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A plan manager for multi-robot systems

Sylvain Joyeux1, Rachid Alami1, and Simon Lacroix1

LAAS-CNRS Université de Toulouse firstname.lastname@laas.fr

Summary. This paper presents a software component, the plan database, which
provides the services needed to build and execute plans in a multi-robot context.
This plan database handles fully dynamic plans (insertion and removal of tasks),
provides tools for safe concurrent execution and modification of plans, and handles
distributed plan supervision without permanent robot-to-robot communication. The
proposed concept is illustrated by a simulated example that involves a rover and an
UAV in an initially unmapped environment.

1 Introduction

One can distinguish two main schemes in today’s distributed robotics ar-
chitectures. On the one hand, some approaches rely on a team-management
layer which sends orders to a mono-robot supervision system (for instance
Teamwork [9] and TraderBots [1]). In these approaches, interactions between
robots are reactively managed, and are not pro-actively managed within a
plan structure. Systems based on such a scheme cannot predict that, for in-
stance, interactions will be needed in the future. Also, the team-management
layer is limited to managing high-level tasks, which makes difficult to han-
dle tighter interaction modalities, like opportunistic cooperation, which take
place at a lower abstraction level.

On the other hand, some approaches rely in mono-robot supervision sys-
tems that can send orders transparently to other robots: in FIRE [8], a robot
can change the state of a remote robot, but not pro-actively, and it assumes
that communication is available at all times, which can not be taken for
granted in multi-robot systems. Coupling such supervision layers with a team-
management component gives better result (like FIRE, which is a modified
Task Desciption Language coupled with a Contract-Net Protocol task alloca-
tion scheme), but the resulting systems still have the problem of the above
architectures: the two layers do not share all the information they have, and
so the interaction managed by the upper layer can only loosely take into ac-
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count the interaction in the lowest one. They lack a common place in which
to describe all the interactions in place.

To our knowledge, three architecture have implemented plan-based co-
operation: GPGP and its associated task representation TAEMS [6], the
COMETS [3] architecture and Machinetta [7]. In COMETS, a plan which
can contain joint tasks1 is produced by a Shop2 planner. The joint tasks are
then negotiated among the team by an “Interaction Manager”. The resulting
plan (developed joint tasks and mono-robot tasks) is then sent as an unique
plan to an execution component. In GPGP, the joint plan is modified through
a whiteboard mechanism by all involved robots. When they all agree on the
result, each robot sends it to its own scheduler which starts its execution.
Machinetta defines a plan-based interaction mechanism and an architecture
for the interaction. The main focus of COMETS and Machinetta is to de-
fine a generic team management system and the one of GPGP is multi-robot
planning. All three are tied to their particular interaction scheme. None has
been designed to be flexible enough to integrate different plan production
mechanisms and different team management schemes.
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Fig. 1. In this architecture, each robot plan is managed by its own plan database.
Parts of these plans are shared among databases. Decision control manages plan
generation, team management and solves conflicts between execution and planning

In this paper, we present a plan database component, whose role is to
provide the services required to manage and execute multi-robot plans. The
component is generically designed, and is not associated to specific plan gener-
ation systems or specific team management schemes. This plan database acts
as the middle-man between the functional layer and plan generation compo-
nents (Fig. 1). In this architecture, the planners are responsible for producing
coherent plans either for the robot alone or for the team, and the functional
layer is a service layer which provides the perception and action algorithms
that interfaces the robot and the real world. Between these two, we introduce
three components: the plan database maintains a plan, which is a graph of

1 A joint task is a task which is executed by more than one robot at a time
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tasks and events defining what the robot may do in the future and how it will
do it. This plan is continuously interpreted by the executive to produce actual
actions, using an event-based model. The decision control component has two
roles: first, it may call the planners for instance to adapt the plan for new
missions, for contingency planning and because of cooperation possibilities
with other robots. Second, it handles the choices that have to be made during
execution: since our framework allows simultaneous planning and execution,
conflicts will arise between the main plan being executed and the partial plans
being built. In a multi-robot context, it also solves conflicts between the needs
of the robot and the needs of the team.

The plan database (pDB) has been designed with the following goals:

• provide the tools required to build multi-robot plans, and use plans as a
basis of negotiation. In a pDB, one can build plans that involve multiple
robots, make these robots negotiate about the new plan (distributed plan
modification) and, if they agree, commit them to the result.

• manage plan modifications atomically: the executive must not execute par-
tial plans that are being generated by planners, as they are not sound yet.

• express multi-robot execution contexts, and handle them during execution.
In particular, plan execution is able to handle the fact that robots cannot
communicate at all times.

• allow integration of external tools to handle multi-robot decision processes
like task allocation and multi-robot planning.

2 Plan-based cooperation in a rover/UAV scenario

As a supporting example to present the concepts associated to the pDB, we
outline here a scenario which has been partially realized in simulation2. In
this scenario, the mission to achieve is a rover GoTo task in an initially un-
known terrain. For that purpose, the rover is endowed with algorithms which
instance a perception/decision/action loop, summarized by the three tasks
Bmap::TravPercep, Nav::Path and P3d::TrackPath. These tasks respec-
tively build a traversability map from perceived data, plan a path in the
traversability map and execute the planned path. The rover is assisted by
an UAV, which is able to update the traversability information of the rover
thanks to a vision process (Plid::TravPercep). We assume the UAV flies at
an obstacle free elevation, so that its movement can be handled by a simple
waypoint navigation scheme.

On the basis of this simple scenario, we will show in this section how the
rover-UAV cooperation can be expressed as relations between individual robot
plans, and how this joint plan is managed in our plan database.

Fig. 2 presents the initial rover plan, in which P3d::TrackPath follows
the waypoint list, Nav::Path, established by Nav::PathPlanning on the ba-

2 Its realization with real robots is currently under way
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sis of the results of Bmap::TravPercep3. The arrows between tasks express
relationships between tasks, which are described in section 3.1.

Rover’s plan
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planned_by

realized_by

P3d::TrackPath

Nav::PathPlanning
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(a) the UAV knowns that the rover 

depends on traversability perception. 
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the rover (FollowRobot)

(b) the UAV knowns the goal and planned path of the 

rover. It can map along the planned rover’s path 

(MapAlongPath). This way, the UAV takes the rover 

projected needs into account.

Fig. 2. (top) partial view of the initial rover plan. (bottom) two alternative coopera-
tion scheme, based on two different patterns found in the rover’s plan, in transactions
built by the UAV.

We selected for this scenario an opportunistic method to initialize the
interaction: the rover does not know beforehand that an UAV will help to
realize its mission. When the UAV detects the rover presence by using an
automatic network discovery mechanism, it will add triggers on the rover’s
plan. These triggers are used to match specific patterns in plans, and a list of
known patterns are defined in each robot controller. The UAV will therefore
be notified of a pattern it is able to interpret.

The two alternatives presented in Fig. 2 are based on two different triggers.
When multiple triggers match the same task pattern, the choice of the modal-
ity is not a decision made by the pDB, but by the decision control. The pDB
only notifies decision control what task set triggered what pattern. To achieve
this choice, decision control can for instance build multiple transactions with
the multiple possible outcomes and compare the resulting plans.

Let’s assume that the (b) modality is chosen by decision control. The UAV
then uses a planner to produce the plan, based on its partial knowledge of the

3 POM::Localization summarizes all the localization processes on-board the rover



A plan manager for multi-robot systems 5

rover’s plan. This planner cannot directly change the current rover plan: first,
partial plans are not directly executable, and second, if the UAV had such an
ability, it would mean that the rover is not able to fully control its activities.
We therefore need a way to change plans outside the plan being executed, so
that (i) the executive only sees complete executable plans and (ii) one robot
can propose a plan modification to another. This is achieved by transactions,
that represent a plan changeset, i.e. set of modifications required to get from
the current main plan to the desired final plan. Transactions can be shared
and synchronized across pDBs.

So, while the UAV generates its proposal, the rover is not aware of the
transaction. Once the transaction is complete from the UAV point of view,
the transaction is sent to the rover. The rover can modify it, in which case
the changes are sent back to the UAV: both robots use the transaction as
a whiteboard to build their joint plan. Once both agree on the new plan,
they change their main plan accordingly at the same time, and can start its
execution. If a joint plan cannot be found, the transaction is simply discarded.

3 A distributed plan database

The plan database has been designed as a tool for plan management, in both
mono-robot and multi-robot systems. In a multi-robot context, a single pDB
is able to express and manipulate plans where tasks executed by the local
robot (local tasks) are interacting with tasks executed by other robots (remote
tasks), or even the joint tasks that imply more than a single robot. Note that
in order to reduce plan complexity, there is no need for one robot to know
everything about another’s plan: a pDB is informed only about the remote
tasks it is interacting with (section 3.3). This allows to keep each pDB plan
at a tractable size regardless of the number of pDB currently interacting.

The section first describes the pDB model of tasks and events, and how
these objects interact which each other. It then presents how multi-robot plans
are managed and built, and finally the way to handle situations where two
interacting pDBs do not have communication, which is a key feature in a
multi-robot system.

3.1 Plan model

We summarize here the plan model used in the pDB – more details on this
model, and the general plan execution mechanisms and on error recovery are
detailed in [4].

In the pDB, plans are graphs of two kind of objects: events and tasks.
Events describe what occurs during task execution (for instance a stopped

event is emitted when a task has stopped), and the way they occur: an inter-
ruptible task has a controllable stopped event, which means that the controller
can call the event command and make the task stop. The main event rela-
tion is the signal relation: if an event e1 signals a controlable event e2, then
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e2’s command will be called when e1 is emitted. The signal graph therefore
describes the action(s) to take when an event is emitted.

Similarly to TDL and other task-based systems, tasks describe processes,
and the task relations describes the interactions between these processes.

Tasks models are defined as a set of events, the basic ones being started,
failed, success and stopped, which define milestones in the task execution.
These task models are put into a hierarchy in which the more abstract task
models are refined in less abstract ones. In the plan, these models are used to
define task instances, which are the active objects: they determine when the
events should be emitted, handle event commands, and can locally repair the
plan in case of exceptions. Defining a task model hierarchy has the advantage
that, in multi-robot contexts, a robot does not necessarily have to know all
the models known by all the pDBs. Instead, it can use an intermediate level of
abstraction to represent another’s specific task implementation (compare the
specific models of the rover and the more generic ones in the UAV transactions
on Fig. 2).

Three task relations are currently defined:

• The realized by relation is used to express dependency: the successful
execution of Nav::MoveTo requires its two child tasks to be successfully
achieved.

• The planned by relation expresses that finding a way to execute an action
is handled by a specific task.

• The influenced by relation: the rover motion and the UAV traversability
mapping do not have a strong dependency, but the execution time and
efficiency of the motion can be greatly improved thanks to the UAV’s
Plid::TravPercep task.

3.2 Multi-robot plans

In order to represent what tasks are executed by whom, a task instance has
an ownership attribute, which is set to the list of pDBs which are executing
this task. For local tasks, ownership is naturally set to the local pDB only,
for remote tasks to the remote pDB which is handling the task, and for joint
tasks to all the pDBs involved in the joint task.

During execution, a pDB is transparently notified of all changes that are
done to remote tasks that are present in its own main plan, in a manner ro-
bust to communication failures (section 3.4). This includes execution status
(signalling, event emission), and changes in the event and task graphs, which
allows the distributed execution and adaptation of multi-robot plans. How-
ever, we can easily see that if it were possible to freely create relations between
local and remote objects, then one pDB would be able to take decisions for
another, which should only be possible through negotiation: the golden rule
of multi-robot plan management in our system is that a remote pDB cannot
change a robot plan without its consent. To ensure that, the following rules
are in effect:
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• to remove a relation, it is sufficient to only own one of the two objects
involved. A pDB can for instance freely remove a realized by relation
between one of its own task and a task owned by another pDB (or a joint
task). This is needed because one robot should be able to remove itself
from a joint plan without negotiation, in cases of emergency for instance.

• any robot can remove itself at any time from the list of owners of a joint
task. Ownership removal is then notified to the other pDBs.

• as for the removal of task relations, to add or remove an event relation,
the local pDB must be the owner of the child in the relation: it allows one
pDB to synchronize itself on events of another pDB, which does not really
affect the other pDB.

Any other modification involving an object not exclusively owned by the
local pDB is not allowed in the main plan. To handle the negotiation process
needed for these modifications, we added distributed transactions, which act
as distributed whiteboard to change plans.

3.3 Building multi-robot plans

In a mono-robot pDB, a transaction is a whiteboard used to build a set of plan
modifications without modifying the plan being executed. The pDB can then
synchronously apply this changeset to the main plan (or discard it). It ensures
that the main plan is always sound, provided that the planners themselves are
producing sound changesets.

In a multi-robot context, transactions are shared among pDBs, and they
can change multiple plans at the same time. They can therefore be used as
a basis for negotiation: one robot builds a partial multi-robot transaction,
which can then be modified by others, until an agreement has been found on
the new joint plan, in which case the transaction is committed into all the
involved plans. The then pDB ensures that the changeset contained in the
transaction is applied at the same time on all involved plans or not at all. A
robot can therefore assume that, if new multi-robot relations have been added
to its plan, the same relations have been added on the other pDBs as well.

The update mechanism mentioned earlier uses subscription: a pDB sub-
scribes to remote tasks to get all updates about them. Obviously, however,
it must be automatically subscribed to remote tasks that are related to local
tasks by the object graphs. One of the role of plan building through dis-
tributed transactions is to determine what tasks, outside of the automatically
subscribed ones, are relevant to the remote pDBs.

3.4 Connection management

Multi-robot systems cannot take communication for granted: interactions be-
tween plan databases can therefore not rely on a permanent network link. In
our system, two interacting pDBs are connected. Connections are either alive
if a communication link exists, or dead if there is no communication link.
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In the plan, connections are represented by ConnectionTask instances,
with remote tasks being dependent of this connection task. Therefore, if a
separate component determines that we cannot rely on the remote robot, for
instance because the connection has been dead for too long or the robot is
late at a rendezvous, it simply stops the corresponding ConnectionTask and
lets the usual pDB recovery mechanisms apply (not described here, see [4]).
These monitoring situations can also be expressed in the plan, for instance
by making the ConnectionTask realized by monitoring tasks. That way,
ConnectionTask will be marked as failed if the monitoring fails.

Moreover, remote tasks are represented locally by task proxies, which are
passive objects in general. Specific proxies can be defined for specific task
models to predict the remote task state in a disconnected scenario, like the
proxies of Machinetta [7]. This allows to make the plan continue its execution
without having a communication link. Recovering after a bad prediction is
however an issue with which our system is not dealing.

4 Implementation and simulation results

The pDB is currently implemented4 in the Ruby language. We use the object-
oriented capabilities of Ruby as a way to define task models and task instances
as classes and objects. In distributed contexts, Ruby allows to create classes
on-the-fly, which allows to map unknown remote models to anonymous local
classes. Moreover, developing the system in a general-purpose language pro-
motes code reuse in supervisors. The development of our controllers shows
that a great level of modularity can be achieved by defining mixins for pat-
terns in task behaviours on the one hand, and libraries of often-used plan
modification operators on the other hand.

4.1 Simulation setup

Two controllers, one for the rover and one for the UAV have been imple-
mented, using an already existing set of Genom [2] modules that implement
the robots’ functional layer. Pocosim [5], our simulation system, allowed us to
use most of the modules in simulation without modification. We only replaced
the image acquisition chain by modules (plid on the UAV and bitmap on the
rover) which read a pre-computed traversability map (Fig. 3). These modules
offer the same interface as the real ones: we keep the simulated functional layer
as close as possible to the real one, to use the same controller in simulated
and real environments. Since no noise is added to perception, the functional
layer output is much better than in real conditions.
4.2 Plan execution

The joint plans built during negotiation include all the information required to
manage its execution. The pDB offers two error recovery mechanisms: either

4 available at http://www.laas.fr/~sjoyeux/research.php
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Fig. 3. (left) rover trajectories with (red) and without (white) the UAV’s help,
and the UAV trajectory in map-along-path mode. (right) Traversability map,
white being perfectly traversable and black not traversable. This map is discov-
ered incrementally by the rover and the UAV through the Bmap::TravPercep and
Plid::TravPercep tasks.

errors are handled in the plan (conditional plans), or an exception mechanism
(not described here) is used. In multi-robot contexts, exception handling is not
distributed: it is supposed to be a synchronous operation, and thus cannot be
done in the asynchronous communication scheme we use. If multi-robot error
recovery is needed, it shall be either directly expressed in the plan or done
reactively by negociation between the involved decision control components.

During execution, the UAV is therefore kept informed of any update of
the rover’s path (Path). It can use this information to build and update its
own mapping path and send the traversability updates to the rover. The rover
then replans its path, sends the updated path to the UAV, and so on.

The interaction finishes either when (i) the influenced tasks (parent tasks
in the influenced by relation) have successfully finished, which would an-
nounce the success of the joint plan, or (ii) when the plan structure from
which the systems initiated the interaction has ceased to exist. In that case,
the rover’s pDB will notify the UAV of this change, and the UAV can then
decide to change its plan accordingly. Note that it is not an automatic process
of the pDB plan management, but a decision to be taken by the UAV.

4.3 Simulation results

We have run three different kinds of simulations: the rover alone, with the UAV
as a remote sensor, and with the UAV which maps along the rover path (Fig. 3
displays the resulting trajectories). In these simulations, the rover alone don’t
always reach its goal. The two interaction schemes are consistently successful.
The rover reaches its goal (at 200 metres) in 10 minutes. The two setups are
equivalent in this simulation because the rover quickly gets trapped in the
corridor we see in the terrain.
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5 Conclusion

The contributions of this paper are the multi-robot extension to a plan model,
and the set of tools embedded in the plan database to build and execute
multi-robot plans. The pDB transactions allow to cooperatively build multi-
robot plans, negotiate on them and commit them. Its distribution mechanisms
allow to manage the plan during its distributed execution, including situations
where communication is not permanent. Finally, by not relying on particular
interaction schemes, the pDB is generic enough to allow integration of most
of the existing schemes.

The framework described in this paper has shown promising results for the
integration of a modular functional layer like Genom in a plan management
system, and for the development of interaction schemes. In the future, it should
act in various projects as an integration tool for interaction schemes, planning
tools and functional layers. Our main objective is now to integrate temporal
information in the plans, which is required to properly handle communication
loss for instance by handling the setup of rendezvous points.
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