Simulation in the LAAS Architecture

Sylvain Joyeux, Alexandre Lampe Rachid Alami, Simon Lacroix firstname.lastname@laas.fr

LAAS/CNRS

18 April 2005

- Presentation of the LAAS Architecture
- 3 The functional layer in simulation
- Overall architecture

< E

Introduction LAAS Arch. Functional Arch

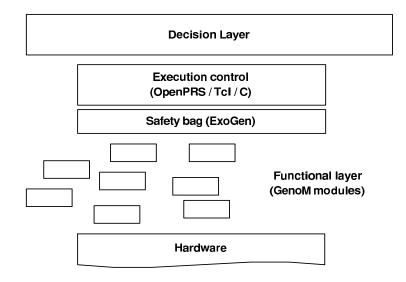
Simulation, what for ?

- extensive testing
 - access to situations unavailable in experiments
 - evaluating robustness
 - stress-test
- prototyping
 - high level layers (reasoning, multi-robot interaction)
 - testing algorithms not ready for use on real robots

< 回 > < 回 > < 回 >

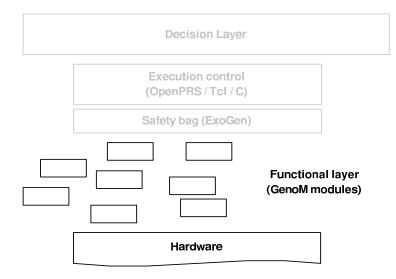
Design goals

- for prototyping as well as testing
- distributed multi-robot simulations
- integration of the software currently running on the robots
 - compatibility with the existing tools
 - simulating both real-time (RT) and non-RT software
 - no modification of the software needed


< 回 > < 回 > < 回 >

Presentation of the LAAS Architecture

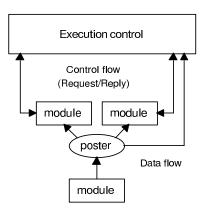
- 3 The functional layer in simulation
- Overall architecture


A (10) < A (10) < A (10) </p>

Current implementation of the LAAS Architecture

A (10) + A (10) +

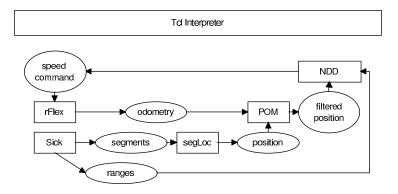
Components managed in simulation



・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Genom-based functional layers

The GenoM layer


- modular
- asynchronous control of module activity
- inter-modules and module/control data flow
- real-time specification

(日本) (日本) (日本)

Example

Reactive navigation

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

2 Presentation of the LAAS Architecture

The functional layer in simulation

Overall architecture

A (10) < A (10) < A (10) </p>

Functional layer behaviour

Execution environments differ

It is not required that

- the physics simulation is fast enough
- the host system is a RT OS
- the processing power is the same
- the communication use the same media (WiFi vs. eth)
- algorithms in develoment may have less than ideal performances

The layer behaviour can change when the execution environment changes

Functional layer behaviour

Because of these differences, we should provide

- a simulated real-time behaviour
- specification of execution duration
 - for real-time code
 - for prototyped algorithms
- simulated hardware latencies
- simulated communication latencies

We want the execution results to be the same as when the time specifications are met

Time control

A time control layer guarantees the functional layer behaviour

- relies on the discrete event nature of software code
- catches calls to low-level synchronization functions
- allows to specify:
 - arbitrary durations to sections of the client code
 - arbitrary latencies to hardware access and communication
- no module recompilation or modification needed

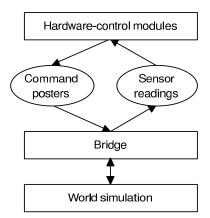
(日本) (日本) (日本)

- 2 Presentation of the LAAS Architecture
- 3 The functional layer in simulation
- Overall architecture

▲ 同 ▶ ▲ 国 ▶

< E

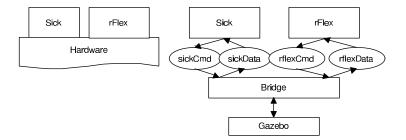
Access to the simulated world


Hardware access

Generic communication between the modules and the world simulator

- adds hardware communication latencies
- adds sensor error models

World simulation


- currently using Gazebo
- fixed-step simulation
- provides sensor simulation

(日) (圖) (E) (E) (E)

Introduction LAAS Arch. Functional Arch

Integration: hardware access

Joyeux, Lampe, Alami, Lacroix Simulation in the LAAS Architecture

Example simulation

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Integration of upper layers

execution control:

- based on OpenPRS or Tcl
- event-based procedural reasoning
- time-related events allowed (deadlines)
- time control guarantees the sequence of events from the functional layer
- time-based events handling:
 - may be based on system timers
 - may be based on event loops

Currently

We only make the calls to time-reading functions return the simulation time

(日本) (日本) (日本)

Distributed, multi-robot

Multi-robot interactions

- implicit communication: via the physical world
- no explicit communication (for now)

Implemented solution

- one Gazebo server for each simulation host
- at each Gazebo simulation step, synchronize all servers
- we use HLA for data distribution and time services

Future developments

- provide communication simulation in multi-robot setups
- heterogeneous simulations via HLA
- scripted events during simulations
- replaying logged values in order to test isolated modules