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Spinfoam theories are hoped to provide the dynamics of non-perturbative loop quantum gravity. But a number of their features remain elusive. The best studied one -the euclidean Barrett-Crane model-does not have the boundary state space needed for this, and there are recent indications that, consequently, it may fail to yield the correct low-energy n-point functions. These difficulties can be traced to the SO(4) → SU (2) gauge fixing and the way certain second class constraints are imposed, arguably incorrectly, strongly. We present an alternative model, that can be derived as a bona fide quantization of a Regge discretization of euclidean general relativity, and where the constraints are imposed weakly. Its state space is a natural subspace of the SO(4) spin-network space and matches the SO(3) hamiltonian spin network space. The model provides a long sought SO(4)-covariant vertex amplitude for loop quantum gravity.

The kinematics of loop quantum gravity (LQG) provides a well understood backgroundindependent language for a quantum theory of physical space [START_REF] Ashtekar | An introduction to loop quantum gravity through cosmology[END_REF][START_REF] Rovelli | Quantum Gravity[END_REF][START_REF] Rovelli | Knot theory and quantum gravity[END_REF]. The dynamics of the theory is not understood as cleanly. Dynamics is studied along two lines: hamiltonian (as in the Schrödinger equation) [START_REF] Thiemann | Quantum spin dynamics (QSD)[END_REF] or covariant (as in Feynman's covariant quantum field theory). We focus on the second. The key object that defines the dynamics in this language is the vertex amplitude, like the vertex eγ µ ∼∼ r < that defines the dynamics of perturbative QED. What is the vertex of LQG?

The spinfoam formalism [START_REF] Perez | Spin Foam Models for Quantum Gravity[END_REF] is viewed as a possible tool for answering this question. It can be derived in a remarkable number of distinct ways, which converge to the definition of transition amplitudes as a Feynman sum over spinfoams. A spinfoam is a two-complex (union of faces, edges and vertices) colored with quantum numbers (spins associated to faces and intertwiners associated to edges); it can be loosely interpreted as a history of a spin network (a colored graph). Its amplitude contains the product of the amplitudes of each vertex, and thus the vertices play a role similar to the vertices of Feynman's covariant QFT [START_REF] Baez | An introduction to spin foam models of BF theory and quantum gravity[END_REF][START_REF] Mp Reisenberger | Classical Euclidean general relativity from *left-handed area = right-handed area*[END_REF]. This picture is nicely implemented in three dimensions (3d) by the Ponzano-Regge model [START_REF] Ponzano | Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model is the loop representation basis[END_REF], where the vertex amplitude is given by the 6j Wigner symbol, which can be obtained as a matrix element of the hamiltonian of 3d gravity [START_REF] Noui | Three dimensional loop quantum gravity: physical scalar product and spin foam models[END_REF].

Compelling and popular as it is, however, this picture has never been fully implemented in 4d. The best studied model in the 4d euclidean con-text is the Barrett-Crane (BC) model [START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF]. This is simple and elegant, has remarkable finiteness properties [START_REF] Perez | Finiteness of a spinfoam model for euclidean GR[END_REF], and can be considered a modification of a topological BF quantum field theory, by means of constraints -called simplicity constraints-whose classical limit yields precisely the constraints that change BF theory into general relativity (GR). Furthermore, in the lowenergy limit some of its n-point functions appear to agree with those computed from perturbative quantum GR [START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF]. However, the suspicion that something is wrong with the BC model has long been agitated. Its boundary state space is similar, but does not exactly match, that of loop quantum gravity; in particular the volume operator is ill-defined. Worse, recent calculations appear to indicate that some n-point functions fail to yield the correct low-energy limit [START_REF] Alesci | Non diagonal terms of the propagator from LQG[END_REF]. All these problems are related to the way the intertwiner quantum numbers (associated to the operators measuring angles between the faces bounding the elementary quanta of space) are treated: These quantum numbers are fully constrained in the BC model by imposing the simplicity constraints as strong operator equations (C n ψ = 0). But these constraints are second class and imposing such constraints strongly may lead to the incorrect elimination of physical degrees of freedom [START_REF] Dirac | Lectures on Quantum Mechanics[END_REF].

It is therefore natural to try to implement in 4d the general picture discussed above by correcting the BC model [START_REF] Mp Reisenberger | Classical Euclidean general relativity from *left-handed area = right-handed area*[END_REF][START_REF] Alexandrov | Choice of connection in Loop Quantum Gravity[END_REF]. In this letter we show that this is possible, by properly imposing some of the constraints weakly ( φ C n ψ = 0), and that the resulting theory has remarkable features. First, its boundary quantum state space matches exactly the one of SO(3) loop quantum gravity: no degrees of freedom are lost. Second, as the degrees of freedom missing in BC are recovered, the vertex may yield the correct low-energy n-point functions. Third, the vertex can be seen as a vertex over SO(3) spin networks or SO(4) spin networks, and is both SO(3) and SO(4) covariant. Finally, the theory can be obtained as a bona fide quantization of a discretization of euclidean GR on a Regge triangulation. Here we give the definition of the theory, we illustrate its main aspects and we give only a rapid sketch of its derivation from Regge GR. Details will be given elsewhere.

The model we discuss is defined by a standard spinfoam partition function

Z GR = j f ,ie f (dim j f 2 ) 2 v A(j f , i e ) (1) 
where the amplitude is given by

A(j f , i e ) = 15j SO(4) ( j f 2 , j f 2 ), f (i e ) = i + e ,i - e 15j SO(4) ( j f 2 , j f 2 ), i + e , i - e e∈v f ie i + e i - e . (2) 
Notation is as follows. The model is defined on a fixed 4d triangulation ∆. We do not discuss here the issue of the recovery of triangulation independence (see [START_REF] Rovelli | Quantum Gravity[END_REF][START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF][START_REF] Freidel | Group Field Theory: an overview[END_REF]). We denote by f, e, v respectively the faces, tetrahedra and 4-simplices of ∆. The choice of letters is motivated by the fact that it is convenient to think in terms of the cellular complex dual to ∆ (whose 2-skeleton defines the spinfoam): triangles are dual to faces (f ), tetrahedra to edges (e), and 4-simplices to vertices (v). The sum in ( 1) is over an assignment of an integer spin j f (that is, an irreducible representation of SO( 3)) to each face f , and over an assignment of an element i e of a basis in the space of intertwiners to each edge e. We recall that an intertwiner is an element of the SO(3) invariant subspace of the tensor product of the four Hilbert spaces carrying the four representations associated to the four f 's adjacent to a given e. We use the usual basis given by the spin of the virtual link, under a fixed pairing of the four faces. dim j = 2j + 1 is the dimension of the representation j. 15j SO( 4) is the Wigner 15j symbol of the group SO(4). It is a function of 15 SO(4) irreducible representations. A representation of SO( 4) can be written as a pair of representations of SU (2), in the form (j + , j -), and the SO(4) 15j symbol is simply the product of two conventional Wigner SU (2) 15j symbols

15j SO(4) (j + f , j - f , i + e , i - e ) = 15j(j + f , i + e ) 15j(j - f , i - e ).
(3) The last object to define, and the key ingredient of our construction, is the linear map f appearing in the first line of ( 2). This is a map from the space of the SO(3) intertwiners between the representations 2j 1 , ..., 2j 4 , to the space of the SO( 4) intertwiners between the representations (j 1 , j 1 , ), ..., (j 4 , j 4 ). The second line of ( 2) simply reexpresses this map in terms of its linear coefficients in the basis chosen

f |i = i + ,i - f i i + i -|i + , i -. (4) 
These coefficients are defined as the evaluation of the spin network (5) on the trivial connection. The amplitude can also be written in the form

f i i + i -= i i i j j j j j j j j j j + !
A(j f , i e ) = SU(2) 5 dV e ee j f/2 D(V e ) ⊗ j f/2 D(V -1 e ), e i e (6 
) where index contraction is dictated by the standard 4-simplex graph and the j f indices of the intertwiners are contracted with the

j f 2 ⊗ j f
2 indices of the representation matrices D. This concludes the definition of the model (for information on the general formalism, and more details on notation see [START_REF] Rovelli | Quantum Gravity[END_REF]). Let us now comment on its features.

First, the boundary states of the theory are spanned by trivalent graphs colored with SO(3) spins and intertwiners. Second, the model is a simple modification of the BC model as follows. The BC model is given by

Z BC = j f f (dim j f ) 2 v A BC (j f ) (7)
where here the sum is over half-integer spins and the amplitude is given by

A BC (j f ) = 15j SO(4) ((j f , j f ), i BC ) . (8)
The difference between the two theories is therefore in the intertwiner state space. The relevant (unconstrained) intertwiner space is here the SO( 4) intertwiner space between four simple representations

H e = Inv(H (j1,j1) ⊗ ... ⊗ H (j4,j4) ). ( 9 
)
The Barret-Crane intertwiner

|i BC = j (2j + 1)|j, j (10) 
is a vector in this space. The Barrett-Crane theory therefore constrains entirely the intertwiner degrees of freedom. In the model ( 1), instead, intertwiner degrees of freedom remain free. More precisely, the states (4) span a subspace K e of H e . The step from the single intertwiner i BC to the space K e is therefore the essential modification made with respect to the BC model. Why this step?

The reduction of the intertwiner space to the sole i BC vector is commonly motivated by the imposition of the off-diagonal simplicity constraints. For each couple of faces f, f adjacent to e, consider the pseudoscalar SO(4) Casimir operator

C f f = IJKL B IJ f B KL f ( 11 
)
on the representation (H (j f ,j f ) ⊗ H (j f ,j f ) ).

( IJKL is the fully antisymmetric object and summation over repeated indices is understood.) Here f = f and B IJ f with I, J = 1, ..., 4 are the generators of SO( 4) in H (j f ,j f ) . In the context of the BC theory, these generators are the quantum operators corresponding to the classical bivector associated to the face f . C f f vanishes in the classical theory because the bivectors of the faces a single tetrahedron span a 3d space and therefore their external products [START_REF] Perez | Finiteness of a spinfoam model for euclidean GR[END_REF] are clearly zero. These are the off-diagonal simplicity constraints. (The diagonal simplicity constraint C f f = 0 constrains the representations associated to each f to be simple.) In BC theory, the constraints C f f = 0 are imposed strongly on H e , and the only solution of these constraint equations is i BC [START_REF] Mp Reisenberger | On relativistic spin network vertices[END_REF]. But these constraints do not commute with one another, and are therefore second class. Imposing second class constraints strongly is a wellknown way of erroneously killing physical degrees of freedom in a theory. An alternative way to rewrite the off-diagonal simplicity constraints is the following. As noted, these constraints impose the faces of the tetrahedron to lie on a common 3d subspace of 4d spacetime. Iff they are satisfied, there is a direction n I orthogonal to all the faces: the direction normal to the tetrahedron. The B f have vanishing components in this direction. Choose coordinates in which n I = (0, 0, 0, 1) and let i, j be indices that run over the first 3 coordinates only. Then we have 2C

4 ≡ B IJ f B IJ f = B ij f B ij f ≡ C 3 .
The offdiagonal simplicity constraints can be written as the requirement that there is a common direction n such that C = 2C 4 -C 3 = 0 for all the faces of the tetrahedron. In the quantum context, C 4 is the quadratic Casimir of SO( 4), with eigenvalues j + (j + +1)h 2 +j -(j -+1)h 2 ; while C 3 is the quadratic Casimir of the SO(3) subgroup of SO( 4) that leaves n I invariant, with eigenvalues j(j + 1)h 2 , where we have momentarily restored h = 1 units for clarity. Can the constraint C = 2C 4 -C 3 = 0 be imposed quantum mechanically on H e ? A simple SO(4) representation (j, j) transforms under the SO(3) subgroup in the representation j ⊗ j = 0 ⊕ ... ⊕ 2j. Precisely in the 2j component, namely in the highest SO(3) irreducible, this constraint (with suitable ordering:

C = C 3 + h2 4 -2C 4 + h2 + h 2 ) (12) 
is solved. Thus imposing the constraints on each face selects from (H (j f 1 ,j f 1 ) ⊗ ... ⊗ H (j f 4 ,j f 4 ) ) the space formed by the tensor product of the highest SO(3) irreducibles. So far this depends on which SO(3) subgroup we have chosen; but if we project to the SO(4) invariant-tensor space, then the dependence drops out because all SO(3) subgroups in SO( 4) are conjugate to one another. In fact, what we obtain is precisely K e . Finally, it is easy to check that the off-diagonal simplicity constraints are all weakly zero in this space: this follows from the fact that they are antisymmetric in the i + , i -indices, while the states (4) are symmetric.

We close by sketching the derivation of this model as a quantization of a discretization of GR (see [START_REF] Perez | Spin foam quantization of SO(4) Plebanski's action[END_REF]). Fix an oriented triangulation and restrict the metric to be a Regge metric on this triangulation; that is, a metric which is flat within each 4-simplex, and where curvature is concentrated on the triangles. In order to describe this metric, we choose as variables a co-tetrad oneform e I (t) for each tetrahedron of the triangulation, and a co-tetrad one-form e I (v) for each simplex. The two will be related by an SO( 4) group element V vt ≡ V -1 tv . For each face in each tetrahedron, we define B f (t) = f (e(t) ∧ e(t)), where the star is Hodge duality in R 4 . B f (t) and B f (t ) are related by B f (t)U tt = U tt B f (t ), where U tt = V tv V vt ...V v n t is the product of the group elements around the oriented link of f , from t to t . The bulk action can be written as

S bulk [e] = f T r[B f (t)U f (t)] ( 13 
)
where U f (t) is the product of the group elements V tv V vt around the link of f . The boundary terms of the action can be written as

S boundary [e] = f T r[B f (t)U tt ] (14) 
where U tt is the product of the group elements of the sole part of the link which is in the triangulation. We take B f (t) and V tv as basic variables, and take into account the constraints on B f . These are the closure constraint

f ∈t B f (t) = 0 (15) 
and the simplicity constraints [START_REF] Perez | Finiteness of a spinfoam model for euclidean GR[END_REF], for all f, f (possibly equal) in t. (The constraints relating triangles that meet only at one point, which appear in other formulations, are automatically solved by our choice of variables.) On the boundary of the triangulation, the boundary coordinates are the B f (t) for the boundary triangles f . These have only two adjacent tetrahedra t, t on the boundary. The conjugate momentum (as can be seen from ( 14)) is a group element for each f . Therefore the canonical boundary variables are precisely the same as those of SO(4) lattice gauge theory. We can thus choose the Hilbert space of SO(4) lattice gauge theory as our unconstrained Hilbert space. This space can be represented as the L 2 space on the product of one SO(4) per triangle. The two B f variables at each f are represented by the left and right invariant vector fields on the group element at f , which are related to one another in the same manner as the corresponding classical quantities. The closure constraint [START_REF] Alexandrov | Choice of connection in Loop Quantum Gravity[END_REF] gives gaugeinvariance at each tetrahedron, and reduces the space of states to the space of the SO( 4) spin networks on the graph dual to the boundary triangulation. The simplicity constraints ( 11), as seen above, reduce each SO( 4) link representation to a simple one, and the intertwiners spaces to K e . The resulting space of states is not only mathematical isomorphic to the corresponding one of SO(3) loop quantum gravity, but it can also be physically identified with it, because we have an explicit identification of the quantum operators on the two spaces with the same classical analogues, such as the area of the faces.

Finally, coming to the dynamics, we can evaluate the amplitude of a single 4-simplex v. Fixing the ten B tt ≡ B f (t) variables on the boundary, this can be formally written as = dV vt tt δ(U tt V t v V vt ). [START_REF] Mp Reisenberger | On relativistic spin network vertices[END_REF] This is the amplitude. We can now transform back to the spin network basis, using the SO(4) spin network functions Ψ j ± tt ,i ± t (U tt )

A[j ± tt , i ± t ] = dU tt Ψ j ± tt ,i ± t (U tt ) A[U tt ] = dV vt Ψ j ± tt ,i ± t (V tv V vt ) (18) 
Performing the integral gives A[j ± tt , i ± t ] = 15j SO(4) (j + tt , j - tt , i + t , i - t ). ( 19)

Combining this 15j SO(4) amplitude with the constraints discussed above, gives the model ( 1)-( 2). -Thanks to Alejandro Perez for help, criticisms and comments, and to Daniele Oriti for useful discussions. JE gratefully acknowledges support
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  [B tt ] = dV vt e i P T r[B tt VtvV vt ] .(16)Transforming to the conjugate variables givesA[U tt ] = dB tt e -i P T r[B tt U tt ] A[B tt ]
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