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Abstract. In this review, we give an overview of some of the major aspects of data

reduction and analysis for the Cosmic Microwave Background. Since its prediction and

discovery in the last century, the Cosmic Microwave Background Radiation has proven

itself to be one of our most valuable tools for precision cosmology. Recently, and

especially when combined with complementary cosmological data, measurements of

the CMB anisotropies have provided us with a wealth of quantitive information about

the birth, evolution, and structure of our Universe. We begin with a simple, general

introduction to the physics of the CMB, including a basic overview of the experiments

which take CMB data. The focus, however, will be the data analysis treatment of

CMB data sets.
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1. Introduction

1.1. History

In 1964, Penzias and Wilson discovered a roughly 3.5 K noise excess from the sky, using

a communications antenna at Holmdel, New Jersey. While serendipitous, this turned

out to be a detection of the Cosmic Microwave Background radiation (CMB), for which

they were awarded the Nobel Prize in 1978 [Penzias & Wilson (1965)].

In 1948, Alpher and Herman had published the idea that photons coming from

the primordial Universe could form a thermal bath at approximatively 5 K

[Alpher & Herman (1948)], while the present general physical description of the CMB

was obtained in the ’60s [Dicke et al (1965)].

1.2. CMB radiation

In 1929, Edwin Hubble inferred that distant galaxies are moving away from us with

velocities roughly proportional to their distance [Hubble (1929)]. This is now considered

the first evidence for the expansion of our Universe. Given this expansion, we can

assume that the Universe was much denser and hotter earlier in its history. Far

enough back in time, the photons in the Universe would have had enough energy to

ionize hydrogen. Thus, we believe that sometime in the past, the Universe would have

consisted of a “soup” of electrons, protons and photons, all in thermal equilibrium,

coupled electromagnetically via the equation :

e+ p ⇆ H + γ.

Moving forward in time from this point, the Universe expands, and the temperature

decreases. The temperature will decrease to the point where there are no longer

appreciably many photons which can ionize Hydrogen, so the protons and electrons

will combine to form Hydrogen, and stay in this form. This is called the epoch of

recombination. At this point, the photons are no longer effectively coupled to the

charged particles, and they essentially travel unimpeded to this day. This is the CMB

we see today.

1.3. A black body

At the time of decoupling, constituents of the Universe are in thermal equilibrium, so the

electromagnetic spectrum of the CMB photons is a black body, for which the intensity

is

Iν =
2hν3

c2
1

ehν/kBT − 1
.

This prediction was verified by NASA in 1989 with the FIRAS instrument on board

the Cosmic Background Explorer (COBE) satellite. After a year of observation, FIRAS

measured a spectrum that was in near-perfect agreement with the predictions (figure 1).
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A recent re-analysis of FIRAS data gives a black body temperature of 2.725± 0.001 K

([Fixsen & Mather (2002)]).
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Figure 1. Electromagnetic spectrum of the CMB (top two panels) and measurements

of the temperature of the CMB (bottom panel). The grey line indicates a blackbody

with temperature 2.725 K. Error bars are included on all points, but in many cases

are too small to discern.

CMB practitioners often use the somewhat opaque “CMB”, or “thermodynamic”, units,

assuming that small brightness variations are related to small deviations in temperature

from that of the CMB as a whole. Thus, these units can be obtained from the derivative

of a blackbody with respect to temperature via the equation:

∆T = Tcmb

(
2hν3

c2
ehν/kTcmb

(ehν/kTcmb − 1)
2

hν

kTcmb

)−1

∆B.
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Figure 2. The CMB dipole as seen by COBE/DMR, from NASA’s Legacy Archive

for Microwave Background Data Analysis (http://lambda.gsfc.nasa.gov). The overall

blue-to-red variation indicates the CMB dipole. The faint features in the center of the

map represent the plane of our Galaxy.

1.4. Dipole

After removing the mean value of the CMB, one finds a dipole pattern with an amplitude

of roughly 0.1% of the average CMB temperature. This is due to the doppler shift of

CMB photons from the relative motion of the Solar System with respect to the rest frame

of the CMB. CMB photons are seen as colder or hotter depending on the direction of

observation following, to first order

∆T = Tcmb ·
(v
c

)
· cos θ.

COBE and WMAP [Hinshaw et al (2006)] have measured the orientation and the

amplitude of the dipole (figure 2). To first order, it is well-described by

∆T (θ) = 3.358× 10−3 cos θ K,

where θ is the angle between the direction of observation and the dipole axis. The

measured dipole implies that our Solar System is traveling at roughly 370 km/s with

respect to the rest frame of the CMB. The motion of the Earth around the Sun

contributes a roughly 10% modulation to this effect, which has been removed from

this figure.

The motion of the Earth around the Sun also produces an additional dipole contribution.

This effect is another order of magnitude lower than that of the dipole due to the motion

of the Solar System with respect to the CMB rest frame. However, given that the

dynamics of the Earth within the Solar System are very well understood, this signal
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provides a very convenient method to calibrate any CMB anisotropy measurements, if

an experiment can measure these large scale variations.

1.5. Primordial anisotropies

As the Universe is expanding today, it must have been much smaller earlier in its history.

It must therefore have been much hotter, meaning that both matter and the photons

in the Universe had more energy. Imagine the point, very early in the history of the

Universe, where the photons each have much more energy than that needed to ionize

a Hydrogen atom. At this point, the matter and the photons are in good thermal

equilibrium.

From this point, as the Universe cools, there are fewer and fewer photons with enough

energy to ionize hydrogen. At a certain point, the mean free path of the photons becomes

comparable to the size of the accessible Universe, and the protons and electrons are

essentially free to combine permanently into hydrogen atoms. This period is given the

rather confusing name of “recombination” – confusing since the protons and electrons

have never been consistently combined until this point. From this point on, the photons

are only lightly coupled to the now neutral matter – the Hydrogen atoms.

While the process of cooling is happening, imagine a volume of this photon-matter.

Gravitational instatibility, seeded by some small deviation from uniformity, can cause

the matter in the volume to compress. However, photon pressure will tend to push

such overdensities apart. Thus, we are in a situation where structures of a given size go

through a series of compactifications and rarefactions. Smaller regions will go through

a series of compactifications and rarefactions before recombination. Larger regions will

do so less often. These are called “acoustic oscillations” in the fluid. See figure 3

The so-called “first peak” in the power spectrum represents the scale at which matter

has just had time to maximally compress before the recombination, which freezes these

anisotropies into the photon signature. This next peak represents the scale at which a

single compactification and a single rarefication has happened, etc.

Depending on which angular scales we are interested in, the primordial anisotropies

have amplitudes of roughly one part in 100000 of the CMB mean. While quantitative

estimation of the anisotropies caused by a number of effects has been done, we give

below a brief description of a few of them.

1.5.1. Temperature: Depending on angular scales, one can describe three major effects

which cause anisotropies in the CMB:

• Adiabatic perturbations: Quantum fluctuations in the vacuum produce fluctuations

of the density ρ. In inflation theories, these perturbations are adiabatic and

Gaussian. For a given density perturbation, the temperature fluctuation is

∆T

T
=

1

3

δρ

ρ
.
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Figure 3. Acoustic oscillations and doppler peaks. Small structures come into

the horizon earlier than larger ones and start oscillating. At the time of decoupling,

we can observe the phase shifting of oscillations through the variation of amplitude

fluctuation in temperature with respect to the size of the structures (characterized by

the multipole ℓ). Figure adapted from [Lineweaver (1997)].

• Gravitational perturbation (Sachs-Wolfe [Sachs & Wolfe (1967)]): When a photon

falls into (or climbs out of) a gravitational well, its energy grows (or decreases) and

it is thereby blueshifted (or redshifted). Thus, on the sky, matter over-densities

correspond to cold spots and under-densities correspond to hot spots. It must also

be remembered that the Universe is expanding during this process so that when

a photon traverses a gravitational potential change, the photon will see a different

potential on entry and on exit of the well or hill.

• Kinetic perturbation (Doppler): Variation of the primordial plasma velocities

implies a Doppler effect on CMB photons. This shifting is proportional to the

fluid velocity v, relative to the observer

∆T

T
∝ v.
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This effect vanishes along the line of sight for scales smaller than the depth of the

last scattering surface, but can be seen on large scales.

1.5.2. Polarization: Polarization in the primordial CMB anisotropies comes from

Thomson scattering by electrons (figure 4). One can show via symmetry that only local

quadrupolar anisotropies of the radiation can produce a linear polarization of the CMB

photons. This is illustrated in the expression of the differential Thomson scattering

cross-section of a electron on a non-polarized radiation

dσ

dΩ
=

3σT

8π
|ǫ · ǫ′|2.

Figure 4. CMB polarization and quadrupolar anisotropies. A flux of photons

with a quadrupolar anisotropy (ǫ,ǫ′) scatters from an electron resulting in linearly

polarized radiation.

Local quadrupolar anisotropies can be due to three different effects:

Scalar perturbations scalar modes from density perturbations can cause quadrupolar

anisotropies. See figure 5.

Vector perturbations Vortex movements of the primordial fluid can produce

quadripolar anisotropies. They are not necessarily linked to an over-density. In

most of inflationary models, these perturbations are negligible.

Tensor perturbations A gravitational wave passing through a density fluctuation can

modify the shape of a gravitational well. A symmetrical well become elliptical

producing quadrupolar anisotropies.



CONTENTS 11

Figure 5. quadrupolar anisotropies formation on a over-dense region. Electron

along the over-density radius move away from each other whereas those that belong to

a same density contour get closer.

1.6. Secondary anisotropies

Between the last scattering surface and our detectors, CMB photons can encounter a

number of perturbations. These produce so-called “secondary” anisotropies. They are

usually either gravitational or due to Compton scattering with electrons. The effects on

the angular power spectra are more fully described in [Hu et al (1995a)].

1.6.1. Gravitational effects:

Integrated Sachs-Wolfe: This results from the variation of the gravitational field

along the path of a photon as the Universe expands. This effect is limited. It can

reach δT/T ≃ 10−6 at large angular scales.

Gravitational lensing: This is a distortion of the gravitational field due

to massive objects (galaxies, clusters) that modify a photon’s trajectory

[Seljak & Zaldarriaga (2000)]. The angular power spectrum is smoothed by a few

percent, which can make the small oscillations in the power spectrum at high mul-

tipoles disappear.

Rees-Sciama: [Rees & Sciama (1968)]. This is linked to the development of

gravitational wells with time. Photons that fall into a well need more energy to

escape it than they received when entering; that is, the photons loose energy, if

the well develops. This effect arises mostly when structures are forming. The rms

amplitude of this effect is around δT/T = 10−7 for a degree scale [Hu et al (1995a)].

It can reach δT/T ≃ 10−6 for smaller scales (around 10 – 40 arcmin) and can even

become dominant below 40 arcsec [Seljak (1996)].
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1.6.2. Scattering effects:

Sunyaev-Zel’dovich (SZ) effect: This is an inverse Compton effect, in which

photons increase their energy by scattering from free electrons within hot gazes

inside clusters [Zel’dovich & Sunyaev (1969)], so that it is mostly significant at

small angular scales. To first order, this slightly increases the energy of each photon

and thus shifts the CMB electromagnetic spectrum. To second order, if the cluster

is moving, one should also see a kinetic effect due to bulk motion of the cluster. At

large angular scales, the SZ effect can be seen due to diffuse scattering inside our

own cluster. Anisotropies can reach δT/T ≃ 10−4 for scales that range between a

degree and arc-minutes.

Reionization: This corresponds to a period where the Universe becomes globally

ionized once again, after recombination [Gunn & Peterson (1965)]. During this

period, free electrons will once again scattered CMB photons. It probably appears

during structure formation (z = 6− 20). The effect on the CMB is visible both at

small angular scales (suppressing the power from clusters) and at large scales.

1.7. Foregrounds

CMB measurements can be contaminated by other astrophysical emissions arising from

our neighborhood [Bouchet & Gispert (1999)]. Some examples are:

• Synchrotron emission. Relativistic electrons accelerated by a magnetic field

produce synchrotron radiation, with a spectrum depending on both the intensity of

the magnetic field and energy and flux of the electrons. The Galactic magnetic

field of order a few nG is strong enough to produce this effect. The energy

spectrum of the electrons is usually modeled as a power law, ν−β , with β ≃ 3

[de Zotti et al (1999)]. Synchrotron is the dominant foreground for for lower CMB

frequency observations.

• Bremsstrahlung (or free-free) radiation. In a hot gas, ions decelerate

free electrons, thereby producing thermal radiation. Once again, the free-free

spectrum can often be modeled as a power law with spectral index β ≃ 2.1

[de Zotti et al (1999)]. As with synchrotron, free-free emission is most evident at

lower CMB frequencies.

• Galactic dust emission. Cold dust within our own Galaxy can emit via thermal

radiation (vibrational dust) or by excitation of their electrical dipolar moment

(rotational dust). Thermal radiation is modelled as a grey body at T ∼ 17 K,

with an emission maximum in the far-infrared. In the radio-millimetric domain,

the dust emissivity can be modeled as ν2 [Schlegel et al (1998)]. Vibrational dust

emission has been claimed to have been seen between 10 and 100 GHz and with a

maximum around 20 GHz [Watson et al (2005)], though there is still debate.

• Extragalactic point sources. Some point sources can emit in the radio-

millimetric domain. To avoid contamination by these, they are masked before
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the CMB power spectrum is estimated. For the background of undetected sources,

their effect on the CMB spectrum is evaluated with Monte Carlos.

Figure 6. Foregrounds spectra compared to CMB one (black). Amplitudes are

normalized to the Sachs-Wolfe plateau. Synchrotron (blue) and free-free (yellow) are

dominating at low frequency until ∼30 GHz. Dust (red) is dominating at higher

frequency (above 300 GHz).

Figure 6 shows representative foreground spectra, though they may vary depending on

location on the sky. CMB experiments usually measure the CMB in the window between

∼20 and 300 GHz, while measurements at higher and lower frequencies help estimate

and limit the level of foreground contaminants within a the CMB band.

While some experiments have measured polarized foregrounds, notably Parkes

[Giardino et al (2002)] and WMAP [Barnes (2003)] for synchrotron and free-free and

Archeops for diffuse dust emission on large angular scales [Benôıt et al (2004),

Ponthieu et al (2005)], foreground polarization over the full sky are still not well known.

Thus foreground residuals have become one of the largest (if not the largest) source of

systematic errors in CMB analyses.

1.8. Angular power spectra

To describe CMB anisotropies, we decompose both temperature and polarization

sky maps into spherical harmonics coefficients. Most inflationary models predict

fluctuations that give gaussian anisotropies in the linear regime [Hu et al (1997),

Linde et al (1999), Liddle & Lyth (2000)]. In such cases, the angular power spectra

both in temperature and polarization contain all the cosmological information of CMB.

1.8.1. Temperature: The spherical harmonics, Yℓm, form an orthogonal basis defined

on the sphere. The decomposition of a scalar map into spherical harmonic coefficients

aT
ℓm reads

∆T (~n)

T
=

∞∑

ℓ=0

ℓ∑

m=−ℓ

aT
ℓmYℓm (~n) ,



CONTENTS 14

where aT
ℓm satisfy

aT
ℓm =

∫
∆T (~n)

T
Y ∗

ℓm(~n)d~n.

The multipole ℓ represent the inverse of the angular scale. We can define the angular

power spectrum CT
ℓ by

CT
ℓ =

〈
|aT

ℓm|2
〉

Moreover, for gaussian anisotropies, the aℓm distribution is also gaussian and its variance

is the angular power spectrum Cℓ:

〈aℓm〉 = 0,

〈aℓmaℓ′m′〉 = Cℓδℓℓ′δmm′ .

Thus we can write an estimator C̃T
ℓ of the power spectrum that reads

C̃T
ℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ

aT
ℓma

T∗
ℓm.

The angular power spectrum in temperature shows three distinct regions (see figure 7):

(i) The Sachs-Wolfe plateau. For scales larger than the horizon, causality

dictates that fluctuations never evolve. Anisotropies come from initial fluctuations

of photons (form the gravitational field) and from the Sachs-Wolfe effect

[Sachs & Wolfe (1967)]. Since the spectrum of the fluctuations from the

gravitational field is scale invariant, the temperature fluctuations are statistically

identical and the angular power spectrum is nearly flat at large scales (small

multipole ℓ).

(ii) Acoustic oscillations. For scales smaller than the horizon, in a matter dominated

Universe, the fluid undergoes acoustic oscillations that are adiabatic. Baryons fall

into gravitational wells, whereas photon radiation pushes them apart. This induces

acoustic oscillations of matter which imprints on the photons. Structures enter the

horizon progressively (starting with the smallest ones) resulting in a progression of

oscillations depending on the size of the structures (fig 3). Peaks in the angular

power spectrum reflect these phase-differences for scales smaller than the horizon

(ℓ & 180). Differences in the electron velocities at the time of the last scattering

also imply a second order Doppler effect.

(iii) Damping region. At still smaller angular scales, the spectrum is damped, mainly

due to residual diffusion of photons, which smooths structures with scales smaller

than the mean free path (Silk damping). Furthermore, the recombination process

is not instantaneous, with a finite width resulting in a more gradual damping.

The correlation function of the signal on the sky is

C (θ) =
∑

ℓ

2ℓ+ 1

4π
CℓPℓ (cos θ)
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Figure 7. Temperature angular power spectrum: power on the sky as a function

of the multipole ℓ or angular scales. We can distinguish three regions from left to right:

the Sachs-Wolfe plateau, the acoustic peaks and the damping region.

We note that the power spectra are often plotted as

f (Cl) =
l (l + 1)

2π
· Cl.

This is convenient, as when shown like this the area under the curve is roughly equal to

the variance of the signal on the sky.

1.8.2. Polarisation: The Stokes formalism allows one to describe polarized radiation

with four scalars: I, Q, U and V. For a polarized wave propagating along the z axis,

Stokes parameters are
I = 〈|Ex|2 + |Ey|2〉,
Q = 〈|Ex|2 − |Ey|2〉,
U =

〈
2Re(ExE

∗
y)
〉
, and

V =
〈
2Im(ExE

∗
y)
〉
.

Unpolarized light is described by Q = U = V = 0. Q and U characterize the linear

polarization for the photon whereas V describes the circular polarization. I and V are

rotation invariant whereas Q and U depend on the frame of reference.. Conservation of

the total energy of a wave implies that

I2 ≥ Q2 + U2 + V 2.
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Stokes parameters can be summed for a superposition of incoherent waves. Thomson

diffusion cannot create circular polarization as it does not modify the phases but only

the amplitudes of each component. Thus, for CMB, V = 0.

In the same way as for temperature, we can define polarized angular power spectra

using the decomposition in spherical harmonics for the Q and U parameters on the sky.

To do this, we use the scalar E and pseudo-scalar B quantities defined from Stokes

parameters but which are independent from the frame of reference. The decomposition

is made using the spin-two harmonics:

(Q± iU)(~n) =
∑

ℓm

a±2ℓm ±2Y
m
ℓ (~n).

The connection between Q/U and E/B in spherical harmonic space is

aE
ℓm = − a2ℓm + a−2ℓm

2

aB
ℓm = i

a2ℓm − a−2ℓm

2
,

where we can define the purely polarized angular power spectra CE
ℓ and CB

ℓ as

CE
ℓ =

〈
|aE

ℓm|2
〉

CB
ℓ =

〈
|aB

ℓm|2
〉
.

Polarization of the CMB is due to quadrupolar anisotropies at the last scattering

surface. We thus expect correlations between temperature anisotropies and polarized

anisotropies, which can be described by the temperature-polarization angular cross-

power spectra

CTE
ℓ =

〈
aT

ℓma
E∗
ℓm

〉

CTB
ℓ =

〈
aT

ℓma
B∗
ℓm

〉
.

Finally, second-order spin spherical harmonics properties implies that

CEB
ℓ =

〈
aE

ℓma
B∗
ℓm

〉
= 0.

One can demonstrate that for scalar perturbations E 6= 0 and B = 0, whereas for tensor

perturbations E,B 6= 0. Thus detecting B polarization in the CMB could indicate the

presence of tensor modes and thus be an indication of gravitational waves.

As with the temperature spectra, polarized spectra also show peaks for scales smaller

than approximately a degree (see figure 8). These are sharper for polarization, as they

are due to velocity gradients of the photon-baryon fluid at the time of decoupling only

(Doppler oscillation). Consequently, they are shifted by π/2 with respect to temperature

peaks, which are dominated by density fluctuations. The correlation between the two

is characterized by the cross temperature-polarization power spectrum CTE
ℓ . The E

spectrum is at the level of a few percent of the temperature spectrum. The amplitude

of the B modes are still unknown but should be at least one or two order of magnitude
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Figure 8. Angular power spectra both in temperature, polarization and cross

temperature-polarization. From top to bottom : temperature TT , cross-spectrum TE,

purely polarized spectrum E et an optimistic estimation of the B spectrum.

below that of the E modes. On large angular scales, the B-mode amplitude is strongly

linked to the energy of inflation Einf [Zaldarriaga (2002)]:

[ℓ(ℓ+ 1)/2π]CB
ℓ ≃ 0.0242

(
Einf/1016

)4
µK2.

For gaussian fluctuations, we can also define the estimators for each spectrum:

C̃E
ℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ

|aE
ℓm|2

C̃B
ℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ

|aB
ℓm|2

C̃TE
ℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ

aT
ℓma

E∗
ℓm

C̃TB
ℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ

aT
ℓma

B∗
ℓm.
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1.8.3. Cosmic and sample variance: For both temperature and polarization, the aℓm

coefficients are gaussian distributed with a mean of zero and a variance given by the

Cℓ. Each of these coefficients has 2ℓ+ 1 degrees of freedom, corresponding to the 2ℓ+1

m-values for a given ℓ. The cosmic variance, Cvar, represents the errors on the Cℓ-

estimators due to the fact that we can only measure a single realization of our Universe

from one location, and is equal to

Cvar(Cℓ) =
2Cℓ√
2ℓ+ 1

.

Note that for large angular scales, this can become significant.

Moreover, CMB anisotropies measurements cannot cover the whole sky. Even for

satellites, foreground emission residuals can be comparable to the CMB signal and we

therefore must use a mask that reduces the effective coverage. For each multipole, the

number of degrees of freedom increase as a function inverse of the observed area fsky

and so the errors associated. The sample variance Svar reads

Svar(Cℓ) =
1

fsky

2Cℓ√
2ℓ+ 1

.

2. Instruments

2.1. Observation sites

CMB experiments have observed the CMB from a variety of different sites; from

telescopes sited all over the globe, to balloons, to satellites in Earth orbits, and now even

to satellites at the second Sun-Earth Lagrange point. Each site has its own advantages

and disadvantages. Specifically:

• Sky coverage: Full-sky coverage is usually only achieved by satellites, which have

the unique combination of long observation times and unobstraucted views of the

sky. Balloon-borne experiments can cover a significant fractions of the sky (such

as ∼30% for Archeops [Benôit et al (2003)] and FIRS [Ganga et al (1993)]). The

balloon-borne 19 GHz experiment [Boughn et al (1992)] covered almost the full

sky by making multiple flights from North American and Australia, but balloon

observations are often limited to much smaller regions (for example, <10% of the

sky for BOOMERanG or 0.25% for MAXIMA [Rabii et al (2006)]). Ground base

measurements can usually only cover a few percent of the sky.

• Resolution: Detector resolution is directly linked to the size of the telescope and

the wavelength of observation. Satellites and balloons are thus usually limited in

resolution compared to ground-based measurements due to weight constraints.

• Atmosphere: Satellite, obviously, do not have problems with terrestrial atmosphere.

Ground-based measurements, on the other hand, are hampered by atmospheric

emissions such as water vapor, which absorbs microwave radiation. Thus ground

base telescopes for the CMB are operated from dry, high altitude locations such
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as the Chilean Andes or the South Pole. Balloon experiments, flying at tens of

kilometers from the ground, offer a compromise. Nevertheless, there are still some

atmospheric effects from, for example, ozone clouds.

• Observing time: Balloon-borne CMB experiments have usually been single-night

observations, though some experiments have had multiple flights, and so-called

“long duration” flights of over a week are now becoming common. Satellite

experiments have observed for a number of years. Ground-based experiments have

also observed for years.

2.2. Scanning strategy

With a given amount of observing time, which is often limited by site conditions or

resources, a CMB experiment’s scanning strategy aims to:

• minimize foreground contributions

• provide the redundancy necessary to analyze noise and other unforeseen effects.

• provide the best possible calibration and instrumental characterization. E.g.,

quasars for pointing reconstruction.

• minimize atmospheric effects

• allow a decent measurement of the power spectrum.

2.2.1. Foregrounds: As noted in section 1.7, foreground emission can be a major

contaminant to CMB measurements. Thus, all CMB experiments take care to either

avoid observing regions with excessive foreground emission, or to reject these regions

when the data are analyzed.

To this point, all satellite-based CMB experiments have used scanning strategies which

covered the entire sky, motivated by a combination of technical simplicity, and the fact

that it is one of the few ways to consistently measure the largest scale anisotropies

in the CMB. However, this means that some regions, such as the Galactic plane, are

not useable, and must be excised from the data. Balloon experiments such as the

19 GHz Experiment [Boughn et al (1992)], FIRS [Ganga et al (1993)] and Archeops

[Benôit et al (2003)] have been used to make large fractions of the sky. In these

experiments, the Galactic plane is treated in much the same way as for satellites, with

data in high-foreground regions simply avoided in the analyses.

A number of balloon-borne experiments, however, have been used to make maps of

localized regions of a few percent of the sky. In such cases, the observation fields

are chosen to coincide with low emission from our Galaxy. In addition, almost all

ground-based experiments map but a few percent of the sky at most, and use the same

foreground avoidance technique. An example of this is shown in figure 9.

2.2.2. Redundancy: It is notoriously difficult to keep sensitive experiments stable

for long periods of time, and these experiments are no exception. Temperature and
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Figure 9. This grapic shows an estimate of the emission from dust which would be seen

by polarization-sensitive experiments at 150 GHz. The center of the plot is the zenith

at the South Pole – that is, declination -90 degrees. The edge of the plot is -30 degrees

(that is, it shows the “bottom” of the celestial sphere). Zero right ascension is down

in the plot, increasing in the counter-clockwise direction. The brightness estimates

come from application of a model by Finkbeiner et al. [Finkbeiner et al (1999)]. The

boxes to the right represent the sky coverage for QUaD and BOOMERanG, two CMB

anisotropy experiments. The larger and smaller black boxes are the BOOMERanG

so-called “shallow” and “deep” fields, respectively. The two white boxes are the two

fields QUaD observed in their first season of observations [Hinderks (2005)].

atmospheric changes, as well as a host of other experimental possibilities conspire to

allow the baselines, or zeros of these experiments to change. If only a single measurement

were made of each point on the sky, it would be quite difficult to differentiate between

sky signals and so-called “systematic” effects. It would also be difficult to differentiate

between “real” signal and “random noise”.

To this end, experiments endeavor to observe a given part of the sky in as many different

ways as possible. It is highly desirable to observe all points measured on as many

different time scales as possible, from as many different directions as possible.

Note that while it is desireable to observe a given spot in as many different directions as
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possible, there are often overriding concerns. As an example, we note that most ground-

based and many balloon experiments try to observe without changing the elevation of

observations, since changing elevation with change the column depth of atmosphere

through which the experiment is observing and will thus change loading and equilibrium

of the experiment. Often an experiment can get “cross-linking” in various scans, since

as the Earth rotates a given scanning will “rotate” on the sky. There are, however, a

number of experiments which are making, or have made, observations from the South

Pole. From this unique vantage point (along with the North Pole, though there have not

been any CMB experiments fielded there for obvious reasons), as the earth rotates, one

cannot change declinations except by changing elevations. Thus, these experiments live

without the benefits of cross-linking. From the South pole, however, it is often noted

that the atmosphere is low enough that experiments can work without it.

2.2.3. Calibration: While it is possible to calibrate an instrument using special

techniques, by far the most accepted procedure is to use astronomical sources to

calibrate, preferable sources which can be seen as part of the routine observations done

of the CMB. In this way the experiment is calibrated in the configuration used to make

the cosmological measurements themselves, and assumptions or extrapolations between

the “routine” measurements and the calibration measurements need not be made.

The most desirable source to use would be something with the frequency spectrum of

the CMB anisotropies themselves. While an increasing number of experiments are using

the CMB anisotropies themselves, as measured by previous experiments, to calibrate,

a number of experiments have also used the CMB dipole, which also has the same

spectrum. When doing this, care must be taken to account for the roughly 10% variation

in the dipole due to the motion of the Earth around the Sun.

For experiments which do not cover a large enough area to use the dipole for calibration,

the scanning strategy will ideally cover a planet or some bright, well-known point source

which, along with understanding of the beam and bandpass of the instrument, can

provide a flux calibration. In addition, these sources can be used to refine pointing and

beam models.

2.2.4. Power Spectrum Sampling: Different regions of the power represent structures

of different sizes – lower multipoles representing structure at larger angular scales and

higher multipoles representing structure at smaller angular scales. For experiments

interested in measuring the structure on the largest scales, the scanning strategy must,

of course, cover areas of these sizes. In addition, in order to have sufficient statistics, the

experiment will usually have to cover a number of patches of the size of interest, in order

to integrate down the “sample variance” [Scott et al (1994)], the inherent variance we

will find from one patch of a given size to another, even when the fluctuations in both

are given by the same underlying model.

In addition, if one fails to observe large enough regions, even if one can formally measure

power spectrum values for a given multipole, without enough observations the spectrum
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points at different multipoles will be correlated, effectively limiting the experiments

resolution in multipole space [Tegmark (1996b)].

2.3. Detectors

2.3.1. Low Frequency: Here, “Low Frequency” refers to frequencies between roughly

15 and 95 GHz.

From the COBE Differential Microwave Radiometer (DMR) and the Wilkinson

Microwave Anisotropy Probe (WMAP), to the low frequency instrument (LFI) of

Planck, we can see three examples of low frequency radiometers.

A radiometer is a device whose output voltage is proportional to the power received

by a horn antenna. The output is then sent to an amplifier such as a High Electron

Mobility Transistor (HEMT). For radiometers sensitive to polarization, one can use an

OrthoMode Transducer (OMT) to separate the orthogonal polarizations with minimal

losses and cross-talk. The two orthogonal linear polarizations are then directed into

separate amplifiers.

The radiometer equation [Dicke et al (1946)]

δT = Tsys

√
1

∆ντ
+

(
∆G

G

)2

,

gives the total power radiometer’s sensitivity for an integrating period τ , a frequency-

dependent power response G(ν), an input referenced system noise temperature Tsys and

the effective RF bandwidth ∆ν =
[∫
G(ν)dν

]2
/
∫
G2(ν)dν. The second term represents

the noise coming from the gain variation of the radiometer during the integration time

τ .

Due to their low noise and wide bandwidth, HEMTs are good candidates for

measurements of the CMB. Unfortunately, these amplifiers exhibit long scale variations

of their gain that limit sensitivity of the radiometers. Reducing 1/f noise can be done

using differential radiometers. That is, by switching the inputs from two antennas or an

antenna and a reference load, the temperature of which is close to the measured signal

(as for Planck-LFI). In the first case, difference signal is then constructed using two

orthogonally polarized channels. In the second case, a hybrid coupler can provide two

phase-switch signals from the reference load and the sky signal. In both cases, switching

enhances the instrument’s performances in two ways: (1) since both signals are amplified

by the same chains, gain fluctuations in either amplifier chain act identically on both

signals so that common mode gain fluctuations cancel; (2) the phase switches introduce

a 180◦ relative phase change between two signal paths. Thus, low frequency (1/f) noise

is common mode and vanishes.

These low frequency radiometers are usually cooled to lower than 100 K, which reduces

amplifier noise and makes them more sensitive.

The DMR was launched in 1989. It detected structure in the CMB angular distribution

at angular scales & 7◦ [Smoot (1990)], using two Dicke-switched radiometers at
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frequencies: 31, 53 and 90 GHz, with noise temperature of 250, 80 and 60 times the

quantum limit respectively, fed by pairs of feed horns pointed at the sky.

WMAP [Jarosik et al (2003)] was launched in June of 2001 and is currently observing

the sky in five frequency bands: 23, 33, 41, 61 and 94 GHz, with arrays of radiatively-

cooled radiometers fed by a differential two-telescope optical system. Radiometer noise

temperatures are 15–25 times the quantum limit, with angular resolution ranging from

56 arcmin to 14 arcmin.

The LFI instrument, slated to fly on the Planck satellite [Bersanelli & Mandolesi (2000)],

with its array of cryogenically cooled radiometers, represents another advance in the

state of the art. It is designed to produce images of the sky (including polarized com-

ponents) at 30, 44 and 70 GHz, with high sensitivity.

Figure 10. Layout of an individual WMAP radiometer. Components on the cold

(left) side of the stainless steel waveguides are located in the FPA and are passively

cooled to 90 K in flight. (figure extracted from [Jarosik et al (2003)])

2.3.2. High Frequency: Here, “High Frequency” refers to frequencies between roughly

95 and 250 GHz.

Bolometric detectors [Chanin & Torre (1983)] are micro-fabricated devices in which

the incoming radiation is absorbed by a grid, causing an increase in temperature.

This temperature increase is measured by a Neutron Transmutation Doped (NTD)

germanium thermistor, which provides high sensitivity with sufficient stability. These

detectors give extremely high performance, yet are insensitive to ionizing radiation and

microphonic effects.
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The modern “total power” CMB bolometers are grids which resemble spider webs

(figure 11), with characteristic scales related to the wavelength of the radiation of interst,

reducing background coming from lower wavelengths. Moreover, this configuration

enhances sensitivity and reduce the time response and cross-section with particles. Its

lower mass gets him less sensitive to vibration. For Polarization-Sensitive Bolometers

(PSB), radiation is absorbed by two orthogonal grids of parallel resistive wires, each

of which absorbs only the polarized component with electric field parallel to the

wires [Jones et al (2003)]. Polarized sky can be reconstructed using several detector

measurements.

Figure 11. Spider-Web Bolometer (left) and Polarization-Sensitive Bolometer (right)

from Planck High Frequency Instrument.

Radiation from the telescope is coupled to the bolometer via horns and filters to select

the wavelength.

Thermodynamic sources of noise in a bolometer are coming from :

(i) phonon noise proportional to temperature;

(ii) Johnson noise linked to fluctuations of tension applied on the thermistor;

(iii) photon noise coming from quantic nature of the incoming radiation.

The fundamental limit of the sensitivity of a bolometer is phonon noise in the thermal

link between the absorber and the heat sink. In this case, the noise equivalent power

reads

NEP = γ
√

4kBT 2G,

where G is the thermal conductance, T the temperature of the bath, and γ takes into

account the contribution from Johnson noise in the NTD Ge thermistor. For a given

background loadQ, maximum sensitivity is achieved forG ∼ Q/T [Mather et al (1984)].

The time constant of the bolometer is defined by τ = C/G where C is the heat capacity

of the bolometer. The time constant is fixed by the modulation scheme, putting a limit

on the thermal conductance G.
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Figure 12. Optical configuration for a single photometric pixel from Archeops or

Planck focal plane.

Cooling down the system reduces the two first sources of noise such that intrinsic photon

noise become dominant. Other sources of noise are microphonic noise coming from

vibrations and 1/f noise due to low thermal drifts.

Using bolometers impose a cryogenic system to cool down detectors. BOOMERanG

[Crill et al (2003)] uses a cryostat that operate at 270 mK. Archeops [Benôit et al (2002)]

and Planck use a dilution cryostat that insure 100 mK on the focal plane.

2.4. Environment effects

2.4.1. Thermal effects: Detectors used for accurate measurements of temperature

variations such as CMB anisotropies are very sensitive to thermal variation of he

environment. Thus experiments are designed to minimize the effects of thermal

variations across the focal plane and electronics which might induce changes in the

gain and offsets of the detectors. The observatory environment is designed to be as

stable as possible given other the other constraints of the observations. Satellites are

now placed at the second Sun-Earth Lagrange point, placing the Earth between the

Sun and the payload. Moreover, the focal plane is looking in the opposite direction

from the Sun and large baffle prevent from most of scattering light that could enter the

instrument. Balloon also used scanning strategy that avoid Sun or fly during the arctic

night. Ground-based experiments prevent with the Sun light using baffles and operates

during the night.

Anyway, thermal effects, that represent the largest source of systematics at low

frequency, are monitored using thermometers that are used in the data analysis. The

latter can also be used to regulate some of the cryogenic stages.
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2.4.2. Electrical effects: Variation of electrical signal can affect the signal even for

stable thermal environment. These variations can be due to, for example, solar flares,

RF noise or voltage fluctuation.

Signal from a detector can also be related to another one via electrical cross-talk that

can be due to nonideal behavior of electronics or pickup in the wiring hardness.

Usually, tests are made at ground before the observing period to search for some parasitic

effects.

2.5. Interferometers

The study of CMB anisotropies using interferometers goes back over two decade.

Nowadays, high resolution measurements of the CMB power spectra have been made by

ground based interferometers VSA [Dickinson et al (2004)], DASI [Leitch et al (2005)],

CBI [Rajguru et al (2005), Readhead et al (2004)].

In contrast with thermometers that measure the total or differential power, an

interferometer directly measures the power spectrum of the sky. Images of the sky

can then be reconstructed using aperture analysis. They can cover continuously a large

range of the power spectrum since their angular resolution is determined by the number

of fields observed. Moreover, the detection of only correlated signals made them very

stable to systematics such that ground pickup and atmospheric emission.

An interferometer measures the average over a time long (compared to the wavelength)

of the electric fields vectors E1 and E2 of two telescopes pointing on the same direction

of the sky : 〈E1E
∗
2〉. For a monochromatic wave in the Fraunhofer limit, the average

〈E1E
∗
2〉 is the intensity times a phase factor. The phase factor is given by the geometric

path difference between the source and the two telescopes in units of the wavelength.

When integrating over the source plane, we obtain the visibility V (u) which is the

Fourier Transform of the temperature fluctuation on the sky ∆T (x̂) multiplied by the

instrument beam B(x̂) [Tompson et al (1986)]. The visibility reads

V (u) ∝
∫
dx̂B(x̂)∆T (x̂)e2πiu·x̂

where x̂ is a unit pointing three-vector, u is the conjugate variable characterizing the

inverse angle measured in wavelength.

The size of the aperture function A(x̂) gives the size of the map which means the coverage

sky. The maximum spacing determines the resolution. Considering the relatively small

field of view of interferometers, we can assume the small-angle approximation and treat

the sky as flat. In such conditions, for u & 10 and ℓ & 60, one can demonstrate that

the visibility can be linked to the angular power spectrum as

u2S(u) ≃ ℓ(ℓ+ 1)

(2π)2
Cℓ

∣∣∣∣
ℓ=2πu

As we have seen, data analysis for interferometers is very specific and

we will not go into details in this review. For more complete descrip-
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tion, you can refer to [Martin & Partridge (1988)], [Subrahmanyan et al (1993)],

[Hobson & Mageuijo (1996)] or [White (1999)].

3. Preprocessing

These steps are very instrument dependent. From a general point of view, we transform

raw data (figure 13) into a timeline or time-ordered data (TOD). More than just

collecting data, this first step often deals with decompression and demodulation data,

as well as removing any parasitic signals introduced by, for example, the readout

electronics. It may also correct for any non-linear response from the detectors and

may flag bad data.

3.1. Demodulation

Data from detectors (scientific signal) and thermometers (housekeeping data) are often

modulated in order to provide a method to lockin on the signal. An AC square wave

modulated bias, for example, transforms the data into a series of alternative positive and

negative values. In the Fourier power spectrum of the data, this induces a peak in the

spectrum. This peak dominates the signal and needs to be removed for demodulation.

This can be performed by filtering the data with a low-pass filter considering the

following constraints:

• the transition after the cut-off frequency must be sharp for complete removal of the

modulation signal,

• the ringing of the Fourier representation of the filter above the cut-off frequency

needs to be below the approximately 2% level, to avoid aliasing.

The cut-off frequency must be chosen below the Nyquist frequency and above the cut-off

due to both the beam pattern and the detector time response in order to preserve the

signal.

3.2. Readout electronic noise

When data is stored, it can be compressed into blocks before recording. The data

recording can be delayed and a few data blocks are buffered before recording. Small

offset variations in the electronics lead to significant differences between the mean value

of previously acquired blocks and those following, which induces a parasitic signal on

the data. This parasitic signal shows up as periodic pattern in frequency proportional

to the ratio of the acquisition frequency over the size of the block, depending on the

number of blocks buffered.

3.3. Data flagging

Raw data often contains periods that are suspected or known to be unusable. It can be

due to the absence of data or data dominated by parasitic sources such as glitches, noise
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bursts or jumps due to reconfigurations of the detectors. Those samples are flagged

and could be (for some specific purpose such as Fourier transform) filled by constrained

realizations of noise. Flagged data are simply not used to make the final CMB maps

and power spectra.

Methods to identify these effects are often based on iterative detection of spikes before

flagging. At each step, data can be band-pass filtered or convolved with a specific

template in order to make the parasitic effect more visible.

Changes in detectors parameters such as the bias produce jumps in the data.

Microphonic noise coming from mechanical vibrations or sudden releases of internal

mechanical stress can also induce glitches. In addition, bolometers are also sensitive to

cosmic ray hits. These are therefore major sources of glitches in bolometer data.

The cosmic ray glitch rate depends on the effective surface of the detector absorber and

the observation site (ground, ∼ 1 per hour, or balloon/satellite, ∼ 1 per minute for a

1mm2 detector surface). The signature of cosmic-ray hits a delta function convolved

with the instrumental response. Thus, collections of cosmic ray responses can be used

to estimate the transfer function of the detector and the electronics (see section 6.1).

Moreover, a model of energy deposit taking into account the time response of the

detectors and electronics gives the shape of the signal as a function of time and helps

to estimate how long the data is badly affected by a cosmic ray hit. An approximate

model often used is

g (t, ti) = A · e−(t−ti)/τ ∗ fem + fbase,

where ∗ represents convolution, A is the response amplitude, fbase is the baseline, fem

is the electronic modulation function and τ is the detector relaxation time constant.

Some detectors can show more complex transfer functions with several time constants

[Maćıas-Pérez et al (2006), Crill (2001)] that can be related to where the particles

deposit their energy on detector.

This process might flag bright sources as cosmic rays. To avoid this, detected glitches

are compared with data taken at the same point on the sky at another time with the

same or some other detector to confirm that the large signal isn’t actually a strong signal

on the sky.

Housekeeping data from instrument can also be used to locate and flag specific bad data

such as repointing or changes of instrument parameters which can produce jumps.

The main objective is to flag parasitic signal above the noise level. At the end of the

process, a small fraction of the data is flagged (usually less than a few percent).

4. Description and subtraction of systematics

In this section we describe systematic effects that can be found in CMB data analysis

as well as the methods and algorithms used for their subtraction.
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Figure 13. Raw data of Archeops last flight for a bolometer at 143 GHz in arbitrary

units. The slow drift is due to a slow change in temperature during the flight. The

Sun rose after ∼12 hour of flight. Cosmic rays are clearly visible as spikes in the data.

4.1. Description

In a scanning instrument, multipoles of the CMB anisotropies are encoded in time-

ordered data at frequencies f which depend on the elevation e and the sky scan speed

θ′ as

f ≃ θ′

2π
cos (eℓ) .

Depending on the scan strategy, we can define three distinct regimes in the Fourier

domain.

• First, the very low frequency components are mainly due to 1/f -like noise both from

detectors (for bolometers) and electronics (both for bolometers and radiometers).

Long time-scale drifts from temperature changes of the cryogenic stages and the

telescope can also be clearly seen in the time domain. For balloon experiments,

drifts can also come from variation of air mass during the flight due to changes in the

balloon altitude. Such systematics are highly correlated within detectors and can

be monitored by housekeeping data from thermometers and altitude measurements.

• Second, scan-synchroneous systematics are the most difficult to handle. Indeed,

at the scan frequency and its harmonics, in addition to the CMB and

other extraterrestrial emission, other components can be present experimental

contamination can be present.

• Finally the high frequency components are dominated by detector noise. At high

frequencies, the Fourier spectrum is nearly flat. For bolometers, time response is
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closely described by a first order low-pass filter that cuts drastically high frequencies.

Microphonic noise can also put imprints on the high frequency noise.

4.2. Subtraction

Systematics that are monitored can be removed via a decorrelation analysis using

templates based on housekeeping data and external and/or internal data.

Templates for atmospheric effects can be constructed using altitude and elevation of the

payload and a model of the atmosphere, or by using higher frequency detectors which

measure at a frequency where atmospheric emission dominates over CMB and other

emission. Blind detectors (which are identical to the standard detectors but which

have been sealed off from light) are used as microphonic noise monitors. Temperature

measurements of different parts of the experiment give us a handle on long-term drift

temperature variations.

Correlation coefficients can be computed via linear regression before the templates are

subtracted to the data [Masi et al (2006), Maćıas-Pérez et al (2006)]. Templates and/or

data can be filtered or smoothed depending on the range of frequency of interest.

Although this decorrelation procedure is very efficient, one can often still see correlated

low frequency parasitic signals in detectors, which creates stripes in the maps made. To

avoid the mixing of the detector signals at this stage of the processing of the data, this

effect is usually considered later, when the maps are made.

4.3. Filtering and baseline removing

The easiest way to get rid of long-term drifts, microphonics, or other effects which are

localized in Fourier space is simply to apply a highpass, bandpass or a “prewithening”

filter.

The purpose of the filter is to clean the data so that the pixel-to-pixel covariance matrix

(and thus the noise covariance of the angular power spectrum) becomes simpler. But

the filter should modify the underlying signal as little as possible. Thus, noise properties

need to be checked after the data treatment and filtering could need iteration.

Data from WMAP radiometers shows some 1/f noise at very low frequency (fknee

typically of a few mHz [Hinshaw et al (2003)]). Even though the effects are small

relative to the white noise, it would generate weak stripes of correlated noise along

the scan paths. In order to minimize these effect on the final maps, a prewhitening,

high-pass filtering procedure has been applied to the data. The method is based on

fitting a baseline to the TOD after removal of an estimated sky signal. The baseline is

subtracted before the signal is added back in.

For experiments that perform large circles on the sky, the CMB signal in the Fourier

domain is located around the scan frequency, so that it is negligible at higher frequencies.

A low-pass filter can be used to remove high frequency microphonic noise, while a high-

pass filter can be applied to remove very low frequency where 1/f noise dominates.
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5. Pointing reconstruction

Pointing reconstruction consists of determining for each sample where the detectors are

pointing in the sky. The accurate a posteriori reconstruction is critical for mapping

correctly the sky signal.

5.1. Method

The first step is to reconstruct the pointing direction of the telescope as a whole.

This is usually performed using a stellar or solar sensor aligned with the direction

of the telescope. This can be combined with several attitude sensors measuring either

absolute angles (GPS) or angular velocities (gyroscopes). This step can be described

mathematically as a rotational matrix, called the attitude matrix, which converts from

an Earth-based reference frame to the telescope frame. It is defined by three Euler angles

and so usually described by a quaternion. From stellar sensor data we can reconstruct

the pointing direction by comparing observations to catalogs. The sensor outputs can

then combined using a Kalman filter [Kalman (1960)], which recursively estimates the

state of this dynamic system from a series of incomplete and noisy measurements.

The positions of individual detectors with respect to the telescope can then be

reconstructed from measurements of bright, compact sources, such as planets, or bright

Galactic or extra-Galactic sources.

5.2. Accuracy

The effect of an unknown, random pointing reconstruction error can be modeled

using the modified formula for the uncertainty in a power spectrum mesaurement

[Knox (1995)]:

∆Cℓ

Cℓ
=

√
2

(2ℓ+ 1)fsky

(
1 +

w

CℓWℓ

)
,

where w is the noise per beam, fsky is the fraction of the sky covered, and Wℓ is the

transfer function of the beam (Wℓ = e−ℓ(ℓ+1)σ2

for a gaussian beam). The beam causes

a loss of sensitivity at higher multipoles ℓ. Pointing uncertainty can be modeled as

a smearing of the beam, which increasing the effective beam width. Thus, pointing

requirements for CMB experiments are usually fixed by comparison with the level of

noise at high multipoles.

As an example, detail on methods for the pointing reconstruction of Planck can be found

in [Harrison (2004)].

5.3. Focal plane reconstruction

The position of each photometric pixel in the focal plane relative to the Focal Plane

Center is computed using a point source as reference (figure 14). This then allows us to

build the pointing of each detector using the pointing reconstruction.
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Figure 14. The MAXIMA-II focal plane. The contours, from the center of each beam

out, represent the 90%, 70%, 50%, 30%, and 10% levels respectively. (figure extracted

from [Rabii et al (2006)])

6. Detector response

This section describe the reconstruction of the focal plane parameters: the time response

of the detectors, the optical response of the photometric pixels and the focal plane

geometry on the celestial sphere.

6.1. Time response

The transfer function of the experiment is usually parameterized by a thermal time

constant of the detector and the properties of the readout electronics and filters. The

time response of the detectors can often be described by a simple thermal model where

the relaxation follows e−t/τ .

The time constant τ can be evaluated on bright sources profiles. Nevertheless, depending

on the scanning strategy, it can be difficult to disentangle from, or even degenerate with,

the beam shape. This is especially the case for experiments that scan the sky in one

direction only, with quasi-constant rotation speed (such as Archeops or Planck), whereas
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scanning small patches back and forth allows one to deduce the true shape of the beam

below the leak due to the time constant (such as for BOOMERanG or MAXIMA).

If an optical method is not usable for some reason, the time response of the detector

may also be estimated using the signal from cosmic ray glitches. A cosmic-ray hit on a

bolometer is well approximated by a delta function power input. It leaves on the data-

stream a typical signature of the response of an impulsive input which correspond to

the transfer function of the detector, including electronics. A template of the transfer

function can be obtained by piling up all glitches in a given channel after common

renormalization both in position and amplitude. It can be either directly used as

the detector transfer function (BOOMERanG [Masi et al (2006)], figure 15) or used

to estimate the parameters of a model (Archeops [Maćıas-Pérez et al (2006)]). For

bolometers, due to the internal time constant of the detector absorber, differences can

appear with respect to the models. Indeed, the energy deposit on the entire absorber

(for millimeter-wave photons) or in a localized area (for cosmic rays particles) affect

differently the response of the detector. In the worst case, several other time constants

can appear on glitches, depending on where the cosmic ray hits the detector.

Figure 15. In-flight response of the 145W1 BOOMERanG channel to an impulsive

event. The frequency response of the system is the Fourier Transform of this response.

The points are accumulated from several cosmic-rays events shifted and normalized to

fit the same template. (Figure extracted from [Masi et al (2006)])



CONTENTS 34

The result of a time constant is basically to low pass filter a signal. Deconvolving

the data stream by the transfer function results in an increase of the noise at higher

frequency.

6.2. Beam

The beams represent the optical transfer function of the instrument. The response

to point sources for many CMB experiments can often be modeled as a 2D-gaussian,

but asymmetry of beams has become one of the most important sources of systematic

problems for CMB experiments.

Beams are generally estimated using the response to a point source such as planets

or bright stellar objects, which can be combined with physical optics models. For

symmetrical beams, a profile in one dimension can be used to ajust the model

(BOOMERanG). Otherwise, local maps of brighter sources, such as Jupiter for WMAP

[Page et al (2003)] or Archeops [Maćıas-Pérez et al (2006)], are constructed to estimate

the beam shape.

Multimode horns can show more complex beam pattern with several maxima (for an

example, see the Archeops beam pattern [Maćıas-Pérez et al (2006)]).

Figure 16. Beam window function in multipole space for a WMAP (left, extracted

from LAMBDA, http://lambda.gsfc.nasa.gov) detector, and Archeops (right, extracted

from [Tristram et al (2005b)])

In CMB analyses, beam effects are often simulated and corrected on the power spectrum

rather than deconvoluted in maps domain. Simulations include the convolution by

the beam pattern so that the effect is corrected via a transfer function in multipoles

(figure 16).

Errors due to an asymmetrical beam pattern being treated as symmetrical a the major

source of systematics at high multipoles (figure 17).

Several different methods of modeling beam pattern have been developed. Each

observation of the sky is convolved with the beam, which depends both on its

shape and on its orientation on the sky. For asymmetric beam patterns, the
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convolution is then intrinsically linked to the pointing at each point in time, which

makes it computationally intensive. Most convolution methods work in harmonic

space using either a general convolution algorithm [Wandelt & Hansen (2003)] or

a model of the beam pattern in real space that can easily be decomposed in

harmonic space. For the latter, several methods have been developed in order

to symmetrize the beam [Page et al (2003), Wu et al (2001)], to approximate the

ellipticity [Souradeep & Ratra (2001), Fosalba et al (2002)], or decompose the beam

pattern into a sum of gaussians [Tristram et al (2004)] (BOOMERanG, Archeops).

Figure 17. Effects of beam asymmetry on Cℓ. Left: for a BOOMERanG bolometer

at 145 GHz, computed from the physical optics model (red line) and a 9.8 arcmin

FWHM gaussian beam (black line). (figure extracted from [Masi et al (2006)]) Right:

ratio between the window function for the actual beam and that for a gaussian beam

for each WMAP channel. (Figure extracted from [Hinshaw et al (2006)])

6.3. Polarization beams

For polarization-sensitive detectors, we define the co- and cross-polarization beams. For

a given polarization sensitivity direction at the receiver, the direction of co-polarization

at the beam center (on-axis) is conveniently defined as the image of the sensitivity

direction through the optics. The cross-polarisation sensitivity direction is orthogonal

to the co-polarization.

For data analysis, one needs to estimate the level of cross-polarization in order to

characterize the beam patterns and reconstruct the polarized signal of the sky. Moreover,

in principle, a significant asymmetry of the main beam can contaminate the polarization

measurements.This effect depends largely on the scanning strategy. As for the main

intensity beam, the effect of the cross-polarization on the maps is estimated using

simulations. For experiments such as WMAP [Jarosik et al (2006)] or BOOMERanG

[Masi et al (2006)], any cross-polarization contribution due to the optics is negligible

with respect to the intrinsic cross-polarization of the detectors (figure 18).
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Figure 18. left: Comparison of the cross-polar (contours) and co-polar (colors) beams

for one of the BOOMERanG 145 GHz channels, as computed with the physical optics

code BMAX. (figure extracted from [Masi et al (2006)]) right: WMAP-measured focal

plane for the A side for the co- and cross-polar beams. The contours are spaced by

3 dB and the maximum value of the gain in dBi is given next to selected beams.

Measurements at twelve frequencies across each passband are combined using the

measured radiometer response. This beam orientation is for an observer sitting

on WMAP observing the beams as projected on the sky. (figure extracted from

[Jarosik et al (2006)])

6.4. Far sidelobes

In all radio telescopes, each beam has sidelobes, or regions of nonzero gain away from

the peak line-of-sight direction. Due to diffraction effects, light from regions of the sky

far from the main beam can reach the detectors.

Sidelobe response over 4π sr of sky can be measured from ground-based sources and/or

in-flight measurements of very bright sources such as Moon or Sun [Barnes (2003)].

Sidelobe pickup introduces a spurious additive signal into the time-ordered data for each

detector. The optical systems of CMB experiments are designed to produce minimal

pickup from signals entering the far sidelobes. Thus systematic artifacts remaining in

CMB maps can be based on a well-justified assumption that sidelobe effects are small

relative to the sky signal.

For most applications in radio astronomy, such weak responses would be negligible.

However, the relative brightness of Galactic foregrounds makes side-lobe pickup a

potentially significant systematic effect for CMB measurements (3.7% to 0.5% of the

total sky sensitivity for WMAP [Page et al (2003)]).

7. Calibration

7.1. Spectral calibration

The power absorbed a the detector is a function of the incident optical power, the

spectral response and the optical efficiency of the system. The spectral response of the

detector is necessary for the analysis of the data. Unlike the calibration gain and offset
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that can be estimated in-flight, bandpass measurements usually must be made in the

lab.

The width of the bands are usually designed to be as broad as possible: ν/∆ν ≃ 3.

This gives larger bands at higher frequencies [Jarosik et al (2003), Benôit et al (2002),

Masi et al (2006)].

7.2. Gain corrections

The responsivity of CMB detectors depends on the loading they see. This can evolve

during the observations. To correct for the gain variation one can make repeated

measurements of a known source on the sky (such as the CMB dipole), one can embed

a calibration source within the experiment [Crill et al (2003)], or one can use a model

based on housekeeping data. Gain models are non-linear functions that strongly depend

on instrument parameters (for example, detector voltages, gains of amplifiers, phase

between radiometers) and monitored temperatures.

After this correction, the calibration factor in mK/µV can be considered as constant

over the flight, thus allowing for a much easier determination.

7.3. Absolute calibration

Detectors measure voltage variations that are directly proportional to the temperature

variation of the sky. To get back to the temperature, one has to determine a calibration

factor by detector. The latter could be considered constant since the time dependance

has been subtracted to first order by the linearity corrections above.

Some calibrators that can be used are: the dipole (kinetic and orbital), the galactic

diffuse emission and point sources. Usually, for channels dominated by the CMB

(between 20 and 300 GHz), calibration on dipole is preferred. Otherwise, at higher and

lower frequencies, galactic emission calibration can be successfully applied. Error-bars

on point source brightness temperature models and beam model uncertainties makes

this kind of calibration usually less precise than those on diffuse emission.

• Dipoles

The Dipole is usually prefered for calibrating experiments with large sky coverage,

such as COBE, FIRS, the 19 GHz Experiment, Archeops, WMAP and Planck. This

is due to the fact that it depends only marginally on pointing errors, it is a stronger

signal than CMB anisotropies by a factor 100, and it has the same electromagnetic

spectrum, while not being so bright as to cause non-linearities in the detectors.

One usually estimates the calibration factor using a linear fit of the time ordered

data to a template containing the dipole and galactic emissions. The template is

made with measurements made by experiments such as COBE-DMR and WMAP

for the kinetic dipole and SFD maps [Schlegel et al (1998)] for diffuse galactic

emissions.
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• Galaxy

In terms of EM-Spectrum coverage and absolute calibration, data from

the Far Infrared Absolute Spectrophotometer (FIRAS) instrument on COBE

[Mather et al (1990)] are the most sensitive. FIRAS products are brightness maps

which are converted to photometric maps with the flux convention of constant νIν .

To be compared with this galactic template, maps from experiments need to be

degraded to the FIRAS resolution of ∼7 degree.

• Point sources

Point source fluxes (such as from planets) can be compared to brightness models.

This calibration method is of particular importance for small coverage experiments

that cannot detect the dipole and/or galactic emission with enough signal-to-noise.

7.4. Intercalibration

CMB experiments could have large errors on absolute calibration (due to a small

sky coverage for example). But for coadding data from multiple detectors, as

well as for polarization measurements, precise intercalibration between detectors is

essential. Indeed, the polarization signal from bolometer and radiometer experiments

is reconstructed using differences between pairs of detectors. Therefore the accuracy on

this reconstruction is very sensitive to the relative calibration. To ensure the precision

on intercalibration, one can compare Galactic profiles at constant Galactic longitudes.

Relative-calibration factors (usually done on a per-frequency basis) are then obtained

by a χ2 minimization that can be constrained or not via Lagrange multipliers. For

polarized detectors, the presence of strongly polarized regions of the sky, especially in

the Galactic plane, may affect the determination of the intercalibration coefficients. To

avoid this effect, we proceed iteratively and mask, at each step, the strong polarized

areas using the projected maps constructed with the intercalibration factors. Attention

is paid to build a common mask for all detectors that have to be compared.

8. Data quality checks and noise properties

For further processing of the data, one assumes that the noise is gaussian and piecewise

stationary. Statistical tools are used to describe and validate the treatment described

above before projecting the data into sky maps. This can be used to check that

individual detectors have no strange behavior or inhomogeneous properties.

8.1. Time-frequency analysis

The power distribution of the time-ordered data in the time-frequency (obtained using,

for example, wavelets tools) can be used to find special features in the noise in time

limited domains. These features can be due to differences in the foregrounds signal for

particular scanning strategies at low frequencies together with 1/f noise of detectors.

After systematic subtraction, the power distribution should be flat.
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Time-frequency analysis, such as in [Maćıas-Pérez & Bourrachot (2006)], allows us to

exclude from the further processing the detectors which present either strong or highly

time variable systematic residuals.

8.2. Noise power spectrum estimation

Estimation of the Fourier power spectrum of the noise is essential in CMB analysis.

First, it can be used to fill the small gaps in the data such as those due glitches or point

sources subtraction, for specific analyses and second, we need an accurate estimate of

it for Monte-Carlo purposes.

Gap filling is necessary for map making process and Fourier power spectrum estimations

that requires continuous data (for example, if we want to use the fast fourier

transform). Gaps are filled with what we call locally constrained realizations of

noise. Simple algorithms are based on a reconstruction of low and high frequency

components separately. First, we reconstruct the low frequency noise contribution via

an interpolation within the gap using an irregularly sampled Fourier series. Finally, we

compute the noise power spectrum locally (in time intervals around the gap) at high

frequency and we produce a random realization of this spectrum. Notice that we are

only interested in keeping the global spectral properties of the data. Moreover, the gaps

are in general very small in time compared to the piece of the data used for estimating

the power spectrum, and therefore this simple approach is usually accurate enough.

Both Maximum Likelihood map making and angular power spectrum estimation can

heavily depend on the knowledge of the noise spectral density. Bayesian approaches

can be used in order to estimate the noise [Natoli et al (2002)] or simultaneously the

noise and the signal [Ferreira & Jaffe (2000)] in the data. Considering the low signal-

to-noise ratio in CMB data, a first estimate of the noise power spectrum can be directly

derived from the data themselves. Then, we can iterate to higher precision. We found

algorithms that rely on the iterative reconstruction of the noise by subtracting from the

TOD an estimate of the sky signal [Amblard & Hamilton (2004)] useful. This latter is

obtained from a coadded map which at each iteration is improved by taking into account

the noise contribution.

8.3. Gaussianity of the noise

To this point, we have only considered the power spectrum evolution to define the level

of stationarity of the data. To be complete in our analysis we first have to characterize

the Gaussianity of the noise distribution and second check its time stability.

Kolmogorov-Smirnov tests can be used to check the time evolution of the noise of each

detector. The Kolmogorov-Smirnov significance coefficient gives the confidence level

at which the hypothesis that the noise has been randomly drawn from a Gaussian

distribution can be accepted. As intrinsic detector noise can usually be considered

Gaussian to a very good approximation, any changes in the distribution function of
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the noise will indicate the presence of significant deviations from systematics such as

Galactic and/or atmospheric signals, which are neither Gaussian nor stationary.

[Maćıas-Pérez et al (2006)] use a Kolmogorov-Smirnov test in the Fourier domain.

Working in the Fourier domain both speeds up the calculations and isolates the noise,

which dominates at intermediate and high frequencies, from other contributions like

the Galactic and/or atmospheric signals at low frequency. Then, Kolmogorov-Smirnov

statistics under the hypothesis of a uniform distribution is applied in consecutive time

intervals, which are compared two by two.

9. Map making

Once the data has been “cleaned”, the time-ordered samples must be be projected

onto a pixelized map of the sky using the associated pointing information. To each

measurement in time is associated a pixel in its pointing direction.

The most common pixelization scheme used in CMB data analysis today is the

Hierarchical Equal Area isoLatitude Pixelization, or HEALPix‡ [Gorski et al (2005)], in

which each pixel is exactly equal-area, and in which pixels lay on sets of rings at constant

latitude. This allows one to take advantage of fast Fourier transforms in the analysis,

when decomposing the map data into spherical harmonics [Muciaccia et al (1997)].

If the experiment has sensitivity to polarization, given the orientations of the detectors

on the sky as a function of time, maps of the Q and U stokes parameters are also

reconstructed from the signal.

9.1. The Map-making problem

Our detectors measure the temperature of the sky in a given direction through an

instrumental beam. This is equivalent to saying that the underlying sky is convolved

with this instrumental beam. The time-ordered data vector, d, may therefore be

modeled as the sum of the signal from the pixellized, convolved sky T and from the

noise n:

d = A ·T + n.

The pointing matrix A, of size Nt ×Np, relates each time sample to the corresponding

pixel in the sky. For detectors not sensitive to polarization, Tp is the temperature of the

sky in the pixel p and each element of A is a scalar. For polarized-sensitive detectors,

Tp = (I, Q, U)p also contains the Stokes parameter values in the pixel p, so each element

of the matrix A is a 3× 3 matrix such that

dt = Ip +Qpcos(2ψt) + Upsin(2ψt) + nt,

where ψt is the angle of the detector’s polarization direction, with respect to the

polarization basis in the pixel p, at the time t.

‡ http://healpix.jpl.nasa.gov
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Defined so, A is very sparse. For an ideal optimal beam, it contains only one (three

for polarization-sensitive detectors) non-null values in each row, as each time sample is

sensitive to only one pixel of the convolved sky. For an axisymmetric beam response,

the ”smearing” and ”pointing” operations commute, and one can solve for the beam

convolved map. However, this is not exact for an asymmetric beam because the latter

couples to the scanning strategy. In that case, we can use more specific method to

perform the deconvolution of the beam [Arnau & Saez (2000), Burigana & Sáez (2003),

Armitage & Wandelt (2004)].

At this point, it is usually assumed that the noise properties are Gaussian and piece-wise

stationary (if not, more filtering and data cleaning are usually done). Both assumptions

are crucial, as they allow major simplifications of the map-making and power spectrum

estimation problems. Namely, Gaussianity means that all the statistical information of

the noise is contained in its covariance matrix N. That is,

N =
〈
nnT

〉
,

where the symbols 〈 〉 indicate an ensemble average.

Using the stationarity assumption, the noise can also be described by its Fourier power

spectrum, leading to major simplifications of the covariance matrix. It implies that

each stationary block of N is a symmetric Toeplitz matrix [Golub & van Loan (1996)],

diagonal in the Fourier space.

Given the above, the map-making problem becomes that of finding the best estimate,

T̂, of the sky, T, given our data, d, and scanning strategy, A [Stompor et al (2002)].

9.2. A simple solution : “coaddition”

If the noise in the time-ordered data is “white”, then we can make maps in the most

intuitive manner – simply by binning data into pixels on the sky. This is what we call

“coaddition”.

T̂ =
[
ATA

]−1
ATd. (9.1)

The operator AT sums the time-ordered data into the correct sky pixel, while ATA is

a diagonal matrix, with the value of each diagonal element being the number of time-

ordered samples which have fallen into the corresponding pixel – it gives the number of

samples binned into each pixel. If the noise in each data sample is independent, that is

if the noise is white, the constructed map is optimal in terms of signal to noise ratio.

Often, however, the noise in our measurements is correlated, resulting in pixel-to-pixel

correlations in maps. Since much of the science of the CMB depends on measuring

correlations between different points on the sky, it is necessary to characterize and

account for these correlations, which complicates our map making procedures somewhat.

9.3. Maximum Likelihood (ML) methods

The most general solution to the map-making problem is obtained by maximizing the

likelihood of the data given a noise model [Wright (1996), Tegmark (1997)]. As the
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noise is Gaussian and assuming a uniform prior on the sky temperature, the likelihood

reads

P (T|d) ∝ 1

|(2π)NtN |1/2
e−(d−AT)T

N−1(d−A·T)/2

Maximizing this equation with respect to each pixel of T leads to the generalized least-

squares (GLS) equation

A†N−1AT̂ = A†N−1d. (9.2)

The solution to this is, of course

T̂ =
(
ATN−1A

)−1 ·ATN−1d.

Note that T̂ is also the minimum variance estimate of the map for gaussian noise. If

the noise is not Gaussian, the GLS estimator still has the minimum variance among all

linear estimators. Also, if the noise in the time-ordered data is white, N is diagonal and

this solution is the same as the “coadded” map solution given in equation 9.1.

The covariance matrix of the resulting map is

N =
(
AT ·N−1 ·A

)−1
.

A couple of points:

• ML map-making methods usually consider noise correlations on smaller subsets of

the data [Natoli et al (2001)]. In this case, the matrix N becomes circulant and the

product N−1d can be computed in the frequency domain in which N−1 is diagonal.

• In practice, the inversion or even the convenient calculation of the Np ×Np matrix

ATN−1A is impossible for large datasets such as Archeops, WMAP or Planck.

Thus, equation 9.2 is usually solved using methods such as the preconditioned

conjugate gradient (PCG) [Golub & van Loan (1996)] or FFT methods. Iterations

are repeated until the fractional difference between successive iterations has reached

a low enough value (typically of the order of 10−6).

Among the codes that have been developed to solve the generalized least squares

(GLS) mapmaking equation using iterative conjugate gradient descent and FFT

techniques, most have already been applied successfully to CMB data sets. MapCUMBA

[Doré et al (2001)] has been used to construct the Archeops and BOOMERanG maps.

Mirage [Yvon & Mayet (2005)] has been successfully applied to Archeops data. ROMA

[de Gasperis et al (2005)] has also been used to analize data from the last (2003)

Antarctic flight of BOOMERanG. These codes with MADmap [Borrill (2007)] have

been extensively compared in the Planck framework [Ashdown et al (2006b)].

9.4. Destriping methods

So-called “destripers” attempt to simplify the general map making problem described

above when the solutions above would require too many resources. An early, basic

destriper was developed for the 19 GHz experiment [Boughn et al (1992)].
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It has been shown [Janssen et al (1996)] that instrumental noise, in particular 1/f noise,

can be represented by an uniform offset on a scan circle signal. In the destriping

approach, the noise is divided into a low-frequency component represented by the offsets

x unfolded on time-ordered data by the matrix Γ and a white noise part n which is

uncorrelated

d = A ·T + Γ · x + n

The maximum-likelihood coefficients, x, can be found from the time-ordered data, d,

by solving (
ΓT N−1ZΓ

)
· x = ΓT N−1Z · d

where

Z = I−A
(
ATN−1A

)−1 ·ATN−1.

The destriping technique for the CMB map-making has been investigated in

minute detail for the Planck satellite [Burigana et al (1997), Delabrouille et al (1998),

Maino et al (1999), Maino et al (2002a), Keihanen et al (2004)], which we will follow

here. It exploits the fact that Planck is spinning and thus detectors observe large circles

on the sky over and over, with each circle being observed several times (of order 60).

Averaging over these circle makes rings with higher signal-to-noise ratio. To extract

the values of the offsets, detripers use the redundancy of the observing strategy by

considering the intersections between rings. Intersections are defined when two points

from different scan circles fall inside the same sky pixel.

After the amplitudes of the offsets have been estimated, they can be used to extract

an estimate of the 1/f noise component in the data. A “cleaned” map is then

obtained by simply coadding rings. Residuals of 1/f noise found in the clean map

for a knee frequency below 0.4 Hz have been shown significantly below the noise level

[Maino et al (2002a)] considering a Planck-like scanning strategy (figure 19).

Destriper codes have been developed in the context of Planck analysis : Polar

[Keihanen et al (2007)], MADAM [Keihanen et al (2005)], Springtide [Ashdown et al (2006a)]

and Polkapix [Perdereau et al (2007)]. In fact, as shown in [Poutanen et al (2006)] and

[Ashdown et al (2006b)], the baseline length used need not be tied to the length of a

Planck ring; thus the codes above are generalizations of the Janssen presciption. In-

cluding priors on the low frequency noise, the destriping algorithm is equivalent to the

GLS algorithm in the short baseline limit. Similarly, GLS “optimal” codes can be con-

sidered as destripers with a baseline fixed by the detector sampling rate and an accurate

description of the noise covariance properties.

10. Foreground removal

Maps obtained from CMB data measure the temperature variation of the sky including

astrophysical components in addition to the signal of the CMB. The primary goal for a

CMB experiment is to remove the foregrounds to provide a clean map of the CMB for
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Figure 19. Simulation at 217 GHz for Planck before (top) and after destriping

(bottom). Simulations only include 1/f noise and CMB signal.
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cosmological analysis. But this process can also improve understanding of foreground

astrophysics.

Removal methods typically rely on the fact that the foreground signals have quite

different spatial and spectral distributions than the CMB. Galactic free-free and

synchrotron emissions decrease in amplitude with frequency whereas Galactic dust and

atmospheric emission rise (figure 6). Thus, lower and higher frequency channels are most

sensitive to free-free and synchrotron or dust and atmospheric emission, respectively.

10.1. Linear combination

Multi-frequency sky maps can be linearly combined to subtract, to first order, Galactic

signals, while preserving the CMB. Calibration factors and systematic effects can alter

this combination when using different data sets.

The most simple way to obtain a clean CMB map is to minimize the variance of

the resulting map, constraining the sum of the coefficients in order to preserve the

CMB signal [Bennett et al (2003b)]. [Eriksen et al (2004a)] developed a similar method

considerably faster by using a Lagrange multiplier to linearize the problem. The method

is template-free and can be efficient but gives a single CMB map with complicated noise

properties.

10.2. Template removal

Decorrelation algorithms use templates of these emissions to subtract parasitic signals

either in the map or in the time domain. Templates are constructed from observations,

coming either from the same experiment or not, and extrapolated in frequency.

Galactic signals dominate at low frequencies in time domain (less than a few Hz).

Templates can be bandpass filtered in that range in order to improve the efficiency

of these algorithms. The correlation coefficients are then directly computed via a simple

regression analysis. A linear combination of the templates multiplied by the correlation

coefficients is then removed from the data.

Extrapolation in frequency and in space can give non-negligible residuals in the

decorrelated maps. It is thus important to estimate the residual foreground uncertainties

that remain after these templates have been fit and subtracted. Nevertheless,

template-based maps have been used for the CMB anisotropy power spectra

estimation of WMAP [Hinshaw et al (2006)], Archeops [Maćıas-Pérez et al (2006)] and

BOOMERanG [Masi et al (2006)].

10.3. Component separation

Component separation algorithms take advantage of the fact that CMB and foregrounds

have different EM-spectra.

The signal from several channels at different frequencies can be modeled as a linear

combination of astrophysical components plus noise. This leads to a decomposed
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representation of:

xd
ℓm = Adc s

c
ℓm + nd

ℓm,

where the data xd
ℓm are decomposed into spherical harmonic coefficient by detector d.

The mixing matrix Adc describes the amplitudes of each of the components c for each

detector d. sc
ℓm and nd

ℓm are the spectra of the components and of the noise, respectively.

Coefficients of the mixing matrix A are linked to the electromagnetic spectrum of each

component and to the relative calibration between detectors.

Maximum likelihood methods give a simple solution of the problem in the case where

we have stationary gaussian noise characterized by its auto-correlation matrix N :

s̃ =
(
AtN−1A

)−1
AtN−1y.

More sophisticated algorithms have been developed:

Wiener solutions [Bouchet & Gispert (1999), Bouchet et al (1999)]. The Statistics

of the astrophysical components must be gaussian and stationary and their

spectrum is assumed to be known. The likelihood function includes a term that

take into account the correlation of s in spherical harmonic space.

Maximum entropy [Hobson & Lasenby (1998)]. In contrast to the Wiener solution,

this does not assume Gaussianity of the components, but still requires us to know

A and N . Prior assumptions on components are taken into account through a

additional term in the likelihood that contains the entropy of the system.

Independent Component Analysis (ICA) [Maino et al (2002b), Baccigalupi et al (2004)].

These algorithms do not assume any priors on components. They compute the de-

viations with respect to a model of gaussian components equally distributed. This

differences can result in non-gaussian effects, non-stationary effects and spectral

dependancy effects [Delabrouille et al (2003)].

11. Angular Power Spectrum Estimation

The angular power spectrum of CMB anisotropies has become one of the most important

tools of the modern cosmology. While in the linear regime, fluctuations predicted by

most inflationary models [Hu et al (1997), Linde et al (1999), Liddle & Lyth (2000)]

result in gaussian anisotropies. In such cases, angular power spectra both in temperature

and polarization contain all the cosmological information in the CMB. In particular,

cosmological parameters can be derived from these spectra.

In the last decade, CMB data have grown considerably in both quantity and quality.

Concurrently, methods have been developed to estimate the angular power spectra

from maps as quickly as possible. This has allowed direct comparisons of theoretical

predictions and observations using fast and accurate statistical methods. Moreover,

great efforts have been made on simplifying angular spectra estimators so that they can

deal with the huge amount of accurate data in a reasonable amount of time, especially
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in light of the new arrays of detectors that will soon multiply the number of detectors

by one or two order of magnitude.

Except for very specific methods that, for example, estimate spectra on rings

for Planck-like scanning strategies [van Leeuwen et al (2002), Challinor et al (2002),

Ansari et al (2003)], most power spectra estimators belong to one of the two following

categories: maximum likelihood algorithms or quadratic estimators usually called

pseudo-estimators (see [Efstathiou (2004)] and [Efstathiou (2006)] for a complete

discussion).

Maps of I, Q and U components of the CMB signal are decomposed into spherical

harmonics aT
ℓm, aE

ℓm and aB
ℓm. From these coefficients, one can construct the 6 angular

power spectrum : CTT
ℓ , CEE

ℓ , CBB
ℓ , CTE

ℓ , CTB
ℓ and CEB

ℓ . Systematic effects need

to be taken into account in this process. In particular, beam smoothing effects

or partial coverage of the sky must be accounted for. Even for full sky missions,

foreground residuals usually still dominate the noise in the Galactic plane. To avoid

any contamination of the angular power spectra, a mask is applied to suppress pixels of

the sky dominated by parasitic signal, leading to less than full-sky effective coverage.

11.1. Maximum Likelihood methods

Maximum likelihood algorithms [Bond et al (1998), Tegmark (1997), Borrill (1999a)]

estimate angular power spectra using the angular correlation function M by maximizing

the probability of Cℓ considering the maps T:

P(Cℓ|T ) ∝ exp

[
−1

2

(
T TM−1T + Tr(lnM)

)]
.

The correlation matrix of pixels M includes the correlations between pixels due to sky

signal, S, and that due to noise N : Mpp′ = Spp′ + Npp′. Thus, the signal correlation

matrix reads

Spp′ =
∑

ℓ

2ℓ+ 1

4π
B2

ℓCℓPℓ (cos θpp′)

where θpp′ is the angle on the sphere between pixels p and p′.

Error bars are usually estimated directly from the likelihood function which is either

sampled for each multipole or approximated by a quadratic form. The generalization

to polarization can be found in [Tegmark & de Oliveira-Costa (2001)].

The algorithm scales as O
(
N3

pix

)
where Npix is the number of pixels in the map. This

implies that maximum likelihood methods are not well adapted to surveys such as Planck

which should deliver high resolution maps with more than 107 pixels [Borrill (1999b)].

11.2. Quadratic estimator or pseudo-Cℓ methods

Contrary to maximum likelihood algorithms, pseudo-Cℓ methods compute the angular

power spectra directly from the data. These spectra are biased by instrumental effects

such as beam smoothing effects, partial sky coverage or filtering of data and so must
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be corrected for these effects. Methods differ in the way they correct spectra for these

effects.

An early description of this method can be found in [Peebles (1973)], and has

been used for the estimation of the angular power spectrum of clusters of Galaxies

[Peebles & Hauser (1974)]. More recently, several methods have been developed, among

them:

• spice [Szapudi et al (2001)] and its extension to polarization [Chon et al (2004)]:

This algorithm computes the two-point correlation function ξ in real space in order

to correct for any inhomogeneous sky coverage and then integrate with a Gauss-

Legendre quadrature to obtain the Cℓ’s.

The method uses the correlated function estimator given by

D(cosθ) =
∑

lm

|alm|2
1

4π
Pℓ(cosθ)

The unbiased correlation function estimator can thus be obtained as

ξ̃(cosθ) =
Ds(cosθ)− D̄n(cosθ)

Dw(cosθ)

where Ds is the raw weighted pairwise estimator, D̄n is the average raw noise

correlation function calculated from Monte-Carlo simulations and Dw is the weight

correlation function.

• master [Wandelt et al (2001), Hivon et al (2002)]:

This algorithm computes the angular power spectra directly from the observed

maps before correcting for the inhomogeneous sky coverage in spherical harmonic

space. An extension to polarization can be found in [Hansen & Górski (2003),

Challinor & Chon (2005), Brown et al (2005)]. The biased spectrum (called

pseudo-spectrum) C̃ℓ rendered by the direct spherical harmonics transform of a

partial sky map is different from the full sky angular spectrum Cℓ but their ensemble

average are linked by :

˜〈Cℓ〉 =
∑

ℓ′

Mℓℓ′Fℓ′B
2
ℓ′〈Cℓ′〉+ ˜〈Nℓ〉.

Mℓℓ′ , which is computed analytically using the spherical transform of the weight

mask, describes the mode-mode coupling resulting from the cut sky. Bℓ is a window

function describing the combined smoothing effects of the beam and finite pixel size.
˜〈Nℓ〉 is the average noise power spectrum estimated by Monte-Carlo. Fℓ is a transfer

function which models the effect of the filtering applied to the data stream or to

the maps.

Pseudo-Cℓ estimators often make use of the fast spherical harmonics transform

that scales in O
(
N

3/2
pix

)
for the HEALPix pixelization scheme [Gorski et al (2005)].

Nevertheless, they need a precise description of the instrument (beam, filtering, noise)
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that requires a large number of Monte-Carlos. These latter are also used to estimate

the power spectrum error bars.

Recently, these methods have evolved into cross-correlation methods that deal

naturally with uncorrelated noise [Kogut et al (2003)], and can compute analytical

estimates of the error bars [Tristram et al (2005a)]. A cross-correlation method derived

from the MASTER algorithm has been used to estimate the lastest results of

WMAP [Hinshaw et al (2003)], Archeops [Tristram et al (2005b)] and BOOMERanG

[Jones et al (2006), Montroy et al (2006), Piacentini et al (2006)].

11.3. Hybrid methods

Each of the previous methods make different assumptions about the data and

are sensitive to different kinds of systematic effects. [Efstathiou (2004)] and

[Efstathiou (2006)] show how to combine maximum likelihood methods and pseudo-Cℓ

methods to take advantage of both algorithms.

• high ℓ. pseudo-Cℓ methods, including cross-correlation algorithms, can estimate

the Cℓ quickly and accurately enough when instrumental noise is dominant; i.e.

at higher multipoles. Nevertheless, approximations made in the correlation matrix

computation imply some correlation for the lower points of the spectra.

• low ℓ. Maximum likelihood algorithms used on lower resolution maps can give very

precise estimates of the spectra at low multipoles as well as error bars and covariance

matrices. Nevertheless, they are very CPU consuming and are not adapted to high

resolution maps.

11.4. Fourier spectrum of rings Γm

Several CMB experiments have performed or will perform circular scans on the sky

which we will call rings (the 19 GHz experiment, FIRS, Archeops, WMAP, Planck).

Carrying out a one-dimensional analysis of the CMB inhomogeneities on rings provides

an alternative to characterize its statistical properties [Delabrouille et al (1998)]. In

particular, some systematic effects could be easier to treat in the time domain rather

than in the two-dimensional maps; 1/f noise for instance.

In [Ansari et al (2003)], the authors propose a scaling law that allows one to combine

spectra corresponding to different colatitude angles (e.g. several detectors in the focal

plane) before to inverting to recover the angular power spectrum Cℓ.

11.5. Gibbs samplers

Gibbs sampling [Jewell et al (2004), Wandelt et al (2004)] allows one to sample the

power spectrum directly from the joint likelihood distribution given the time ordered

data. While maximum likelihood methods define an estimator to solve the a posteriori

density, Gibbs sampling methods for power spectrum estimation [Eriksen et al (2004b)]

propose sampling parameters values Cℓ from the posterior P (Cℓ|m) directly (where the
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map vector m is the least squares estimate of the signal s from the time ordered data).

The method works iteratively by sampling the conditional distributions P (s|Cℓ, m) and

P (Cℓ|s,m) ∝ P (Cℓ|s) [Tanner (1996)]. Each step is obtained from the previous one,

drawing a random realization from each density:

si+1 ← P (s|Ci
ℓ, m)

Ci+1
ℓ ← P (Cℓ|si+1)

After convergence, P (Cℓ|m) is obtained by marginalization of P (Cℓ, s|m) over s.

The linear systems are solved using a conjugate gradient algorithm. The choice of a good

preconditioner for the linear algebra solver is of primary importance. Nevertheless, the

calculations are dominated by the spherical harmonic transforms that scales in O(N
3/2
pix ).

It has been applied to both COBE-DMR data [Wandelt et al (2004)] and WMAP first-

year [O’Dwyer et al (2004)].

12. Analysis of distribution of CMB anisotropies

A consequence of the assumed flatness of the inflation potential is that intrinsic non-

linear effects during slow-roll inflation are generally quite small, though finite and

calculable [Acquaviva et al (2003), Maldacena (2003)]. The adiabatic perturbations

arising from quantum fluctuations of the inflaton field during inflation are thus

essentially Gaussian distributed. However, the mechanism by which the adiabatic

perturbations are generated is not fully established. Some alternative scenarios

(such as the curvaton or inhomogeneous reheating mechanisms) can lead to a

higher levels of non-gaussianity than that found in standard, single-field inflation.

Moreover, variants of the most simple inflationary models also predict observable levels

of non-gaussianity (e.g., generalised multi-field models [Wands et al (2002)], cosmic

defects [Landriau & Shellard (2003)] or late time phase transition).

Thus, to give a completely validate the inflationary fluctuation generation mechanism,

it is important to study the distribution of phases in temperature and polarization maps

and quantify the amount of primordial non-Gaussianity present in the CMB data. If

found, a more accurate description of this non-gausianities will be needed to distinguish

between competing models for primordial perturbation generation. In addition, the

search for non-Gaussianities has become a powerful tool to detect the presence of residual

foregrounds, secondary anisotropies (such as gravitational lensing, Sunyaev-Zel’dovich

effect) and unidentified systematic errors, which leave clearly non-Gaussian imprints on

the CMB-anisotropies data.

There are many techniques to test Gaussianity, many of them developed previously as

general statistical methods to test the normality of a data set, and others specifically

for CMB anisotropies. Most early works tested only the consistency between CMB

maps and simulated Gaussian realizations. More recent studies now derive constraints

on a parameter, fNL, characterizing the amplitude of the primordial non-Gaussianity in

the primordial gravitational potential Φ, characterized as a linear gaussian term plus a
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quadratic contribution

Φ(x) = ΦG(x) + fNLΦ2
G(x)

Among methods applied to CMB datasets we highlight:

• one-point moments, such as skewness and kurtosis;

• bispectrum analyses based on the Fourier Transform of the three-point correlation

function;

• geometrical estimators on the sphere;

• Minkowski functionals;

• goodness-of-fit tests;

• wavelet decompositions; and

• steerable filters to search for aligned structures;

Instrumental effects and observational constraints are usually taken into account through

Monte-Carlo simulations to estimate distributions of the testing statistic and the

confidence levels.

To date there is no evidence for significant cosmological non-Gaussianity. Several

groups have claimed detections of significant non-Gaussianities in the first-year

WMAP sky maps [Tegmark et al (2003), Eriksen et al (2004c), Copi et al (2004),

Vielva et al (2004), Hansen et al (2004), Park (2004), Cruz et al (2005)]. However, the

WMAP team has shown that most of these detections are based on a posteriori statistics

and can be explained by Galactic foreground residuals, point-source residuals, or 1/f

noise properties [Spergel et al (2006)]. Further tests on WMAP 3-year maps have found

no significant deviation from Gaussianity.

From the WMAP 3-year sky maps, the constraint on fNL is [Spergel et al (2006)]:

−54 < fNL < 114

. Tests on other CMB experiments leads to similar results: Archeops

[Curto et al (2006)], BOOMERanG [de Troia et al (2007)], MAXIMA [Cayón et al (2003)],

VSA [Savage et al (2004), Rubiño-Mart́ın et al (2006)].

13. Cosmological parameters estimation

Cosmological models, described by a given set of parameters, can predict the shape of

the CMB angular power spectra. Thus, extracting cosmological information from CMB

anisotropies means constraining the parameters of a model given the data. Maximum

likelihood is often used as a method of parameter estimation to determine the best-fit

model. Given a class of models and an observed data set, the probability distribution

of the data (sometimes also multiplied by prior functions) is maximized as a function of

the parameters. Then the goodness-of-fit must be constructed in order to decide if the

best-fit model is indeed a good description of the data. If it is, one has to determine

confidence intervals on the parameters estimation.
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In principle, the likelihood function should be constructed using pixel map values. In

most of standard inflationary scenarios, CMB fluctuations on the sky are Gaussian

distributed, which implies that pixels are random variables following a multivariate

normal distribution with a covariance matrix as a function of the model parameters and

the noise. Since the parameters enter through the covariance matrix in a non-linear

way, the likelihood function is not a linear function of the cosmological parameters.

In practice, the complexity of this “full analysis” is increased by the size of the

data set (million-pixel maps expected for Planck) and by the model calculations

[Bond et al (1998), Bond et al (2000), Borrill (1999c), Kogut (1999)]. Thus, the

angular power spectrum is preferred, as it reduces significantly the size of the data

set without any loss of information, for the case of Gaussian fluctuations.

The exact meaning of the confidence intervals depends heavily on the method used:

• Marginalization: based on exact prediction of the Bayes theorem. For a given

parameter, the probability is integrate over all the others

P(θi) =

∫
dθn 6=iL(θn)

It answers to the question : “For a given value of θ, how good a fit can we get?”

• Minimization:

P(θi) = max {L(θn)}n 6=i

It answers to the question : “Is there at least one good fit for this value of θ?”

Note that these two approaches are equivalent for a gaussian distribution of the

parameters.

In both cases, finding the maximum of the likelihood surface in a multi-dimensional

space is very computationally heavy to compute. Cosmological parameter estimators

solve the problem by discretizing the space. For each set of parameters in a

predetermined grid, they can store either all statistical information or only the likelihood

value, L, before marginalizing or minimizing. Recently, Markov Chains Monte Carlo

(MCMC) likelihood analyses have become an alternative to these gridding methods

[Christensen & Meyer (2001), Lewis & Bridle (2002)]. This method is based on random

draws of the distribution function that is supposed to be a “realistic” sample of

the likelihood hypersurface. On this sample, one can derived the mean, variance

and confidence levels. It allows a faster analysis: while the gridding methods scale

exponentially with the number of parameters, the MCMC method scales linearly.

Historically, parameter estimation from CMB anisotropies started with a small number

of free parameters (less than 5), all others assumed fixed to their nominal values. Now,

the usual minimum set of parameter is made of 5: density of baryons (Ωb), density of

dark matter (ΩDM), density of dark energy (ΩΛ), amplitude of fluctuations (A) and the

optical depth of rionization τ . To this minimal set can be added a lot of more specific

parameters such as: the scalar index (ns), the running index, dark energy equation

of state (w) and its derivative, the neutrino masses, etc. In parallel, more and more
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observational data sets are included in the analysis coming from Supernovae Ia, Weak

lensing, Baryon Acoustic Oscillations (BAO), Hubble constant measurement by HST,

etc. The increase of complexity in the parameter estimation process has been allowed by

the increase of computer speed as well as by the development of faster codes to compute

the power spectra (CMBFAST [Seljak & Zaldarriaga (1996)]).

14. Current status of observations

Between the first COBE/DMR CMB anisotropy detection in 1992 and the

recent WMAP detections, many sub-orbital experiments have measured the CMB

anisotropies. In temperature, with WMAP [Hinshaw et al (2006)], BOOMERanG

[Jones et al (2006)], Acbar, CBI and the VSA measurements, we have now

a precise measurement of the angular power spectrum including the third

acoustic peak. For polarization measurements, spectra are just now becoming

available (from WMAP [Page et al (2006)], BOOMERanG [Piacentini et al (2006),

Montroy et al (2006)]), DASI [Leitch et al (2005)], CBI [Readhead et al (2004)] and

CAPMAP [Barkats et al (2005)]).

14.1. Angular power spectra

In 1992, the FIRAS instrument on the COBE satellite measured the CMB black

body spectrum at T = 2.735 ± 0.06 K [Mather et al (1990)] (updated in 2002 at

T = 2.725 ± 0.001 K [Fixsen & Mather (2002)]). With 7 degree angular resolution,

DMR, its sister experiment on the satellite, constrained the low part (ℓ < 12) of the

temperature power spectra [Tegmark (1996a)]. Since then a number of experiments,

both ground-based and balloon-borne, have helped refine our knowledge of the shape of

the first acoustic peak.

Even before WMAP results were released, experiments when combined clearly showed

the presence of the two acoustic peak (figure 20). But the error bars were still dominated

by systematic effects, and calibration was very difficult to obtain from a data set where

the instruments, the resolution and the frequency bands where so different. Some where

dedicated to small angular scales using a high resolution on a small sky patches, such

as DASI or CBI, whereas others, such as Archeops, covered large portions of the sky

(30%).

In 2003, WMAP first year results [Bennett et al (2003a)], with improved sensitivity and

sky coverage, gave error bars dominated by cosmic variance up to the second acoustic

peak.

The first measurement of E-mode polarization was published by DASI in 2002

[Kovac et al (2002)], confirmed by the same team in 2004 [Leitch et al (2005)] as well

as by CBI [Readhead et al (2004)] and CAPMAP [Barkats et al (2005)] (figure 21).

We have only two measurements for the cross-correlation TE spectrum (WMAP

[Hinshaw et al (2006)] and BOOMERanG [Piacentini et al (2006)]). To this point,
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Figure 20. Left: CMB temperature angular power spectrum before

WMAP in 2003 (COBE [Tegmark (1996a)], Archeops [Benôit et al (2003)],

TOCO [Miller et al (2002)], BOOMERanG98 [Ruhl et al (2003)], Maxima01

[Lee et al (2001)], DASI [Halverson et al (2002)], CBI [Pearson et al (2003)] and

ACBAR [Kuo et al (2004)]). (extracted from [Hinshaw et al (2003)])

Right: Results from the 3 years observation of WMAP [Hinshaw et al (2006)]

together with last results from high resolution experiments: BOOMERanG

[Jones et al (2006)], Acbar [Kuo et al (2004)], CBI [Readhead et al (2004)] and VSA

[Dickinson et al (2004)]. (extracted from [Hinshaw et al (2006)])

Figure 21. E-mode spectrum (left) and TE (right) measured by BOOMERanG

[Montroy et al (2006), Piacentini et al (2006)], DASI [Leitch et al (2005)], CBI

[Readhead et al (2004)] and WMAP [Page et al (2006), Hinshaw et al (2006)].

we only have upper limits for B-mode spectrum. This illustrates how complex CMB

polarization detection is.

14.2. Cosmological parameters

The standard ΛCDM cosmological model agrees well with the most recent experimental

results. Fewer than ten free parameters allow us to fit the bulk of high precision data.

Under such conditions, CMB data put strong constraints on models with adiabatic

perturbations with close to scale invariant initial conditions, with a nearly flat geometry

and containing Dark Matter and Dark Energy. The CMB can provide constraints on a

large set of parameters and, in conjunction with other astronomical measurements, it
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Parameter WMAP WMAP WMAP+ACBAR

Only +CBI+VSA +BOOMERanG

100Ωbh
2 2.233+0.072

−0.091 2.212+0.066
−0.084 2.231+0.070

−0.088

Ωmh
2 0.1268+0.0072

−0.0095 0.1233+0.0070
−0.0086 0.1259+0.0077

−0.0095

h 0.734+0.028
−0.038 0.743+0.027

−0.037 0.739+0.028
−0.038

A 0.801+0.043
−0.054 0.796+0.042

−0.052 0.798+0.046
−0.054

τ 0.088+0.028
−0.034 0.088+0.027

−0.033 0.088+0.030
−0.033

ns 0.951+0.015
−0.019 0.947+0.014

−0.017 0.951+0.015
−0.020

σ8 0.744+0.050
−0.060 0.722+0.043

−0.053 0.739+0.047
−0.059

Ωm 0.238+0.030
−0.041 0.226+0.026

−0.036 0.233+0.029
−0.041

Table 1. Cosmological parameters estimated using the 3-year WMAP data

and some additional data from other CMB experiments (results extracted from

[Spergel et al (2006)]).

places significant limits on the geometry of the universe, the nature of dark energy, and

even neutrino properties.

In [Spergel et al (2006)], the WMAP team fits a 6-parameter family of models (which

fixes Ωtot = 1 and r = 0), together with weak priors (on h and Ωbh
2 for example).

The estimated parameters are matter density (Ωmh
2), baryon density (Ωbh

2), Hubble

Constant (H0), amplitude of fluctuations (σ8), optical depth (τ), and a slope for the

scalar perturbation spectrum (ns). The fit to the 3-year WMAP data combined with

other CMB experiments yields the results in table 1.

Without spatial flatness, the CMB data alone provide only a very weak constraint for

h. Inversely, including a prior on h from HST [Freedman et al (2001)] gives the best

constraint on Ωtot = 1.003+0.013
−0.017, although similar results come from using Supernova

Legacy Survey data [Astier et al (2006)] or large-scale structure data.

The addition of other cosmological data-sets allows constraints to be placed on further

parameters. Indeed, additional data are able to break degeneracies that exist using

CMB data alone. For example, considering the dark energy equation of state w adds a

degeneracy in the (w, h)-space for low values of both parameters. This can be broken

using supernovae and large-scale structure data to yield w = −1.06+0.13
−0.08.

In addition, CMB data can put limits on parameters relevant to particle physics

models. In particular, the CMB allows us to derive strong constraints on the sum

of neutrino masses from the neutrino density Ωνh
2, assuming the usual number density

of fermions which decoupled when they were relativistic. CMB data alone place a

limit on the neutrino mass of m < 2.0 eV (95% confidence) [Ichikawa et al (2005)].

Combining the CMB with other astrophysical observable (galaxy clustering, supernovae

data, baryon acoustic oscillations, HST) reduce the upper bound by roughly one

order of magnitude and gives the strongest constraint on the sum of neutrino masses

[Fogli et al (2006), Kristiansen et al (2006), Seljak et al (2006)].



CONTENTS 56

Acknowledgments

We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis

(LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science.

We would like to thank Professor J. Silk.



CONTENTS 57

[Acquaviva et al (2003)] Acquaviva V, Bartolo N, Matarrese S & Riotto A 2003 Nuclear Physics B 667

119

[Alpher & Herman (1948)] Alpher R & Herman R 1948 Nature 162 774

[Amblard & Hamilton (2004)] Amblard A & Hamilton J C 2004 A&A 417 1189

[Ansari et al (2003)] Ansari R et al 2003 MNRAS 343 552

[Armitage & Wandelt (2004)] Armitage C & Wandelt B D 2004 Phys. Rev. D 70 123007

[Arnau & Saez (2000)] Arnau J V & Saez D 2000 New Astronomy 5 121

[Ashdown et al (2006a)] Ashdown M A J et al 2006 in preparation

[Ashdown et al (2006b)] Ashdown M A J et al 2006 A&A submitted

[Astier et al (2006)] Astier P et al 2006 A&A 447 31

[Baccigalupi et al (2004)] Baccigalupi C et al 2004 MNRAS 354 55

[Barkats et al (2005)] Barkats D et al 2005 ApJ 619 L127

[Barnes (2003)] Barnes C et al 2003 ApJS 148 51

[Bennett et al (2003a)] Bennett C L et al 2003 ApJS 148 1

[Bennett et al (2003b)] Bennett C L et al 2003 ApJS 148 97
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