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The complete LQG propagator I. Difficulties with the Barrett-Crane vertex

Some components of the graviton two-point function have been recently computed in the context of loop quantum gravity, using the spinfoam Barrett-Crane vertex. We complete the calculation of the remaining components. We find that, under our assumptions, the Barrett-Crane vertex does not yield the correct long distance limit. We argue that the problem is general and can be traced to the intertwiner-independence of the Barrett-Crane vertex, and therefore to the well-known mismatch between the Barrett-Crane formalism and the standard canonical spin networks. In a companion paper we illustrate the asymptotic behavior of a vertex amplitude that can correct this difficulty.

Introduction

A key problem in loop quantum gravity (LQG) [START_REF] Ashtekar | An introduction to loop quantum gravity through cosmology[END_REF][START_REF] Rovelli | Quantum Gravity[END_REF][START_REF] Rovelli | Knot theory and quantum gravity[END_REF] is to derive low-energy quantities from the full background independent theory. A strategy for addressing this problem was presented in [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF] and some components of the graviton propagator of linearized quantum general relativity G abcd (x, y) = 0|h ab (x)h cd (y)|0

(1) (h ab (x), a, b = 1, ...4, is the linearized gravitational field) were computed in [START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF] (at first order) and [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF] (to higher order) starting from the background-independent theory and using a suitable expansion. More precisely, the "diagonal" components G aacc (x, y) have been computed in the large-distance limit. This result has been extended to the three-dimensional theory in [START_REF] Speziale | Towards the graviton from spinfoams: the 3d toy model[END_REF]; an improved form of the boundary states used in the calculation has been considered in [START_REF] Livine | Group Integral Techniques for the Spinfoam Graviton Propagator[END_REF]; and the exploration of some Planck-length corrections to the propagator of the linear theory has begun in [START_REF] Livine | Towards the graviton from spinfoams: higher order corrections in the 3d toy model[END_REF]. See also [START_REF] Dittrich | Linearized dynamics from the 4-simplex Regge action[END_REF].

Here we complete the calculation of the propagator. We compute the nondiagonal terms of G abcd (x, y), those where a = b or c = d, and therefore derive the full tensorial structure of the propagator. The nondiagonal terms are important because they involve the intertwiners of the spin networks. Avoiding the complications given by the intertwiners' algebra was indeed the rational behind the relative simplicity of the diagonal terms.

The dependence of the vertex from the intertwiners is a crucial aspect of the definition of the quantum dynamics. The particular version of the dynamics used in [START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF] and [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF], indeed, is defined by the Barrett-Crane (BC) vertex [START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF], where the dependence on the intertwiners is trivial. This is an aspect of the BC dynamics that has long been seen as suspicious (see for instance [START_REF] Baez | Spin Foam Models of Riemannian Quantum Gravity[END_REF]); and it is directly tested here.

We find that under our assumptions the BC vertex fails to give the correct tensorial structure of the propagator in the large-distance limit. We argue that this result is general, and cannot be easily corrected, say by a different boundary state. This result is of interest for a number of reasons. First, it indicates that the propagator calculations are nontrivial; in particular they are not governed just by dimensional analysis, as one might have worried, and they do test the dynamics of the theory. Second, it reinforces the expectation that the BC model fails to yield classical GR in the long-distance limit. Finally, and more importantly, it opens the possibility of studying the conditions that an alternative vertex must satisfy, in order to yield the correct long-distance behavior. This analysis is presented in the companion paper [START_REF] Alesci | The complete LQG propagator: II. Asymptotics of the vertex[END_REF].

The BC model exists in a number of variants [START_REF] Rovelli | Quantum Gravity[END_REF][START_REF] Pietri | Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space[END_REF]; the results presented here are valid for all of them. Alternative models have been considered, see for instance [START_REF] Reisenberger | A lattice worldsheet sum for 4-d Euclidean general relativity[END_REF]. Recently, a vertex amplitude that modifies the BC amplitude, and which addresses precisely the problems that we find here, has been proposed [START_REF] Engle | The loop-quantum-gravity vertex-amplitude[END_REF][START_REF] Livine | A new spinfoam vertex for quantum gravity[END_REF], see also [START_REF] Alexandrov | Spin foam model from canonical quantization[END_REF]. It would be of great interest to repeat the calculation presented here for the new vertex proposed in those papers.

This paper is organized as follows. In section 2 we formulate the problem and we compute the action of the field operators on the intertwiner spaces. This calculation is a technical result with an interest in itself. Here we will use only part of this result, the rest will be relevant for the companion paper. In section 3 we discuss the form of the boundary state needed to describe a semiclassical geometry to the desired approximation. Section 4 contains the main calculation. In Section 5 we discuss the interpretation of our result.

This paper is not self-contained: for full background, see [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF]. For an introduction to the general ideas and the formalism, see the book [START_REF] Rovelli | Quantum Gravity[END_REF]. However, we include here a detailed Appendix, with all basic equations of the recoupling theory needed for the calculations. The Appendix corrects some imprecisions in previous formularies and can be useful as a tool for further developments. We work entirely in the euclidean theory.

The propagator in LQG

We refer to [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF] for the notation and the basic definitions. We want to compute G abcd q (x, y) = W |h ab (x) h cd (y)|Ψ q [START_REF] Rovelli | Quantum Gravity[END_REF] to first order in λ. Here Ψ q is a state peaked on q, which is the (intrinsic and extrinsic) 3d geometry of the boundary of a spherical 4-ball of radius L in R 4 , x and y are two points in this geometry, ab are tangent indices at x and cd tangent indices at y in this geometry. That is, G abcd q (x, y) is a quantity that transforms covariantly under 3d diffeomorphisms acting conjointly on x, y, on the indices abcd, and on q. h ab (x) is the fluctuation of the gravitational field over the euclidean metric. W is the boundary functional, that defines the dynamics; it is assumed to be given here by a Barrett-Crane GFT [START_REF] Pietri | Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space[END_REF][START_REF] Oriti | The group field theory approach to quantum gravity[END_REF] with coupling constant λ. The expansion parameter λ is a cut-off in the degrees of freedom of wavelength smaller than L. Degrees of freedom of wavelength larger than L do not enter the problem. We normalize here Ψ q by W |Ψ q = 1.

Consider the s-knot (abstract spin network) basis |s = |Γ, j, i , where Γ is an abstract graph, n, m... label the nodes of Γ, j = {j mn } are the spins and i = {i n } the intertwiners of a spin network with graph Γ. Insert a resolution of the identity in (2)

G abcd q (x, y) = s W |s s|h ab (x) h cd (y)|Ψ q .
(3)

To first order in λ, W |s = W [s] = W [Γ, j, i] is different from zero only if Γ is the pentagonal graph, that is, for the s-knot

s = q q q q q ✄ ✄ ✄ ✄ ✄ ◗ ◗ ◗ ◗ ✑ ✑ ✑ ✑ ❈ ❈ ❈ ❈ ❈ ❇ ❇ ❇ • • ✂ ✂ ✂ ✂ ✂ ✂ ✂❇ ❇ ❇ ❇ ✚ ✚ ✚ ★ ★ ★ ★ ❝ ❝ ❝ ❝ i1 i2 i3 i5 i4 j12 j23 j34 j45 j51 j13 j35 j14 j24 j52 . (4) 
In this case, and from now on, we have five intertwiners i = {i n }, labeled by n, m, ... = 1, ..., 5 and ten spins j = {j mn }. We use equally the indices i, j, k, ... = 1, ..., 5 to indicate the nodes. Since the operators h ab (x) do not change the graph (they are operators acting on the spin and intertwiners variables j, i)

G abcd q (x, y) = j,i W (j, i) h ab (x) h cd (y) Ψ(j, i) (5) 
where W (j, i) = W [Γ 5 , j, i] and Ψ(j, i) = Ψ q [Γ 5 , j, i] = Γ 5 , j, i|Ψ q , and the sum is over the fifteen variables (j, i) = (j nm , i n ). (We use the physicists notation h cd (y) Ψ(j, i) for [h cd (y) Ψ](j, i).) Following [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF], we choose the form of Ψ(j, i) by identifying Γ 5 with the dual skeleton of a regular triangulation of the three-sphere. Each node n = 1, ..., 5 corresponds to a tetrahedron t 1 ....t 5 and we choose the points x and y to be the centers x n and x m of the two tetrahedra t n and t m . We consider

G ij,kl q n,m := G abcd q (x n , x m ) n (ni) a n (nj) b n (mk) c n (ml) d , (6) 
where n

(ij) a
is the one-form normal to the triangle that bounds the tetrahedra t i and t j . From now on, we assume n = m. Since h ab = g abδ ab = E ai E b iδ ab , this is given by

G ij,kl q n,m = W | E (ni) n • E (nj) n -n (ni) • n (nj) E (mk) m • E (ml) m -n (mk) • n (ml) |Ψ q = j,i W (j, i) E (ni) n • E (nj) n -n (ni) • n (nj) E (mk) m • E (ml) m -n (mk) • n (ml) Ψ(j, i). (7) 
where, E (ml) n = E a ( x)n (ml) a is valued in the su(2) algebra and, with abuse of notation, the scalar product between the triad fields indicates the product in the su(2) algebra (in the internal space); while the scalar product among the one forms n (ij) is the one defined by the background metric δ ab . In the rest of the paper, we compute the right hand side of (7).

Linearity conditions

Before proceedings to the actual computation of [START_REF] Speziale | Towards the graviton from spinfoams: the 3d toy model[END_REF], let us pause to consider the following question. The four normal one-forms of a tetrahedron sum up to zero. Thus

i =n n (ni) a = 0. ( 8 
)
This determines a set of linear conditions that must be satisfied by G ij,kl q n,m . In fact, from the last equation it follows immediately that

i =n G ij,kl q n,m = 0. (9) 
(The existence of conditions of this kind, of course, is necessary, since the four one forms n (ni) a (for fixed n) span a three-dimensional space, namely the space tangent to the boundary surface at x n , and therefore the quantities G ij,kl q n,m are determined by the restriction of the bi-tensor G abcd q to these tangent spaces.) How is it possible that the linear conditions [START_REF] Livine | Towards the graviton from spinfoams: higher order corrections in the 3d toy model[END_REF] are satisfied by the expression ( 7)?

The answer is interesting. The operator

E (ni) n • E (nj)
n acts on the space of the intertwiners of the node n. This is the SU (2) invariant part of the tensor product of the four SU (2) irreducible representations determined by the four spins j ni . In particular, E (ni) n is the generator of SU (2) rotations in the representation j ni . Therefore

J = i =n E (ni)
n [START_REF] Dittrich | Linearized dynamics from the 4-simplex Regge action[END_REF] is the generator of SU (2) rotations in the tensor product of these representations. But the intertwiners space is precisely the SU (2) invariant part of the tensor product. Therefore J = 0 on the intertwiner space. Inserting this in [START_REF] Speziale | Towards the graviton from spinfoams: the 3d toy model[END_REF], equation ( 9) follows immediately. Therefore the linearity conditions between the projections of the propagator in the space tangent to the boundary surface are implemented by the SU (2) invariance at the nodes.

Operators

We begin by computing the action of the field operator

E (ni) n • E (nj)
n on the state. This operator acts on the intertwiner space at the node n. It acts as a "double grasping" [START_REF] Rovelli | Knot theory and quantum gravity[END_REF] operator that inserts a virtual link (in the spin-one representation) at the node, connecting the links labelled ni and nj. The state of each node n (n = 1, .., 5) is determined by five quantum numbers: the four spins j nj (n = j, j = 1, .., 5) that label the links adjacent to the node and a quantum number i n of the virtual link that specifies the value of the intertwiner. In this section we study the action of this operator on a single node n; hence we drop for clarity the index n and write the intertwiner quantum number as i, the adjacent spins as j i , j j , j p , j q , and the operator as E (i) • E (j) . We use the graphic notation of SU (2) recoupling theory to compute the action of the operators on the spin network states (see [START_REF] Rovelli | Quantum Gravity[END_REF]). The basics of this notation are given in Appendix A and the details of the derivation of the action of the operator are given in Appendix C. Choose a given pairing at the node, say (i, j)(p, q) (and fix the orientation, say clockwise, of each of the two trivalent vertices). We represent the node in the form

i = j j j i j p j q ❅ ❅ i r r , (11) 
where we use the same notation i for the intertwiner and the spin of the virtual link that determines it. This basis diagonalizes the operator E (i) • E (j) , but not the operators E (i) • E (q) and E (i) • E (p) . We consider the action of these three "doublegrasping" operator on this basis. The simplest is the action of E (i) • E (i) . Using the formulas in Appendix C we have easily

E (i) • E (i) j j j i j p j q ❅ ❅ i r r = -(N i ) 2 j j j i j p j q r r ❅ ❅ ❅ ❅ i 1 r r = C ii j j j i j p j q ❅ ❅ i r r , (12) 
where

C ii = C 2 (j i ). ( 13 
)
with C 2 (a) = a(a + 1) is the Casimir of the representation a. Just slightly more complicated is the action of

E (i) • E (j) E (i) • E (j) j j j i j p j q ❅ ❅ i r r = -N i N j j j j i j p j q r r ❅ ❅ ❅ ❅ i 1 r r = D ij j j j i j p j q ❅ ❅ i r r , (14) 
where

D ij = C 2 (i) -C 2 (j i ) -C 2 (j j ) 2 . (15) 
In these two cases the action of the operator is diagonal. If, instead, the grasped links are not paired together, the action of the operator is not diagonal in this basis. In this case, the recoupling theory in the Appendix gives

E (i) • E (q) j j j i j p j q ❅ ❅ i r r = -N i N q j j j i j p j q r r ❅ ❅ ❅ ❅ i 1 r r = = X iq j j j i j p j q ❅ ❅ i r r -Y iq j j j i j p j q ❅ ❅ i -1 r r -Z iq j j j i j p j q ❅ ❅ i + 1 r r , (16) 
where

X iq = - C 2 (i) + C 2 (j i ) -C 2 (j j ) C 2 (i) + C 2 (j q ) -C 2 (j p ) 4 C 2 (i) , (17) 
Y iq = - 1 4i dim(i) (j i + j j + i + 1)(j i -j j + i)(-j i + j j + i)(j i + j j -i + 1) •
• (j p + j q + i + 1)(j pj q + i)(-j p + j q + i)(j p + j qi + 1), ( 18)

Z iq = - 1 4(i + 1) dim(i) (j i + j j + i + 2)(j i -j j + i + 1)(-j i + j j + i + 1)(j i + j j -i) • • (j p + j q + i + 2)(j p -j q + i + 1)(-j p + j q + i + 1)(j p + j q -i). (19) 
The last possibility is

E (i) • E (p) j j j i j p j q ❅ ❅ i r r = -N i N p j j j i j p j q r r ❅ ❅ ❅ ❅ i r r = = X ip j j j i j p j q ❅ ❅ i r r + Y ip j j j i j p j q ❅ ❅ i -1 r r + Z ip j j j i j p j q ❅ ❅ i + 1 r r . (20) 
Note that X ip is exactly X iq with p and q switched and Y ip = Y iq , Z ip = Z iq . Finally, we have to take care of the orientation. As shown in the Appendix, the sign of the non diagonal terms is influenced by the orientations: in the planar representation that we are using, there is a + sign if the added link intersect the virtual one and a -1 otherwise.

Summarizing, in a different notation and reinserting explicitly the index n of the node, we have the following action of the EE operators. If the grasped links are paired together we have the diagonal action

E (ni) • E (nj) |Γ 5 , j, i 1 , .., i n , .., i 5 = S ij n |Γ 5 , j, i 1 , .., i n , .., i 5 , (21) 
where

S ij n = C ii = C 2 (j ni ) if i = j, D ij = C 2 (in)-C 2 (jni)-C 2 (jnj ) 2 if i = j. (22) 
If the grasped links are not paired together, we have the non-diagonal action 

E (ni) • E (nq) |Γ 5 , j, i 1 , .., i n , .., i 5 = =          X iq n |Γ 5 ,
This completes the calculation of the action of the gravitational field operators.

The boundary state

The boundary state utilized in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF] was assumed to have a gaussian dependence on the spins, and to be peaked on a particular intertwiner. This intertwiner was assumed to project trivially onto the BC intertwiner of the BC vertex. This was a simplifying assumption permitting to avoid dealing with the intertwiners, motivated by the fact that intertwiners play no role for the diagonal terms. However, it was also pointed out in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF] that this procedure is not well defined, because of the mismatch between SO(4) linearity and SU (2) linearity (see the discussion in the Appendix of [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF]). Here we face the problem squarely, and consider the intertwiner dependence of the boundary state explicitly.

A natural generalization of the gaussian state used in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF], whith a well-defined and non-trivial intertwiner dependence, is the state

Φ(j, i) = C exp - 1 2j 0 (ij)(mr) α (ij)(mr) (j ij -j 0 )(j mr -j 0 ) + iΦ (ij) j ij • • exp    - n   (i n -i 0 ) 2 4σ + p =n φ(j np -j 0 )(i n -i 0 ) + iχ(i n -i 0 )      (24) 
The first line of this equation is precisely the spin dependence of the state used in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF]. The second line contains a gaussian dependence on the intertwiner variables. More precisely, it includes a diagonal gaussian term, a nondiagonal gaussian spin-intertwiner term, and a phase factor. We do not include non-diagonal intertwiner-intertwiner terms here. These will be considered in the companion paper.

Let us fix some of the constants appearing in [START_REF] Oriti | The group field theory approach to quantum gravity[END_REF], by requiring the state to be peaked on the expected geometry. The constant j 0 determines the background area A 0 of the faces, via C(j nm ) = A nm . As in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF], we leave j 0 free to determine the overall scale. The constant Φ determines the background values of the angles between the normals to the tetrahedra. As in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF], we fix them to those of a regular four-simplex, namely cos Φ = -1/4.

The constant i 0 is the background value of the intertwiner variable. As shown in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF], the spin of the virtual link i n is the quantum number of the angle between the normals of two triangles. More precisely, the Casimir C(i n ) of the representation i n is the operator corresponding to the classical quantity

C 2 (i n ) = A ni + A nj + 2 n (ni) • n (nj) , (25) 
where i and j are the paired links at the node n and A ni is the area of the triangle dual to the link (ni). The scalar product of the normals to the triangles can therefore be related to the Casimirs of spins and intertwiners:

n (ni) • n (nj) = C(i n ) -C(j ni ) -C(j nj ) 2 . ( 26 
)
For each node, the state must therefore be peaked on a value i 0 such that

i 0 (i 0 + 1) = A 0 + A 0 + 2A 0 A 0 cos θ ij , (27) 
where cos θ ij is the 3d dihedral angle between the faces of the tetrahedron. For the regular 4-symplex, in the large distance limit we have

A ij = j 0 , cos θ ij = -1 3 , which gives i 0 = 2 √ 3 j 0 . (28) 
This fixes i 0 . Notice that in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF] equation ( 25) refers to the Casimir of an SO(4) simple representation and follows from the quantization of the Plebanski 2 form B IJ = e I ∧e J associated with the discretized geometry. Exactly the same result follows from equation ( 14) directly from LQG.

Fixing i 0 in this manner determines only the mean value of the angle θ ij between the two triangles that are paired together in the chosen pairing. What about the mean value of the angles between faces that are not paired together, such as θ iq ? It is shown in [START_REF] Speziale | A semiclassical tetrahedron[END_REF] that a state of the form e (i-i0) 2 /σ is peaked on θ iq = 0, which is not what we want; but the mean value of θ iq , can be modified by adding a phase to the state. This is the analog of the fact that a phase changes the mean value of the momentum of the wave packet of a non relativistic particle, without affecting the mean value of the position. In particular, it was shown in [START_REF] Speziale | A semiclassical tetrahedron[END_REF] that by choosing the phase and the width of the Gaussian to be

χ = π 2 , σ = j 0 3 , (29) 
we obtain a state whose mean value and variance for all angles is the same. Let us therefore adopt here these values. Still, the present situation is more complicated than the case considered in [START_REF] Speziale | A semiclassical tetrahedron[END_REF], because the tetrahedron considered there had fixed and equal values of the external spins; while here the spins can take arbitrary values around the peak symmetric configuration j nm = j 0 . As a consequence, when repeating the calculation in [START_REF] Speziale | A semiclassical tetrahedron[END_REF], one finds additional spinintertwiner gaussian terms. These, however can be corrected by fixing the spin-intertwiner gaussian terms in [START_REF] Oriti | The group field theory approach to quantum gravity[END_REF]. A detailed calculation (see below), shows indeed that in the large j 0 limit, the state (24) transforms under change of pairing into a state with the same intertwiner mean value and the same variance σ, provided we also choose

φ = -i 3 4j 0 , (30) 
which we assume from now on. With these values and introducing the difference variables δi n = i n -i 0 and δj mr = j mrj 0 the wave functional, given in [START_REF] Oriti | The group field theory approach to quantum gravity[END_REF], reads

Φ(j, i) = C e -1 2j 0 P α (ij)(mr) δjij δjmr +iΦ P ij δjij e - P n " 3(δin ) 2 4j 0 -i " P a 3 4j 0 δjan-π 2 " δin « . (31) 
This state, however, presents a problem, which we discuss in the next section.

Pairing independence

It is natural to require that the state respects the symmetries of the problem. A moment of reflection shows that the state (31) does not. The reason is that the variables i n are the spin of the virtual links in one specific pairing, and this breaks the symmetry of the four-simplex. The phases and variances chosen assure that the mean values are the desired ones, hence symmetric; but an explicit calculation confirms that the relative fluctuations of the angle variables determined by the state (31) depend on the pair chosen.

To correct the problem, recall that there are three natural bases in each intertwiner space, determined by the three possible pairings of these links. Denote them as follows.

i x = j j j i j p j q ❅ ❅ i x r r i y = j j j i j p j q ❅ ❅ i y r r i z = j j j i j p j q ❅ ❅ ❅ i z r r , (32) 
where we conventionally denote i x ≡ i the basis in the pairing chosen as reference. These bases diagonalize the three non commuting operators

E (i) • E (j) , E (i) • E (q) and E (i) • E (p)
, respectively. Furthermore a spin-network state is specified by the orientation of the three-valent nodes [START_REF] Rovelli | Spin Networks and Quantum Gravity[END_REF]; we fix this orientation by giving an ordering to the links. We write for instance

i x(+,-) = j j j i j p j q ❅ ❅ i x r r + - (33) 
where the plus sign + (-) means anticlockwise (clockwise) ordering of the links in the two nodes. A complete basis in the space of the spin networks on Γ 5 is specified giving the pairing and the orientation at each node. In order to label the different bases, introduce at each node n a variable m n that takes the values m n = x, y, z, namely that ranges over the three possible pairings at the node. Similarly, introduce a variables o n = {(++),(+-),(-+),(--)} that labels the possible orientations. To correct the pairing dependence of the state ( 24), let us first rewrite it in the notation

|Φ q x++ = j,i x++ Φ[j, i x++ ] |j, i x++ . ( 34 
)
where the suffix x++ to the ket emphasizes the fact that the state has been defined with the chosen pairing and orientation at each node. We can now consider a new state obtained by summing (34) over all choices of pairings and orientations. That is, we change the definition of the boundary state to

|Ψ q = mn,on |Φ q mnon . (35) 
where mn,on = m1...m5 o1...o5 and

|Φ q mnon = j,i mn on Φ[j, i mnon ] |j, i mnon . ( 36 
)
namely |Φ q mnon is the same as the state |Φ q x++ , but defined with a different choice of pairing at each node. Since (by assumption) [START_REF] Oriti | The group field theory approach to quantum gravity[END_REF] does not depend on the orientation, the sum over the orientation of the node (say) 1, in (35) reduces to a term proportional to

o |j, i o 1 , i 2 , i 3 , i 4 , i 5 ∼ j 12 j 13 j 15 j 14 ❅ ❅ i 1 + + r r + j 12 j 13 j 15 j 14 ❅ ❅ i 1 + - r r + j 12 j 13 j 15 j 14 ❅ ❅ i 1 - + r r + j 12 j 13 j 15 j 14 ❅ ❅ i 1 - - r r . (37) 
As shown in the Appendix, the change in orientation of a vertex produces the sign (-1) a+b+c , where a, b, c are the three addiacent spins. Hence

o |j, i o 1 , i 2 , i 3 , i 4 , i 5 ∼ = 1 + (-1) j14+j15+i1 + (-1) j12+j13+i1 + (-1) j12+j13+j14+j15+2 i1 j, i ++ 1 , i 2 , i 3 , i 4 , i 5 = 4 j, i ++ 1 , i 2 , i 3 , i 4 , i 5 , if j 12 + j 13 + i m1 1 = 2n 1 and j 14 + j 15 + i m1 1 = 2n 2 , 0 otherwise. ( 38 
)
We can therefore trade the sum over orientations in (35) with a condition on the spins summed over: at all trivalent vertices, the sum of the two external spins and the virtual spin, must be an even integer. (The factor 4 is absorbed in the normalization factor C.) With this understanding, we drop the sum over orientations in (35), which now reads

|Ψ q = mn |Φ q mn , (39) 
where all orientations are fixed. This state can of course also be expressed in terms of a single basis

|Ψ q = j,i Ψ q (j, i) |j, i , (40) 
where we have returned to the notation

i n = i x,++ n . Its components are Ψ(j, i) = j, i|Ψ q = mn Φ(j, i mn ) j, i|j, i mn . ( 41 
)
The matrices of the change of basis j, i|j, i mn are (products of five) 6-j Wigner-symbols, as given by standard recoupling theory. The state (39) is the boundary state we shall use. The complication of the sum over pairings is less serious than what could seem at first sight, due to a key technicality that we prove in the next section: the components of (39) become effectively orthogonal in the large distance limit.

3.1.1 Orthogonality of the terms in different bases in the large j 0 limit Suppose we want to compute the norm of the boundary state, in the limit of large j 0 . From (39), this is given by

|Ψ| 2 = mn m ′ n mn Φ q |Φ q m ′ n (42)
We now show that in the large j 0 limit the non-diagonal terms of this sum (those with m n = m ′ n ) vanish. Consider one of these terms, say

I = mn Φ q |Φ q m ′ n = ji mn j ′ i m ′ n Φ(j, i mn ) Φ[j ′ , i m ′ n ] ji mn |j ′ i m ′ n (43)
where, say, m n = (x, x, x, x, x) and m ′ n = (y, x, x, x, x). The scalar product is diagonal in the spins j and is given by 6-j symbol in the intertwiners quantum numbers. Hence

I = j i mn i m ′ n Φ(j, i mn ) Φ[j, i m ′ n ] i x 1 |i y 1 , (44) 
where (see Appendix D),

i x 1 |i y 1 = (-1) j13+j14+i x 1 +i y 1 d i x 1 d i y 1 j 12 j 13 i x 1 j 15 j 14 i y 1 . (45) 
In the large j 0 limit, this sum can be approximated by an integral, as in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF]. Both the spin and the interwiner sums become gaussian integrals, peaked respectively on j 0 and i 0 . The range of the sum over intertwiners is finite for finite j 0 , because of the Clebsh Gordan conditions at the two trivalent node; but this range is much larger than the width of the Gaussian in the limit, and therefore the integral over the intertwiner variables too can be taken over the entire real line. In the limit, the 6-j symbol has the asymptotic value [START_REF] Freidel | Asymptotics of 6j and 10j symbols[END_REF] 

j 12 j 13 i x 1 j 15 j 14 i y 1 ≈ e i(SR+ π 4 ) + e -i(SR+ π 4 ) √ 12πV , (46) 
where S R is the Regge action of a tetrahedron with side length determined by the spins of the 6j symbol, and V is its volume. Changing the sum into an integration and using this, we have

I = dj di di y 1 Φ(j, i) Φ(j, i m ′ n ) (-1) j13+j14+i x 1 +i y 1 e i(SR+ π 4 ) + e -i(SR+ π 4 ) √ 12πV . ( 47 
)
Inserting the explicit form of the state (31) gives

I = dj di e -1 j 0 P α (ij)(mr) δjij δjmr - P n =1 3(δin ) 2 2j 0 - 3(δi 1 ) 2 4j 0 -i " P a 3 4j 0 δjan-π 2 " δi x 1 • di y 1 e - 3(δi y 1 ) 2 4j 0 e i " P a 3 4j 0 δjan-π 2 "
δi y

1 e i(SR+πδi y 1 + π 4 ) + e -i(SR-πδi y 1 + π 4 ) √ 12πV . (48) 
In the limit, only the first terms in the expansion of the Regge action around the maximum of the peak of the Gaussian matter. We thus Taylor expand the Regge action in its six entries j 1n , i x 1 , i y 1 around the background values j 0 and i 0 .

S j [j na ] = ∂S R ∂j 1n j0,i0 δj 1n + ∂S R ∂i x 1 j0,i0 δi x 1 + ∂S R ∂i y 1 j0,i0
δi y 1 + higher order terms.

The key point now is that the first of these terms is a rapidly oscillating phase factor in the j 1n variable. The Gaussian j 1n integration in (48) is suppressed by this phase factor. More precisely, the integral is like a Fourier transform in the j 1n variable, of a gaussian centered around a large value of j 0 with variance proportional √ j 0 ; this Fourier transform is then a gaussian with variance 1/ √ j 0 , which goes to zero in the j 0 → ∞ limit. QED.

Change of basis

For later convenience, let us also give here the expression of the state (31) under the transformation induced by the change of basis associated to a change of pairing. Say we change from the basis i y to the basis i x in the node n = 1. Then directly from (41) we have

Φ ′ q [j, i x 1 , i 2 ...i 5 ] = e -1 2j 0 P α (ij)(mr) δjij δjmr +i P Φδjij e - P n =1 " 3(δin ) 2 4j 0 -i " P a 3 4j 0 δjan-π 2 " δin « • i y 1 e - " 3(δi y 1 ) 2 4j 0 -i " P a 3 4j 0 δja1-π 2 " δi y 1 « (-1) j13+j14+i x 1 +i y 1 d i x 1 d i y 1 j 12 j 13 i x 1 j 15 j 14 i y 1 (50) 
where, we recall, the sum over intertwiners is under the condition (38) that that gives (-1) j13+j14+i x 1 = 1 We can evaluate the sum in the large j 0 limit by approximating it again with an integral. Inserting the asymptotic expansion of the 6j symbol, we have

Φ ′ q (j, i x 1 , i 2 ...i 5 ) = e -1 2j 0 P α (ij)(mr) δjij δjmr +i P Φδjij e - P n =1 " 3(δin ) 2 4j 0 -i " P a 3 4j 0 δjan-π 2 " δin « e iπi0 • dδi y 1 e - " 3(δi y 1 ) 2 4j 0 -i " P a 3 4j 0 δja1-π 2 " δi y 1 « d i x 1 d i y 1 e i(SR+πδi y 1 + π 4 ) + e -i(SR-πδi y 1 + π 4 ) √ 12πV . (51) 
This can be computed expanding the Regge action to second order around j 0 and i 0 . As shown in the Appendix F, the result is

Φ ′ q (j, i x 1 , i 2 , ..., i 5 ) = Φ(j, i x 1 , i 2 , ..., i 5 )N 1 e -iS[j1a] e -2i " P a 3 4j 0 δj a1 " δi x 1 , (52) 
where N 1 is a normalization constant with |N 1 | 2 = 1, and S[j 1a ] is the expansion of the Regge Action linked to the tetrahedron associated with the {6j} symbol (46) up to the second order only in the link variables, that is

S[j na ] = ∂S R ∂j 1n j0,i0 δj 1n + ∂ 2 S R ∂j 1n ∂j 1n ′ j0,i0 δj 1n δj 1n ′ + 1 2 ∂ 2 S R ∂ 2 j 1n j0,i0 (δj 1n ) 2 . ( 53 
)
This result follows from the choice (29) and (30) of the parameters in [START_REF] Oriti | The group field theory approach to quantum gravity[END_REF]. In particular, the value χ n = π 2 makes the intertwiner phase equal, with opposite sign, to the term exp -i ∂SR ∂i y 1 j0,i0

δi y 1πδi y 1 , namely the term in the expansion of the Regge action S R linear in the variable δi y

1 . This selects one of the two exponentials in the asymptotic expansion (46), while the rapidly oscillating phase factor in the variables δi y 1 cancels the other. The same calculation gives the i z → i x change of variable

Φ ′′ q (j, i x 1 , i 2 , ..., i 5 ) = Φ(j, i x 1 , i 2 , ..., i 5 )N 1 e -iS ′ [j1a] e -2i " P a 3 4j 0 δj a1 " δi x 1 , (54) 
with the same constant N 1 as above. The only differences between (52) and ( 54) is that the arguments of the 6-j symbol enter with a different order, so that S ′ (j 12 , j 13 , j 14 , j 15 , ) = S(j 12 , j 13 , j 15 , j 14 ).

Using these results, we can explicitly rewrite the state (39) in our preferred basis. We obtain easily

|Ψ q = 4 5 j,i Φ(j, i) 5 n=1 G[δj na , δi n ] |j, i , (55) 
where

G[δj na , δi n ] = 1 + N 1 e -2i " P a 3 4j 0 δj an " δi x n e -iS[jna] + e -iS ′ [jna] . ( 56 
)

Mean values and variances

With these preliminary completed, we can now check that mean values and relative fluctuations of areas and angles have the right behavior in the large scale limit. With the notation

O := Ψ q | O |Ψ q Ψ q |Ψ q and ∆O = O 2 -O 2 (57) 
we demand

j ni = j 0 and ∆j ni j ni → 0 when j 0 → ∞, (58) 
as in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF], as well as

i mn n = i 0 and ∆i mn n i mn n → 0 when j 0 → ∞. ( 59 
)
Notice that we demand this for all m n , namely for each node in each pairing.

It is easy to show that the state (39) satysfies (58). Because of the vanishing of the interference terms proven above, in large j 0 limit the mean values reduce to the average of the mean values on each diagonal term.

j ni ≈ mn j i mn n j ni |Φ[j i mn n ]| 2 mn j i mn n |Φ[j i mn n ]| 2 ≈ mn dδj dδi mn n j ni e -1 j 0 P α (ij)(mr) δjij δjmr e - P n 3(δi mn n ) 2 2j 0 mn dδj dδi mn n e -1 j 0 P α (ij)(mr) δj ij δjmr e - P n 3(δi mn n ) 2 2j 0 = j 0 . ( 60 
)
The calculation of the variance and mean value in the intertwiner variable is a bit more complicated.

It is convenient to express the state in the pairing of the relevant variable using (52) and (54). With this, we have

i x 1 ≈ mn =m1 j i mn n =1 i x 1 i x 1 |Φ q | 2 + Φ ′ q 2 + Φ ′′ q 2 mn j i mn n |Φ q | 2 ≈ 3 mn =m1 j i mn n =1 i x 1 i x 1 |Φ q | 2 mn j i mn n |Φ q | 2 = mn =m1 j i mn n =1 i x 1 i x 1 |Φ q | 2 mn =m1 j i mn n =1 i x 1 |Φ q | 2 = i 0 , (61) 
where we have used the (52) and ( 54) and the fact that the constant N 1 in these expression satisfies

|N 1 | 2 = 1.
The same procedure can be used to compute the variance and check that (59) is satisfied.

Calculation of the propagator

We are now ready to compute all components of the propagator [START_REF] Speziale | Towards the graviton from spinfoams: the 3d toy model[END_REF]. Consider this quantity for a fixed value of m, n, i, j, k, l. Because of the sum in (56), the propagator can be written in the form:

G ij,kl q n,m = 4 5 j in Φ(j, i) 5 n=1 G[δj na , δi n ] • W | E (ni) n • E (nj) n -n (ni) • n (nj) E (mk) m • E (ml) m -n (mk) • n (ml) |j, i n , (62) 
For a given value of m, n, i, j, k, l, we now can fix the reference choice of pairing so that (ij) (if different) are paired at the node n and (kl) (if different) are paired at the node m. With this choice of basis the action of the operators is diagonal, and we have

G ij,kl q n,m = 4 5 j in Φ(j, i) 5 n=1 G[δj na , δi n ] D ij n -n (ni) • n (nj) D kl m -n (mk) • n (ml) W |j, i , (63) 
We use the same form of the the Barret-Crane vertex as in [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF][START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF]. This is given by

W |j, i := W (j, i) = W (j) n i BC |i n = W (j) n (2i n + 1), (64) 
where W (j) is the Barrett-Crane vertex, which a functions of the ten spins alone. In the large distance limit, n (2i n + 1) = 2i 5 0 , hence

W (j, i) = 2i 5 0 W (j). ( 65 
)
Using this, (63) becomes

G ij,kl q n,m = j W (j) i x n Φ(j, i) 5 n=1 G[δj na , δi n ] D ij n -n (ni) • n (nj) D kl m -n (mk) • n (ml) , (66) 
where we have absorbed numerical factors and i 5 0 in the normalization of the state. Each factor G[δj na , δi n ] in this expression has the form (1 + N e iS + N e iS ′ ). The terms with the exponents contain rapidly oscillating phases in the spin variables, which again suppress the integral in the large j 0 limit. Therefore we can drop these factors.

The value of the eigenvalues D ij n is given in [START_REF] Freidel | Asymptotics of 6j and 10j symbols[END_REF]. The value of the product of normals is given in [START_REF] Pietri | Geometry Eigenvalues and Scalar Product from recoupling Theory in Loop Quantum Gravity[END_REF]. Using these, we have

D ij n -n (ni) • n (nj) = (C(i n ) -C(i 0 )) -(C(j (ni) ) -C(j 0 )) -(C(j (nj) ) -C(j 0 )) 2 . ( 67 
)
Expanding up to second order around the background values j 0 and i 0

C(j j ) -C(j 0 ) = (δj j ) 2 + 2δj j j 0 + δj j , (68) 
we obtain, in the large j 0 limit

D ij n -n (ni) • n (nj) = δi n i 0 -δj j j 0 -δj nk j 0 . (69) 
Inserting this in (66) we have

G ij,kl q n,m = j 2 0 j W (j) i x n 2 √ 3 δi n -δj ni -δj nk 2 √ 3 δi m -δj mk -δj ml Φ(j, i). ( 70 
)
In the case in which two of the indices of the propagator are parallel, say i = j, this reduces easily to

G ii,kl q n,m = 2j 2 0 j W (j) i x n δj ni 2 √ 3 δi m -δj mk -δj ml Φ(j, i). (71) 
While if i = j and k = l we recover the diagonal terms,

G ii,kk q n,m = 4j 2 0 j W (j) i x n δj ni δj mk Φ(j, i). (72) 
We can now evaluate (70). Inserting the explicit form of the state gives

G ij,kl q n,m = Cj 2 0 δj,δi W (j) 2 √ 3 δi n -δj ni -δj nk 2 √ 3 δi m -δj mk -δj ml • e -1 2j 0 P α (ij)(mr) δjij δjmr +i P Φδjij e - P n " 3(δin ) 2 4j 0 -i " P a 3 4j 0 δjan+ π 2 " δin « . (73) 
Using the asymptotic expression for the BC vertex, we can proceed like in [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF] and [START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF]. The rapidly oscillating phase term in the spins selects one of the the factors of this expansion, giving

G ij,kl q n,m = N j 2 0 δj (ab) , δiα a<b dim(j (ab) ) 2 √ 3 δi n -δj ni -δj nk 2 √ 3 δi m -δj mk -δj ml • e -1 2j 0 (α+iGj0) (ij)(mn) δjij δjmn e - P n " 3(δin ) 2 4j 0 -i " P a 3 4j 0 δj an + π 2 " δin « , (74) 
where the phase factor iΦ pq j pq in (73) has been absorbed by the corresponding phase factor in the asymptotic expansion of the 10j symbol W (j) (see [START_REF] Freidel | Asymptotics of 6j and 10j symbols[END_REF][START_REF] Barrett | The asymptotics of an amplitude for the 4-simplex[END_REF]), as in [START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF][START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF]. Here G is the matrix of the second derivatives of the Regge action (see [START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF][START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF]) and should not be confused with the G used in the Appendix. Finally,

G ij,kl q n,m = N ′ j 2 0 δj (ab) , δiα 2 √ 3 δi n -δj ni -δj nk 2 √ 3 δi m -δj mk -δj ml • • e -1 2j 0 (α+iGj0) (ij)(mn) δjij δjmn e - P n " 3(δin ) 2 4j 0 -i " P a 3 4j 0 δjan+ π 2 " δin « . (75) 
We can rearrange this expression introducing the 15 components vector δI α = (δj ab , δi n ) and Θ α = (0, χ in ) and the 15 × 15 correlation matrix

M = A 10×10 C 10×5 C T 5×10 S 5×5 , (76) 
where A ab cd = 1 2 (α + iGj 0 ) ab cd is a 10 × 10 matrix and S nm = I nm 3 4 is a diagonal 5 × 5 matrix and C is a 10 × 5 matrix and C T is its transpose, and evaluate it approximating the sum with an integral

G ij,kl q n,m = N ′ j 2 0 dδI α 2 √ 3 δi n -δj ni -δj j 2 √ 3 δi m -δj mk -δj ml e - M αβ j 0 δI α δI β e iΘαδI α . (77) 
The matrix M is invertible and independent from j 0 . Direct calculation using (166) gives a sum of terms of the kind

e -j0ΘM -1 Θ √ det M j 3 0 M -1 αβ -j 4 0 M -1 αγ Θ γ M -1 βδ Θ δ . (78) 
These terms go to zero fast in the j 0 → ∞ limit, and therefore do not match the expected large distance behavior of the propagator. One could hope to circumvent the problem behaviour thanks to the normalization factor. Including this explicitly we have Gij,kl

q n,m = W | E (ni) n • E (nj) n -n (ni) • n (nj) E (mk) m • E (ml) m -n (mk) • n (ml) |Ψ q W |Ψ q . ( 79 
)
The denominator gives

W |Ψ q = e -j0ΘM -1 Θ √ det M . (80) 
Terms of the kind (78) are still pathological, since they give

M -1 αβ j 0 -M -1 αγ Θ γ M -1 βδ Θ δ (81)
in the limit. In conclusion, the calculation presented does not appear to give the correct low energy propagator.

Conclusions

The calculation presented above is based on a number of assumptions on the form of the boundary state. Could the negative result that we have obtained be simply the result of these assumptions being too strict, or otherwise wrong? Could, in particular, a different boundary state give the correct low energy behavior? Although we do not have a real proof, we do not think that this is the case.

The original aim of the research program motivating this article was to find such a state; the negative result we report here has initially come as a disappointment, and we have fought against it at long. We have eventually got to the conclusion that the problem is more substantial, and is related to the BC vertex itself, at least as it is used in the present approach. There are several indications pointing to this conclusion. First, the trivial intertwiner dependence of the Barrett-Crane structure clashes with the intertwiner dependence of the boundary state that is needed to have a good semiclassical behavior. Since the variables associated to the angles between faces do not commute with one another, the boundary state cannot be sharp on a classical configuration. In order for a state peaked on a given angle to be also peaked on the other non-commuting angles, the state must have a phase dependence from intertwiners and spin variables. Following the general structure of quantum mechanics, one then expect the transition amplitude matching between coherent states to include a phase factor exactly balancing those phases. This is the case for instance for the free propagator of a non-relativistic quantum particles, as well as for the phases associated to the angles between tetrahedra in the calculation illustrated in [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF][START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF]. However, no such phase factor appears in the BC vertex. In particular, the phase factor i π 2 p i p present in the boundary state (necessary to have the complete symmetry of the state) is not matched by a corresponding factor in the vertex amplitude. This factor gives the rapidly oscillating term that suppresses the sum.

Second, as already mentioned, there is in fact a structural difficulty, already pointed out in [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF][START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF], with the definition (64) of the amplitude, and we think that this difficulty is at the roots of the problem. Let us illustrate this difficulty in detail.

There are two possible interpretations of equation ( 64). The first is that this is true is one particular basis, namely for i n = i x n . Let us discard this possibility, which would imply that the BC the vertex itself would depend on a specific choice of pairing. The second is that it is (simultaneously) true in all possible bases, that is

W |j, i mn = W (j) n (2i mn + 1) (82) 
for any choice of pairing, namely for any choice of m n . This is indeed the definition of the vertex that we have implicitly used. However, defined in this way, the vertex W | is not a linear functional on the state space. This is immediately evident by expressing, say i y 1 | on the i x 1 | basis. We can say this in other words. The Barrett-Crane intertwiner is defined as a sum of simple SO(4) intertwiners, that we can write as

i BC = i x (2i x + 1)|i x , i x = i y (2i y + 1)|i y , i y = i x (2i x + 1) ❅ ❅ i x r r ❅ ❅ i x r r = i y (2i y + 1) ❅ ❅ i y r r ❅ ❅ i y r r . ( 83 
) Hence i BC |i m , i m = (2i m + 1) (84) 
whatever is m. Since the simple SO(4) intertwiner |i x , i x diagonalizes the same geometrical quantity as the SO(3) intertwiner |i x , it is tempting to physically identify the two and write

i BC |i m = (2i m + 1). ( 85 
)
But there is no state i BC | in the the SO(3) intertwiner space that has this property. In other words, there is a mismatch between the linear structures of SO(4) and SO(3) in building up the theory that we have used.

In the companion paper [START_REF] Alesci | The complete LQG propagator: II. Asymptotics of the vertex[END_REF], we show that, perhaps surprisingly, a vertex with a suitable asymptotic behavior can overcame all these difficulties.

A Recoupling theory

We give here the definitions at the basis of recoupling theory and the graphical notation that is used in the text. Our main reference source is [START_REF] Brink | Angular Momentum[END_REF].

• Wigner 3j-symbols. These are represented by a 3-valent node, the three lines stand for the angular momenta wich are coupled by the 3j-symbol. We denote the anti-clockwise orientation with a + sign and the clockwise orientation with a sign -. in index notation v αβγ :

a b c α β γ = a α b β c γ + = a α c γ b β - ( 86 
)
The symmetry relation

v αβγ = (-1) a+b+c v αγβ a b c α β γ = (-1) a+b+c a c b α γ β (87) implies + a b c = (-1) a+b+c - a b c (88)
• The Kroneker delta.

δ ab δ α β = aα bβ . ( 89 
)
• Anti-symmetric or "metric" tensor. (1-j symbol). In vector notation: a ǫ αβ a αβ = (-1) a+α δ α-β (90) in graphical notation:

δ ab a αβ = aα bβ (91) 
the relations ǫ α ′ β ǫ αβ = δ α ′ α and ǫ α ′ β ǫ βα = -δ α ′ α , for the fundamental representation, read, for generic representations

β a α ′ β a αβ = δ α ′ α ( 92 
)
aα aα ′ = aα aα ′ (93)
and

β a α ′ β a βα = (-1) 2a δ α ′ α (94) aα aα ′ = (-1) 2a aα aα ′ (95)
From the properties of the 3j symbols it follows: in vector notation: v αβγ = v αβγ ; in graphical notation:

+ a b c = + a b c = + a b c . ( 96 
)
Trace of the identity

a δ α α = a = 2a + 1 (97) 
• First orthogonality relation for 3j-symbols.

α,β a b c α β γ a b c ′ α β γ ′ = 1 2c + 1 δ cc ′ δ γ γ ′ (98) a b - 
+ c c ′ = 1 2c + 1 cγ c ′ γ ′ (99) This implies 
- + a c b = 1 (100) 
• Second orthogonality relation. 

cγ (2c + 1) a b c α β γ a b c α ′ β ′ γ = δ α α ′ δ β β ′ (101) 
• Orthogonality relation for the 6j symbols.

f dim m dim f a b f d c e a c m d b f = δ em (107) 
• Biedenharn-Elliot identity.

x dim x (-1) a+b+c+d+e+f +g+h+i+x e f x b a i a b x c d h d c x f e g = g h i a e d g h i b f c (108) 
• The "basic rule".

δǫφ 

(-1) d+e+f -δ-ǫ-φ d e c -δ ǫ γ e f a -ǫ φ α f d b -φ δ β = a b c d e f a b c α β γ (109) - - - a 

B Analytic expressions for 6j symbols

From [START_REF] Brink | Angular Momentum[END_REF].

a b e d c f = (-1) a+b+c+d ∆(a, b, e)∆(a, c, f )∆(b, d, f )∆(c, d, e) z (-1) z f (z) z! (111) 
where

∆(a, b, c) = (a + b -c)!(a + c -b)!(b + c -a)! (a + b + c + 1)! (112) 
and

f (z) = (a + b + c + d + 1 -z)! (e+f -a-d+z)!(e+f -b-c+z)!(a+b-e-z)!(c+d-e-z)!(a+c-f -z)!(b+d-e-f )! ( 113 
)
The sum is extended to all the positive integer z, such that no factorial has negative argument. The definition (111) implies some restrictions on the arguments of the 6j:

In particular the ∆(a, b, c) restricts the arguments to satisfy the triangle inequalities

(a + b -c) ≥ 0 (a -b + c) ≥ 0 (-a + b + c) ≥ 0 (114) 
and a + b + c has to be an integer number. The expression (111) reduces to the following simple expressions used in the calculation 

a a 1 b b e = (-1) a+b+e+1 2 C 2 (a) + C 2 (b) -C 2 (e) C 2 (a) dim(a)C 2 (b) dim(b) (115) 
The 6j symbol is invariant for interchange of any two columns, and also for interchange of the upper and lower arguments in each of any two columns:

a b e d c f = a e b d f c = e a b f d c = a c f d b e = d c e a b f , etc (118) 
We have also used the trivial facts

(-1) a = (-1) -a ∀a ∈ Z, (-1) 2a = 1 ∀a ∈ Z, ( -1) 3s 
= (-1) -s ∀s ∈ Z 2
in the calculations involving the 6j symbols

C Grasping operators

The operator E a ( x)n (ni) a is the "grasping operator" that acts on the spinnetwork's link dual to the triangle with normal n (ni) a . Let say that this link is in the j representation ; E a ( x)n ni a will acts inserting an SU (2) generator in the same representation [START_REF] Rovelli | Quantum Gravity[END_REF] or equivalently, by inserting an intertwiner between the (j) rep and the rep 1, namely a 3j symbol not normalized:

E (ni) ( x) iα β = i (j) J iα β = iN j v iα β (119) 
where (j) J iα β is the SU (2) generator in the j representation (i = -1, 0, 1), (α, β = -j, .., j), N j is a normalization factor and v iαβ is the normalized 3j symbol. The action of the operator E (ni) is then determined by the representation of the links on which it acts; in the following we will call E (j) an operator acting on the link with rep j.

Graphically, with our conventions

E (j) n = i N (j) - j j 1 (120) 
(Note the arrow that reflect the lowered magnetic index).

To fix the normalization factor N j is enough to square the expression (119), use (99)

j J 2 α β = C 2 (j) j I α β = (N j ) 2 dim j j I α β (121) 
and take the trace of the previous equation (where j I α β is the identity in the rep j ), obtaining

N j = j(j + 1) dim j (122) 
Our triangulated manifold consist of a 4-simplex made of 5 tetrahedron t n , bounded by triangles t nm . In the dual picture the 4 symplex is represented by the pentagonal net where the tetrahedra are the 4-valent nodes n, labeled by the intertwiners i n in a given pairing, and the triangles are the links nm labeled by the spin numbers j nm .

In our calculation we act with the operator E a ( x)n (nl) a on the tetrahedron t n in the direction n (nl) a orthogonal to the triangle t nl ; in the dual picture we are then acting on the 4-valent nodes n and precisely on the link j ni . To enlighten the notation, fixed a node n, we will call the four possible colorings corresponding to the 4 directions ni with a, b, c, d where the letter indicate the representation of the links. Graphically the action of a single grasping operator operating on the link a for example is 

E (a)
where in the last equalities we have used the relation (96),( 93),(95) to eliminate the arrows and the (88) to solve the loop using (99). The other possible case is where we have changed the orientations of the 3-valent nodes to simplify the loop, using the basic identity (110),and used the symmetry properties of 6j symbols and its explicit expression (115)

E (a) n • E (b)
The other possible action is The operators that we have calculated have to satisfy

E (a) n • E (c)
E (a) n • E (a) n + E (a) n • E (b) n + E (a) n • E (c) n + E (a) n • E (d) n = 0 (135)
as a direct consequence of ( 8) which, at quantum level, implies that a four-valent node (by definition an intertwiner) is invariant under under the action of the group. A direct calculation on our four-valent node shows that this is indeed the case 

(E (a) n • E (a) n + E (a) n • E (b) n + E (a) n • E (c) n + E (a) n • E (d) n ) + b a c d + e = = C 2 (a) + C 2 (e) -C 2 (a) -C 2 (b) 2 + X ac e + X ad

D Normalization of the spinnetwork states

Following [START_REF] Rovelli | Quantum Gravity[END_REF], we define a spinnetwork S = (Γ, j l , i n ) as given by a graph Γ with a given orientation (or ordering of the links) with L links and N nodes, and by a representation j l associated to each to each link and an intertwiner i n to each node. As a functional of the connection, a spin network state is given by Ψ

S [A] = A|S ≡ ⊗ l R j l (H[A, γ l ]) • (⊗ n i n ) ( 137 
)
where the notation • indicates the contraction between dual spaces and R j l (H[A, γ l ]) is the j l representation of the holonomy group element H[A, γ l ] along the curve γ l of the gravitation field connection A. In the paper we have used states normalized in such a way that

S|S ′ = δ S,S ′ . (138) 
Following [START_REF] Pietri | Geometry Eigenvalues and Scalar Product from recoupling Theory in Loop Quantum Gravity[END_REF][START_REF] Pietri | On the relation between the connection and the loop representation of quantum gravity[END_REF] we can see that the scalar product reduces to the evaluation of the spinnetwork and that the definition of the spinnet state has to be properly normalized in order for (138) to be satisfied.

Here we have used three-valent intertwiners (3j-Wigner symbols (86)) normalized to 1, so that the evaluation of the theta-graph gives 1: see (100). This means that the formula (8.7) of [START_REF] Pietri | Geometry Eigenvalues and Scalar Product from recoupling Theory in Loop Quantum Gravity[END_REF] defining a normalized spinnetwork state in our case reads

|S N = e∈E dim j e |S , ( 139 
)
where E is the set of real and virtual edges (intertwiner links of the decomposition of multivalent nodes). We can then see that the recoupling theorem (106) when applied to spinnetwork normalized 

E Regge Action and its derivatives

Following [START_REF] Ponzano | Semiclassical limit of Racah coefficients[END_REF], we can write the asymptotic formula of a 6j symbol as

a b c d e f ≈ 1 √ 12πV cos S R + π 4 (141) 
where

S R = 4 i,j=1 l ij φ ij (142) 
where S R is the Regge action of the tetrahedron The dihedral angles can be expressed in terms of the volume and the areas of the tetrahedron

A i A j sin φ ij = 3 2 l ij V (144) 
where A i is the area of the triangle opposite to the vertex i (A i , A j are the areas of the triangles that share the edge l ij ). We are interested in the expansion of the Regge action in the variables l ij ; we can express everything in term of the edge length expressing the volume and the areas using the formula

V 2 d = (-1) d+1 2 d (d!) 2 det C d (145) 
where V d is the volume of a simplex of dimension d and C d is the Cayley matrix of dimension d; in particular given 6 edges for the tetrahedron or 3 for the triangle, with the following Cayley matrix we can calculate all the quantities appearing in (144)

C 3 =       0 1 1 1 1 1 0 l 2
We are interested in the asymptotic expansion of the 6j symbol that realizes the change of pairing at a given node; in the node 1 for example j 12 j 13 i x 1 j 15 j 14 i y 1 (147) with link variables j 1n centered around j 0 and intertwiners variables i mn 1 centered around i 0 = 2 √ 3 j 0 . Using the previous formula we can calculate the coefficients of the Regge action expansion linked to this symbol. The relevant derivatives for our calculation are (see also the Appendix of [START_REF] Livine | Towards the graviton from spinfoams: higher order corrections in the 3d toy model[END_REF])

∂S A R ∂i x 1 j 0 ,i 0 = ∂S A R ∂i y 1 j 0 ,i 0 = π 2 , (148) 
∂ 2 S A R ∂j 1n ∂i x 1 j 0 ,i 0 = ∂ 2 S A R ∂j 1n ∂i y 1 j 0 ,i 0 = 3 4j 0 , (149) 
∂ 2 S A R ∂i x 1 ∂i y 1 j 0 ,i 0 = - √ 3 j 0 , (150) 
∂ 2 S A R ∂ 2 i x 1 j 0 ,i 0 = ∂ 2 S A R ∂ 2 i y 1 j 0 ,i 0 = - √ 3 2j 0 . (151) 

F Change of pairing on the boundary state

Here we show how one of the coefficients defined by (36) transforms under the change of basis determined by a different pairing. In particular, we show that with the choice of parameters in [START_REF] Oriti | The group field theory approach to quantum gravity[END_REF], equation ( 50) becomes (52). Under the change of basis,

Φ ′ q [j, i x 1 , i 2 ...i 5 ] = i y 1 Φ q [j, i y 1 , i 2 ...i 5 ](-1) j13+j14+i x 1 +i y 1 d i x 1 d i y 1 j 12 j 13 i x 1 j 15 j 14 i y 1 . (152) 
With the choice of the boundary state defined by [START_REF] Oriti | The group field theory approach to quantum gravity[END_REF], this reads 

Φ ′ q [j, i x 1 , i 2 ...i 5 ] = e -
+ P a φ j a1 i y 1 δj a1 δi y 1 +iχ i y 1 δi y 1 ! (-1) j13+j14+i x 1 +i y 1 d i x 1 d i y 1 j 12 j 13 i x 1 j 15 j 14 i y 1 . (153) 
Expanding the 6j symbol in the large-j limit, and applying the relation (38) we get

Φ ′ q (j, i x 1 , i 2 , ..., i 5 ) = e -1 2j 0 P α (ij)(mr) δj ij δj mr +i P Φδj ij e - P n =1 " (δi mn n ) 2 4σ i mn + P a φ jna i mn n δj an δi mn n +iχ i mn n δi mn n « • e iπi0 2 dδi y 1 e - (δi y 
1 ) 2 4σ i y 1 + P a φ j a1 i y 1 δj a1 δi y 1 +iχ i y 1 δi y 1 ! d i x 1 d i y 1 e i(SR+πδi y 1 + π 4 ) + e -i(SR-πδi y 1 + π 4 ) √ 12πV . (154) 
We expand the Regge action up to second order in all its 6 entries; the external link around j 0 and the intertwiners around i 0 S R [j 1n , i y 1 , i x 1 ] =S R [j 0 , i 0 ] + ∂S R ∂j 1n j 0 ,i 0 δj 1n + ∂S R ∂i x 1 j 0 ,i 0 δi x 1 + ∂S R ∂i y 1 j 0 ,i 0 δi y 1 + ∂ 2 S R ∂j 1n ∂j 1n ′ j 0 ,i 0 δj 1n δj 1n ′ + + ∂ 2 S R ∂j 1n ∂i x 1 j 0 ,i 0 δj 1n δi x 1 + ∂ 2 S R ∂j 1n ∂i y 1 j 0 ,i 0 δj 1n δi y 1 + ∂ 2 S R ∂i x 1 ∂i y 1 j 0 ,i 0 δi x 1 δi y 1 + 1 2

∂ 2 S R ∂ 2 j 1n j 0 ,i 0 (δj 1n ) 2 + 1 2

∂ 2 S R ∂ 2 i x 1 j 0 ,i 0 (δi x 1 ) 2 + 1 2 ∂ 2 S R ∂ 2 i y 1 j 0 ,i 0 (δi y 1 ) 2 + ... (155) 
In the background in which we are interested, i 0 = 2 √ 3 j 0 and ∂SR ∂i y 1 j 0 ,i 0 = ∂SR ∂i x 1 j 0 ,i 0 = π 2 . The value χ = ∂SR ∂i y 1 j 0 ,i 0 = π 2 , yields a phase in the intertwiner variable e -i π 2 δi y 1 that cancels one of the two rapidly-oscillating phase factor due to the linear term of the expansion of the Regge action. In particular the linear part in the intertwiner variable of the first exponential e 1 is canceled: for the same mechanism described in [START_REF] Bianchi | Graviton propagator in loop quantum gravity[END_REF] only the second term in the summation (154) survives. Denoting SR = S Ri π 2 δi y 1 , we have that (154) reduces to Φ ′ q (j, i x 1 , i 2 , ..., i 5 ) =e 

From [START_REF] Livine | Towards the graviton from spinfoams: higher order corrections in the 3d toy model[END_REF], we have that denoting µ =

d i x 1 d i y 1 12πV
, the dominant term is µ[j 0 ]. We take µ[j 0 ] out of the integration and evaluate the integral following [START_REF] Speziale | A semiclassical tetrahedron[END_REF]. To simplify the notation, rename the second derivative of the Regge action G j na ,i mn The choice φ = -iG j1a i y 1 = -i 3 4j 0 eliminates the argument of last exponential. So that we fall into the same as calculation [START_REF] Speziale | A semiclassical tetrahedron[END_REF], and we can transform the gaussian in another gaussian with the same variance. Evaluating the integral we get Φ ′ q (j, i x 1 , i 2 , ..., i 5 ) =e )

• e iπi0 e -i π 4 µ[j 0 ]e -iS A [j 0 ,i 0 ] e -iS A j [j1a] e -i π )

+iG A i x 1 i x 1 1 A (δi x 1 ) 2 (158) 
The Gaussian in the last equation has variance

σ i x 1 = 1 2   G 2 i x 1 i y 1 ( 1 
2σ i y 1 + iG i y 1 i y 1 ) + iG i x 1 i x 1   -1 (159) 
as in [START_REF] Speziale | A semiclassical tetrahedron[END_REF]. Proceeding in the same way, we fix σ so that both σ i y 1 and σ i x 1 are real quantities. Remarkably the auxiliary tetrahedron described by S R is isosceles and in this case σ i x 1 = σ i y 1 = j 0 /3 The final form of the coefficient is then Φ ′ q (j, i x 1 , i 2 , ..., i 5 ) =e where

N 1 = π 2( 1 2σ i y 1 + iG i y 1 i y 1 )
e iπi0 e -i π 4 µ[j 0 ]e -iSR[j 0 ,i 0 ] (161)

and we have the result (52). Summarizing, the parameters (29) and (30) are determined by the requirement that the gaussian has the same shape in all bases.

G Simple gaussian integrals used in the calculation

+∞ -∞ dx D exp - 1 2 x a A ab x b = (2π) D 2 √ detA , (162) 
+∞ -∞ dx D x i x j exp - 1 2 x a A ab x b = (2π) D 2 √ detA A -1 ij , (163) 
+∞ -∞ dx D exp - 1 2 x a A ab x b + iθ a x a = (2π) D 2 √ detA exp - 1 2 θ a A -1 ab θ b , ( 164 
) +∞ -∞ dx D x i exp - 1 2
x a A ab x b + iθ a x a = (2π)

•

  The 4j coefficient, or 4-valent node. a c b d α γ β δ = ǫ (-1) e-ǫ e a c ǫ

  b + e + 1)(ab + e)(-a + b + e)(a + be + 1) C 2 (a) dim(a) e dim(e) dim(eb + e + 2)(ab + e + 1)(-a + b + e + 1)(a + be) C 2 (a) dim(a) (e + 1) dim(e) dim(e + 1)

  action of our operatorsE (ni) n • E (nj)n on a node in a fixed pairing can then produce four different result depending on the two directions n ni ,n nj E(a) n • E (a)

4 C 2 2

 422 a) N(c) x (-1) a+c+x (-1) a+d+e+x dim x b of the result we have used, in order, the recoupling theorem (106) to change the pairing of the node, the basic rule (110) to solve the loop, the inverse transformation (106) to put the graph on the starting pairing and the Biedenharn-Elliot identity (108), having adjusted the sign factors, using the triangles inequalities of the 3j symbols defining the 6j. To analyze the result we have to look at the existence conditions of the {6j}(Appendix B) concluding that m can only take the values e -1, e, e + 1, the final resul is thenE (a)n • E (c) the coefficient form is easily calculated inserting the explicit expression of the {6j} symbols given in Appendix BX ac e = -N (a) N (c) (-1) 3d+a+b-c dim(e) (b) -C 2 (a) -C 2 (e) C 2 (d) -C 2 (c) -C 2 (e) C 2 (e)(128)Y ac e = -N (a) N (c) (-1) 3d+a+b-c dim(e -1) e eb + e + 1)(ab + e)(-a + b + e)(a + be + 1) • • (c + d + e + 1)(-c + d + e)(cd + e)(c + de + 1)(129)Z ac e = -N (a) N (c) (-1) 3d+a+b-c dim(e + 1) b + e + 2)(ab + e + 1)(-a + b + e + 1)(a + be) • (c + d + e + 2)(-c + d + e + 1)(cd + e + 1)(c + de)(130)Note that by definition (a + b + e) is an integer, so there aren't sign factors appearing in these expressions.The last term isE (a) n • E (d) (a) N (d) (-1) 3c+a+b-d (-1) (a) N (d) (-1) a+b+e m (-1) c+d+m dim m e obtained flipping the two link's c and d to recast the graph in the form (126), using the previous result and flipping back the graph in the summation. Keeping in mind that the product of {6j}appearing in the non diagonal terms is left unchanged by the change c → d, the final result is then the same as (127) apart from the sign of the non-diagonal terms and the change c → d in the diagonal one E (a) n • E (d) e = -N (a) N (d) (-1) a+b+c+d+2e dim(e) (b) -C 2 (a) -C 2 (e) C 2 (c) -C 2 (d) -C 2 (e)

  coefficient of all the states.

  6j symbol, and φ ij = φ ji (i = j) are the dihedral angle at the edge l ij . The edge lengths in terms of the 6j entries are:l 12 = a + 1 2 , l 13 = b + 1 2 , l 14 = c + 1 2 , l 34 = d + 1 2 , l 23 = b + 12 and l hh = 0, l hk = l kh .

+π)δi y 1 = e i 3π 2 δi y 1 combines

 11 with the boundary phase factor but the linear part of the second one e

a φ j 1a i y 1 δj a1 δi y 1 +i π 2 δi y 1 ! d i x 1 d i y 1 e

 111 )(mr) δj ij δj mr +i P

1 2j 0 P" φ j 1a i y 1 +iG j 1a i y 1 "

 1011 j na ] (53) the part of the Regge action that depends only on the boundary links involved in the 6j symbol considered and with no dependence from the intertwiners. Substituting we getΦ ′ q (j, i x 1 , i 2 , ..., i 5 ) =e -α (ij)(mr) δj ij δj mr +i P Φδj ij π 4 µ[j 0 ]e -iSR[j 0 ,i 0 ] • e -iSj [j1a] e -i π

P

  α (ij)(mr) δj ij δj mr +i P Φδj ij e

G j 1a i x 1 δj a1 + π 2 "

 12 )(mr) δj ij δj mr +i P Φδj ij

  j, i 1 , .., i n , .., i 5 + Y iq n |Γ 5 , j, i 1 , .., i n -1, .., i 5 +Z iq n |Γ 5 , j, i 1 , .., i n +1, .., i 5 if i opposite to q, X iq n |Γ 5 , j, i 1 , .., i, .., i 5 -Y iq n |Γ 5 , j, i 1 , .., i n -1, .., i 5 -Z iq n |Γ 5 , j, i 1 , .., i n +1, .., i 5 otherwise.