A)π≤N (B) = π≤N (C) in the finite-dimensional quotient π≤N (A) of the
algebra A.

Remark 3.5. Determining the inversibility (in R) of a recursive matrix A
seems to be a difficult problem which has perhaps no algorithmic solution:
The element

1,

(

1
ω 1

)

,









1
ω 1
0 ω 1
0 0 ω 1









, · · · ∈ R
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consisting of lower triangular unipotent matrices with constant subdiagonal
ω ∈ C∗ has complexity 2. It is invertible in the algebra R for ω = e2iπ/N

(with N ∈ N) a root of unity. The complexity of the inverse A−1 ∈ R
depends on N (for ω = e2iπ/N ) and tends to infinity if N −→ ∞.

Concretely, determining the inversibility of an element A ∈ R amounts
to guessing a (recursive) presentation of B = A−1 using a finite number of
matrices A[0]−1, A[1]−1, A[2]−1, . . . followed by a proof of the identity AB =
1 (which is easy for the correct guess or indicates a wrong guess in case of
failure).

3.5 The LU decomposition of a convergent non-singular ele-

ment in R

An element P ∈ A such that P = ρ(0, 0)P is called convergent. It is given
by considering the sequence

P0,0,

(

P0,0 P0,1

P1,0 P1,1

)

,









P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3









, . . .

of all square submatrices formed by the first 2j rows and columns (for j =
0, 1, . . . ) of an infinite “limit”matrix







P0,0 P0,1 P0,2 . . .
P1,0 P1,1 P1,2 . . .

...






.

Henceforth we denote generally a convergent element in A and the associated
infinite matrix by the same letter. This should not lead to confusions except
in cases where both interpretations are correct.

We call an infinite matrix P non-singular if the k×k square matrix P (k)
formed by its first k rows and columns has non-zero determinant for all k ≥ 1.
Such a non-singular matrix P has an LU−decomposition: It can be written
as P = LU with L lower triangular unipotent (1’s on the diagonal) and U
upper triangular non-singular. The identity P = LU implies the equality
det(P (k)) = det(U(k)) for all k ≥ 1 and gives rise to an LU−decomposition
in A by considering as above for j = 0, 1, 2, . . . the submatrices formed by
the first 2j rows and columns of of P,L and U . If P is symmetric we have
moreover U = DLt where D is diagonal non-singular and Lt is obtained by
transposing the matrix L.

All proofs of the results presented in Section 2 boil down to LU−decompositions
with P = P t = LU,L,U = DLt ∈ R.
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4 Modulo 2 and 2−valuations

Proof of Theorem 2.1 The infinite symmetric Pascal matrix P with coef-

ficients
(

(i+j
i

)

(mod 2)
)

∈ {0, 1} for 0 ≤ i, j) defines a convergent element

(still denoted) P ∈ A. It follows from Lucas’s formula (see Section 2.1) that
P is a recurrence matrix of complexity 1 recursively presented by

P = 1,

(

P P
P

)

(zero-entries are omitted). The recurrence matrix P ∈ R has an LU decom-
position in R given by the equality P = LDLt with L,D ∈ R of complexity
1 defined by the recursive presentations

L = 1,

(

L
L L

)

and D = 1,

(

D
−D

)

where L is lower triangular unipotent and D is diagonal. An easy analysis
of the coefficients of the diagonal recurrence matrix D ends the proof. 2

Remark 4.1. The convergent lower triangular recurrence matrix L and the
convergent diagonal recurrence matrix D correspond to the infinite limit-

matrices (still denoted) L,D with coefficients given by Li,j =
(

(i+j
i

)

(mod 2)
)

∈

{0, 1} (for 0 ≤ i, j) and Dn,n = (−1)ν0+ν1+ν2+... = (−1)ds(n) where n =
∑

j=0 νj2
j ≥ 0 is a binary integer.

Remark 4.2. Recurrence matrices of complexity 1 are of the form

λ, λM,λ M ⊗M,λM ⊗M ⊗M, . . .

where λ ∈ C and where M is a complex 2 × 2 matrix.
It follows that the matrices L and D (and thus also P = LDLt) involved

in the proof of Theorem 2.1 are invertible in R. The recurrence matrix
D is its own inverse. The inverse L−1 of L is recursively presented by

L−1 = 1,

(

L−1

−L−1 L−1

)

.

Proof of Theorem 2.3 The infinite matrix V with with coefficients

Vs,t = iv2((s+t
s )) = ids(s)+ds(t)−ds(s+t)

gives rise to a convergent element V ∈ A. A bit of work using Kummer’s
formulae (see Section 2.2) shows that V = V1 is recurrence matrix given by
the recursive presentation

V1 = 1,

(

V1 V2

V2 iV1

)

V2 = 1,

(

V1 −iV1 + (1 + i)V2

−iV1 + (1 + i)V2 −V1

)

11



We have V = LU ∈ R with L = L1 ∈ R recursively presented by

L1 = 1,

(

L1

L3 L4

)

L2 = 0,

(

0 −iL2

−L1 + L3 −iL2 − iL4

)

L3 = 1,

(

L1 L2

−iL1 + (1 + i)L3 L2 + (1 + i)L4

)

L4 = 1,

(

L1

(1 − i)L1 + iL3 L4

)

and U = DLt with D = D1 ∈ R diagonal recursively presented by

D1 = 1,

(

D1

D2

)

D2 = −1 + i,

(

D3

2D1 −D2 + 2D3

)

D3 = −1 + i,

(

D3

−D2

)

An analysis (left to the reader) of the diagonal entries of D1 ends the proof.
2

Remark 4.3. The recurrence matrices L,D and V = LDLt are invertible
in R, see [3].

5 Beeblebrox reduction

This section is devoted to proofs and complements involving the Beeblerox
reduction β(

(n
k

)

) of binomial coefficients.
Proof of Theorem 2.5 We have

(

2n

2k

)

=
(2n) · · · (2n − 2k + 1)

(2k) · · · 1
=

(

n

k

)

(2n− 1)(2n − 3) · · · (2n− 2k + 1)

(2k − 1)(2k − 3) · · · 1

where both the numerator and the denominator of the fraction

F =
(2n − 1)(2n − 3) · · · (2n− 2k + 1)

(2k − 1)(2k − 3) · · · 1

contain k terms. If k is even, we have F ≡ 1 (mod 4) since the numerator
and denominator of the fraction F contain both k/2 factors ≡ 1 (mod 4)
and k/2 factors ≡ −1 (mod 4). If k and n are both odd, the numerator and
denominator of F contain both (k+1)/2 factors ≡ 1 (mod 4) and (k− 1)/2
factors ≡ −1 (mod 4) and we have again F ≡ 1 (mod 4). If k is odd and n
is even, then both binomial coefficients

(2n
2k

)

and
(n
k

)

are even and we have

thus β(
(

2n
2k

)

) = β(
(

n
k

)

) = 0. This proves the first equality.
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The binomial coefficient
(

2n
2k+1

)

is obviously even and this implies the
second equality.

In the next case we have
(

2n + 1

2k

)

=

(

n

k

)

(2n + 1) · · · (2n − 2k + 3)

(2k − 1) · · · (1)

and the last fraction equals 1 (mod 4) if k is even.
For k odd and n even we have β(

(2n+1
2k

)

) = β(
(n
k

)

) = 0 since
(2n+1

2k

)

≡
(n
k

)

≡ 0 (mod 2).
For n, k both odd the correction (−1)k = −1 equals the fraction modulo

4. This ends the proof of the third equality.
In the case of the last equality, we have

(

2n+ 1

2k + 1

)

=
2n+ 1

2k + 1

(

2n

2k

)

which is even if n ≡ 0 (mod 2) and k ≡ 1 (mod 2). If n ≡ k (mod 2) then
2n+1
2k+1 ≡ 1 (mod 4). For n odd and k even we have 2n+1

2k+1 ≡ −1 = (−1)n(k+1)

(mod 4). The first equality and these observations complete the proof. 2

5.1 Proof of Theorem 2.6

Proof Some work shows again that the convergent element of A associated
to the infinite symmetric matrix Z with coefficients Zs,t = β(

(s+t
s

)

), 0 ≤ s, t
is a recurrence matrix Z = Z1 given by the recursive presentation

Z1 = 1,

(

Z1 Z2

Z3 0

)

Z2 = 1,

(

Z1 Z2

−Z3 0

)

Z3 = 1,

(

Z1 −Z2

Z3 0

)

We have the identity Z = LDLt with L = L1 ∈ R lower triangular
unipotent given by the recursive presentation

L1 = 1,

(

L1

L3 L4

)

L2 = 2,

(

−2
3L1 2L2
2
3L3 2L4

)

L3 = 1,

(

L1 L2

L3 L4

)

L4 = 1,

(

L1
1
3L3 L4

)

The diagonal matrix D = D1 ∈ R has recursive presentation

D1 = 1,

(

D1

D2

)

,D2 = −1,

(

3D1
1
3D2

)

An easy inspection of the diagonal entries of D1 completes the proof. 2
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5.1.1 Complement: The recurrence matrices L−1
i ,D−1

i and Z−1
i

The recurrence matrices L1, L2, L3, L4 are invertible in R. Their inverses
are given by

L−1
1 = M1, L

−1
2 = −

1

2
M3, L

−1
3 = −

1

2
M2, L

−1
4 = M4

with M1,M2,M3,M4 recursively presented by

M1 = 1,

(

M1

M3 M4

)

M2 = −2,

(

2M1 2M2

2M3 2M4

)

M3 = −1,

(

M1 M2
1
3M3 −1

3M4

)

M4 = 1,

(

M1
1
3M3 M4

)

It would perhaps be interesting to understand the group generated by

a = L1 = 1,

(

1
1 1

)

,









1
1 1
1 2 1
1 1 1

3 1









, . . .

b =
1

2
L2 = 1,

(

−1
3 2
1
3 1

)

,









−1
3 0 −2

3 4
−1

3 −1
3

2
3 2

1
3

2
3 1 0

1
3

1
3

1
3 1









, . . .

c = L3 = 1,

(

1 2
1 1

)

,









1 0 −2
3 4

1 1 2
3 2

1 2 1 0
1 1 1

3 1









, . . .

d = L4 = 1,

(

1
1
3 1

)

,









1
1 1
1
3

2
3 1

1
3

1
3

1
3 1









, . . .

A few relations are (ac−1)2, ac−1 = bd−1, a−1b = c−1d, a−1d = c−1b.
The inverses of the diagonal recurrence matricesD1,D2 are D̃1 = D−1

1 , D̃2 =
D−1

2 recursively presented by

D̃1 = 1,

(

D̃1

D̃2

)

, D̃2 = −1,

(

1
3D̃1

3D̃2

)

The inverses of the matrices Z1, Z2, Z3 are U1 = Z−1
1 , U3 = Z−1

2 , U2 =
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Z−1
3 recursively presented by

U1 = 1,

(

0 U2

U3 U1 − U2 − U3

)

,

U2 = 1,

(

0 U2

−U3 −U1 + U2 + U3

)

,

U3 = 1,

(

0 −U2

U3 −U1 + U2 + U3

)

.

Since Z1 = Zt
1 and Z2 = Zt

3, the subgroup of R generated by Z1, Z2, Z3 has
an involutive automorphism given by

Z1 7−→ Z−1
1 = U1, Z2 7−→ Z−1

3 = U2, Z3 7−→ Z−1
2 = U3 .

A few relations among the elements a = Z1, b = Z2, c = Z3 are (ab−1)2, a2 =
cb, ab = ca, ab−1 = c−1a.

Remark 5.1. The square matrix A(n) of size n× n with coefficient As,t =
1 if

(s+t
s

)

≡ 1 (mod 4) and As,t = 0 otherwise (for 0 ≤ s, t < n) has
det(A(1)) = 1, det(A(2)) = det(A(6)) = det(A(10)) = det(A(22)) = −1
and det(A(n)) = 0 for all other natural numbers n ≤ 60.

Moreover, for the exceptional values n = 2, 6, 10, 22, the Hadamard prod-
uct of A(n) with its inverse A(n)−1 is an involutive permutation matrix
without fixpoints.

5.2 The triangular Beeblebrox matrix

We define the lower triangular Beeblebrox matrix as the infinite lower trian-
gular matrix with coefficients Ls,t = β(

(

s
t

)

), 0 ≤ s, t given by the Beeblebrox
reduction of binomial coefficients.

One of the main results of [5] states that any fixed row of L contains
either no coefficients −1 or the same number (given by a power of 2) of
coefficients 1 and −1. This can of course also be deduced from Theorem
2.5 or by computing LJ where J is the “recurrence vector” obtained by
considering the sequence of column vectors

(1), (1, 1)t, (1, 1, 1, 1)t, (1, 1, 1, 1, 1, 1, 1, 1)t , . . . .

The triangular Beeblebrox matrix L defines a recurrence matrix (still
denoted) L = L1 ∈ R recursively presented by

L1 = 1,

(

L1

L2 L3

)

, L2 = 1,

(

L1

L2 −L3

)

, L3 = 1,

(

L1

−L2 L3

)

.
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5.2.1 The recurrence matrices L−1
i

The inverse elements L−1
1 , L−1

3 are given by L−1
1 = M1, L

−1
3 = M3 with

M1,M2,M3 recursively presented by

M1 = 1,

(

M1

M2 M3

)

,M2 = −1,

(

−M1

3M2 M3

)

,M3 = 1,

(

M1 0
−M2 M3

)

The computation

(

L1

L2 −L3

)(

L−1
1

L−1
3 L2L

−1
1 −L−1

3

)

=

(

1
1

)

(with 1 denoting the multiplicative identity in R) shows that

L−1
2 = 1,

(

L−1
1

L−1
3 L2L

−1
1 −L−1

3

)

∈ R .

A small amount of work shows that the map which sends L1, L2, L3 to
the three matrices





1 0 2
0 1 0
0 0 1



 ,





0 1 1
1 0 1
0 0 1



 ,





1 0 0
0 1 2
0 0 1





(corresponding to the three affine maps (x, y) 7→ (x + 2, y), (x, y) 7→ (y +
1, x + 1), (x, y) 7→ (x, y + 2) of R2) defines a faithful representation of the
group 〈L1, L2, L3〉 ⊂ R generated by L1, L2, L3.

6 q−binomials

Proof of Theorem 2.8 The result holds for b = 0 and for a ≤ b. An
induction on a+ b (splitting into four subcases) ends the proof:

If a, b 6≡ 0 (mod n):

(a
b

)

q
= ωb

(a−1
b

)

ω
+
(a−1

b−1

)

ω

=
(⌊a/n⌋
⌊b/n⌋

)

(

ωb
(a−1 (mod n)

b (mod n)

)

ω
+
(a−1 (mod n)

b−1 (mod n)

)

ω

)

=
(⌊a/n⌋
⌊b/n⌋

)(a (mod n)
b (mod n)

)

ω

If a ≡ 0 (mod n), b 6≡ 0 (mod n):

(a
b

)

q
= ωb

(a−1
b

)

ω
+
(a−1

b−1

)

ω

=
(a/n−1
⌊b/n⌋

)

(

ωb
( n−1
b (mod n)

)

ω
+
( n−1
(b−1) (mod n)

)

ω

)

=
(a/n−1
⌊b/n⌋

)( n
b (mod n)

)

ω

and
( n
b (mod n)

)

ω
= 0 since it is divisible by the n−th cyclotomic polynomial.
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If a 6≡ 0, b ≡ 0 (mod n):

(a
b

)

q
= ωb

(a−1
b

)

ω
+
(a−1

b−1

)

ω

=
(a−1

b

)

ω
+
( ⌊a/n⌋
b/n−1

)(a−1 (mod n)
n−1

)

ω

=
(⌊a/n⌋

b/n

)(

a−1 (mod n)
0

)

ω
+ 0

=
(⌊a/n⌋

b/n

)(a (mod n)
0

)

ω

If a ≡ b ≡ 0 (mod n):

(

a
b

)

q
= ωb

(

a−1
b

)

ω
+
(

a−1
b−1

)

ω

=
(a/n−1

b/n

)(n−1
0

)

ω
+
(a/n−1

b/n−1

)(n−1
n−1

)

ω

=
(a/n

b/n

)(0
0

)

ω

2

Theorem 2.8 implies in particular that the complex numbers
(a

b

)

e2iπk/n , a, b ∈
N belong to a finite number of real (half-)lines of the complex plane (deter-

mined by all non-zero values of
(a (mod n)

b (mod n)

)

ω
).

For n = 2, the matrix
(a

b

)

−1
, 0 ≤ a, b < 2 is given by

(

1 0
1 1

)

.

This implies that
(a

b

)

−1
∈ N for all a, b ∈ N.

For n = 4 we get
(a

b

)

i
∈ N ∪ iN ∪ (1 + i)N since we have









1
1 1
1 1 + i 1
1 i i 1









for the matrix with coefficients
(a

b

)

i
, 0 ≤ a, b < 4.

6.1 Recurrence matrices with finite support and the quotient

algebra R̃ = R/FS

We call an element A = A[0], A[1], · · · ∈ R of finite support if there exists a
natural integer K such that all matrices A[K], A[K+1], . . . of size ≥ 2K×2K

are identically zero. The set FS of all elements of finite support forms a
two-sided ideal in R (and in A). We denote by R̃ the quotient algebra
R/FS .

Lifting an element Ã ∈ R̃ into an element A such that Ã ≡ A (mod FS),
the vector space

A/(A ∩ FS) ⊂ R̃
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is well-defined. We call it the stable recursive closure Ã of Ã. Its dimension
is the stable complexity of Ã ∈ R̃.

An element Ã of stable complexity ã has a recursive presentation of the
form

Ãj = Ãj [K],

(

ρ̃(0, 0)Ãj ρ̃(0, 1)Ãj

ρ̃(1, 0)Ãj ρ̃(1, 1)Ãj

)

(for Ã1, . . . , Ãã a basis of Ã and for ρ̃(s, t) the obvious shift maps of R̃)
where Ãj [K] ∈ M2K×2K for some natural integer K = K(Ã) which is large
enough.

Computations in the quotient algebra R̃ can be either done by con-
sidering lifts into R (there is however no natural section R̃ −→ R of the
quotient algebra R̃ into R yielding a homomorphism of algebras) or by work-
ing with a modified version of the saturation level: Given Ã ∈ R̃ consider
the smallest integer N such that there exists an integer K ≤ N associ-

ated to a recursive basis Ã1, . . . , Ãã ⊂ R̃ of Ã as above and such that the
projection πK,N = πK ⊕ · · · ⊕ πN : ⊕ã

j=1CÃj −→ ⊕N
j=KM2j×2j is injec-

tive. (The integer N thus defined can also be characterised by the equality
KK,N = KK,N+1 where KK,l ⊂ ⊕ã

j=1CÃj for l ≥ K is the kernel of the
projection πK ⊕ πK+1 ⊕ · · · ⊕ πl.)

6.1.1 Tensor products and elements of stable complexity 1 in R̃

Elements of Ã admitting a recursive presentation of the form

Ãj = λjX,

(

ρ̃(0, 0)Ãj ρ̃(0, 1)Ãj

ρ̃(1, 0)Ãj ρ̃(1, 1)Ãj

)

(for Ã1, . . . , Ãã a basis of Ã) with λj ∈ C andX a fixed matrix of size 2K×2K

not depending on j, can be considered as elements in R⊗X. In particular,
such a matrix has an LU decomposition in R̃ if and only if the correspond
element of R and the matrix X ∈M2K×2k have an LU decomposition.

6.2 The Beeblebrox reduction of
(

s+t
s

)

−1

We denote by Z ′ the infinite symmetric matrix with coefficients Z ′
s,t =

β(
(s+t

s

)

−1
) given by the Beeblebrox reduction of q−binomials evaluated at

q = −1.
Theorem 2.8 and Section 6.1.1 imply that Z ′ = L′D′(L′)t where

Z ′ = Z ⊗

(

1 1
1

)

, L′ = L⊗

(

1
1 1

)

, D′ = D ⊗

(

1
−1

)

(the tensor product X ⊗M denotes the matrix(-sequence) obtained by re-
placing a scalar entry λ of Z by the 2× 2 matrix M) with Z,L,D as in the
proof of Theorem 2.6.
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In particular, one can easily establish a formula proving that det(Z ′(n)) ∈
±3N with Z ′(n) denoting the symmetric n × n submatrix consisting of the
first n rows and columns of Z ′.

Remark 6.1. The case of the matrix (with coefficients in {0, 1}) obtained by
reducing

(

s+t
s

)

−1
modulo 2 yields nothing new since

(

s+t
s

)

−1
≡
(

s+t
s

)

1
=
(

s+t
s

)

(mod 2).

6.3 Reduction modulo 2 and Beeblebrox reduction of
(

s+t
s

)

i

Let M ′ be the symmetric matrix with coefficients

ψ(

(

s+ t

s

)

i

) ∈ {0,±1,±x,±y}, 0 ≤ s, t

where

ψ(ξ) =







γ(ξ) if ξ ∈ N

γ(a)x if ξ = ai ∈ iN
γ(a)y if ξ = a(1 + i) ∈ (1 + i)N

where γ : N −→ {0,±1} is either the reduction modulo 2 with values in
{0, 1} or the Beeblebrox reduction β.

As in section 6.2 we have M ′ = L′D′(L′)t where

M ′ = M ⊗









1 1 1 1
1 y x
1 x
1









,

L′ = L⊗









1
1 1
1 1−x

1−y 1

1 1
1−y

y−x
x2−2x+y

1









,

D′ = D ⊗











1
y − 1

x2−2x+y
1−y

−x2

x2−2x+y











.

M,L,D are given by the matrices P,L,D, respectively Z,L,D occuring in
the proof of Theorem 2.1, respectively 2.6, if γ is the reduction modulo 2,
respectively the Beeblebrox reduction.

It follows that the determinant det(M ′(n)) of the finite matrix M ′(n)
consisting of the first n rows and columns of M ′ is of the form

±3Nx2N(y − 1){0,1}(x2 − 2x+ y){0,1}

with powers of 3 only involved if γ is the Beeblebrox reduction. The factor
(y − 1) appears if and only if n ≡ 2 (mod 4) and the factor (x2 − 2x + y)
appears if and only if n ≡ 3 (mod 4).
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Paris, Ser. I.

[4] R. Bacher, Recurrence matrices, arXiv:math/0601372.

[5] A. Granville, Zaphod Beeblebrox’s brain and the fifty-ninth row of Pas-
cal’s triangle, Amer. Math. Monthly 99 (1992), no. 4, 318-331.

[6] A. Granville, Correction to: ”Zaphod Beeblebrox’s brain and the fifty-
ninth row of Pascal’s triangle”, Amer. Math. Monthly 104 (1997), no.
9, 848-851.

[7] R.I. Grigorchuk, Burnside’s problem on periodic groups, Funct. Anal.
Appl. 14 (1980), 41–43.
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différentiels des fonctions trigonométriques suivant un module premier,
Bull. Soc. Math. France 6 (1878), 49–54.

Roland BACHER
INSTITUT FOURIER
Laboratoire de Mathématiques
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