
HAL Id: hal-00166797
https://hal.science/hal-00166797

Submitted on 10 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Software Component for Simultaneous Plan Execution
and Adaptation

Sylvain Joyeux, Rachid Alami, Simon Lacroix

To cite this version:
Sylvain Joyeux, Rachid Alami, Simon Lacroix. A Software Component for Simultaneous Plan Exe-
cution and Adaptation. IEEE Conference on Intelligent Robots and Systems, Oct 2007, San Diego,
United States. �hal-00166797�

https://hal.science/hal-00166797
https://hal.archives-ouvertes.fr

A Software Component for Simultaneous Plan Execution and

Adaptation

Sylvain Joyeux, Rachid Alami and Simon Lacroix

LAAS/CNRS, University of Toulouse, Toulouse, France

firstname.lastname@laas.fr

Abstract— This paper presents a software component, the
plan database, which provides the needed services to define
plans, execute them and more importantly adapt them during
execution. This plan database handles fully dynamic plans
(insertion and removal of tasks), defines task transformation
operators and provides tools for safe concurrent execution and
modification of plans. These features are essential in multi-
robot and human-robot contexts, where tasks need to be easily
passed between systems and plan adaptation helps coping with
the unpredictability inherent to systems where multiple agent
make decisions.

I. INTRODUCTION

In robotic systems, the planner rarely produces results

directly executable by the platform. It is often needed to

have an intermediate component, whose role is to manage

the functional layer based on the execution state and the

information available in the plan. Moreover, this execution

component can handle “simple cases”, so that upper layers do

not have to manage all events that come from the functional

layer: it typically performs error recovery and a limited form

of script-based plan generation. To handle the complexity of

these executives, tools like TCA [1], TDL [2], OpenPRS [3]

or ESL [4] have been designed.

One problem with this approach is that two components,

the planner and the executive, are keeping two different

plans. The first often lacks information about the execution

state, while the second lacks information about high level

goals, which are usually handled by higher layers. This

makes it difficult to deploy global plan analysis tools: state

and time estimation systems can greatly benefit of a complete

view of all processes that are running in the system.

On the contrary, in the Claraty [5] architecture, a single

plan is being managed by a central component. Claraty then

provides a simple mechanism to ensure that the part of the

plan being executed will not be changed by the planner: a

floating “line” separates the long-term plan, which can be

freely modified by the planner, from the short-term which is

read-only for the planner, and is exclusively handled by the

executive.

The IDEA [6] architecture defines a hierarchy of agents,

each of which plans a subset of the whole plan and then

sends part of it to other agents for further processing. This

allows for instance to use a fast, reactive planner for low-

level tasks and a long-term planner for high-level ones. The

IDEA architecture has been designed so that consistency is

maintained in the plans of all agents. However, for multi-

robot systems, this kind of decomposition has the limitation

Plan generation Decision

control

Functional layer

Plan database

Executive

Fig. 1. The plan database is a system component that represents and
maintains plans during execution

that since no agent has a global view of the robot plan, it is

difficult to detect redundancy between robots.

All these architectures lack the ability to efficiently remove

tasks from plans. The reason is often that the planners them-

selves lack this ability. Our experience in developing robot

systems show that this capability is essential in a number

of contexts, e.g. in multi-robot mechanisms: tasks may be

transferred back and forth between robots, for instance to

balance robot workload, or to replace one robot’s task by

another’s to remove redundancies.

This paper introduces a plan management component,

the plan database (pDB), which provides services aimed at

addressing these issues:

• fully dynamic: it defines a set of plan modification

operations that are to be performed by the pDB.

• simultaneous execution and modification of the plan. It

provides a generic tool to handle conflicts between plan

modifications and execution.

• reduce redundancy: plan operators promoting the reuse

of tasks already present in the plan

We first provide an overview of our system, and present

its behavior using an example. Then, we describe how plans

are modeled in the pDB and how they are managed during

execution. Finally, we describe the current implementation

of this system and outline future work.

II. OVERVIEW

Fig. 1 presents the context in which the pDB is embedded.

Plan generation tools (planners) are responsible for produc-

ing consistent plans, and the functional layer is a service

layer which provides algorithms and interfaces between the

software and the real world. Between these two, we introduce

MoveTo(from: A, to: C)

Provide(what: Transport,

at: C)

ChooseMotionModality

event signalling

realized_by relation

task with start

and stop events

planned_by relation

Fig. 2. Initial refinement of the Provide task

three components: the pDB maintains a plan, which is a

graph of tasks and events defining what the robot may do in

the future and how it will do it. This plan is continuously

interpreted by the executive to produce actual actions, using

an event-based model. The decision control component has

two roles: first, it may call the planners for instance to

adapt the plan for new missions or for contingency planning.

Second, it is called during execution to handle the choices

that have to be made: since our software system allows

simultaneous planning and execution, we may need to choose

between the main plan being executed and the partial plans

that are being built by the plan generation tools. This other

role of the decision control component is explained in more

details with the central tool for simultaneous planning and

execution: transactions (Sec. IV-D).

Let’s assume that an operator needs a transport to a given

point C. A robot is given this particular mission, which is

an initial plan made of only one task: Provide(what:

Transport, at: C). This plan cannot be executed yet

since there is no information on how this would be done. We

therefore need to develop this task.

From the database point of view, planner results are a set

of plan modifications which, when applied to the current

plan, will produce a new global and consistent plan. The

database does not check the consistency of generated plans,

it provides tools to adapt them and to safely manipulate the

global plan while concurrently executing it.

Since planning is in general far from being fast, the system

must be able to ensure that a set of modifications is valid

despite the changes brought by execution. To that end, the

database provides transactions1: this is a sandbox in which

planners can freely generate the needed set of modifications

without changing the global plan, this set being applied

atomically when planning is finished. These modifications

are gathered in one well-defined object such that the pDB

can check their validity with respect to the global plan being

executed.

In our example, a planner is selected for Provide by the

decision control. This planner begins a transaction, produces

the set of plan modifications leading to the plan of Fig. 2

and applies them by committing this transaction. Before it

can be executed, however, a specific MoveTo modality has

1which are an adaptation of the transactions found in “classical” databases

MoveTo(from: A, to: C)

B
Camera::GetPicture

Camera::Module

Provide(what: Transport,

at: C) GetPicture(pos: B)

ChooseModality

Fig. 3. The rover now has two goals: going to C and taking a picture
at an intermediate point B. The corresponding plan is a directed graph of
tasks and events.

to be chosen. For example, our all-terrain rover has two

motion modalities [7]. The NDD modality performs reactive

obstacle avoidance by using a 2D laser range finder and

can be used only on flat terrain. For more difficult terrain,

the P3D modality uses stereovision to produce a 3D terrain

model, which is then used to compute local robot path. The

first one allows faster movement, while the second one is

more robust. We therefore want to use NDD when the terrain

allows it, and P3D otherwise.

Choosing between these two modalities is done by the

ChooseModality task, which plans the MoveTo task.

Note that the plan database knows that it can switch between

NDD::MoveTo and P3D::MoveTo in this context, since

from the point of view of Provide, they are both equivalent

to MoveTo. The replace operator handles the exchange

between such alternatives.

However, changing the kind of MoveTo task on the fly

is not that simple: we cannot have both modalities active at

the same time, as it would mean that there is a way to send

commands to engines from two different sources, which is

forbidden in our functional layer. Therefore, when we switch

motion modality there is a period of time where none is

active, which breaks the plan. However, if the duration of

the switch is short compared to the system dynamics, this

break can be allowed. The pDB defines plan repairs to do

this in a controlled way.

Suppose that during the execution of Provide, the

operator decides that a picture is needed at an interme-

diate point B, which is not far from the planned path.

The GetPicture(at: B) mission is inserted into the

rover plan using a transaction. To allow synchronization

between the movement and GetPicture, a new event

B is dynamically added to MoveTo (Fig. 3). Adding this

event to the task instance allows to express that we need

synchronization on a particular position of the robot and that

the robot should move close to B (events are presented in

more details in III-A). If that is no longer possible, the B

event enters a particular state which allows us to determine

that the GetPicture cannot be executed anymore.

If the motion reaches B before the plan change has been

applied to the plan, the transaction cannot be committed

anymore: it depends on parts of the plan that lie in the

past. Thus, the transaction becomes invalid. In our case, this

can be solved by discarding the transaction, which abandons

GetPicture.

Having introduced the main pDB concepts, we can define

its execution cycle as follows:

• event gathering and propagation: get the set of external

events we are listening to and react to them according

to the information in the plan.

• check plan structure and propagate the corresponding

exceptions: the plan structure implies some constraints

on tasks. Failures to meet those constraints are detected

and can be recovered at this stage.

• check plan structure and kill the tasks involved in the

remaining exceptions: we do a second check on the

structure. The errors not repaired in the previous step

are dealt with by killing the involved activities.

• get the set of tasks that are not required by any robot

mission and remove them: the pDB knows which ac-

tivities are useful for the robot missions and which are

not. The tasks that are not useful are killed.

III. PLAN OBJECTS

Plans are graphs of two kind of objects: events and tasks

(Fig. 3). Events describe singular happenings during task

execution and the event graph encodes what action should

be taken when an event is achieved. Similarly to TDL and

other systems, tasks describe processes and the task relations

describe the interactions between these processes.

A. Event graph

Events are achievements in the system, for instance

“changed speed” or “is at position P”. During the execution,

an event can have the following states:

• achieved or emitted: the event has occurred.

• achievable: it is possible that the event will be achieved

in the future. This handles cases where parts of the

plan won’t be executed because they depend on the

achievement of some events, but these events will never

be achieved.

Moreover, an event is controllable if there is a way to make

sure that it will be achieved. For instance, a erobot_stopped

event is controllable, since the system knows how to stop

the robot. On the contrary, a etouched_obstacle event is not.

Controllability is implemented by attaching a procedure,

called the event command, to an event. The event model

demands that if an event command is called, then this event

will be achieved at some point in the future. An event is

pending if its command has been called, but the event is not

achieved yet.

Events are linked with directed relations, which define

what action to take when a particular event is achieved. Two

event relations are defined:

• signaling. if e1 signals e2, then the command of e2 is

called when e1 is achieved. e2 must be controllable.

• forwarding. if e1 is forwarded to e2, then e2 will be

achieved when e1 is achieved. e2 can be contingent.

B. Task models

While controllable events represent a deterministic link

between an achievement and its command, tasks represent

processes where simply calling the command (starting the

task), does not allow to predict that it will successfully fulfill

its purpose. In the plan database, task models are defined

as a set of events, which are the milestones of the task

execution. Plans are then made of task instances, which are

defined by a task model and a set of parameter values. During

execution, achievement of the task events is determined

either internally by the task itself, or externally by forwarding

external events. Since a task can define multiple events,

which can be mutually exclusive or not, our plan model

defines multiple execution paths. Unlike conditional plans,

however, they are not necessarily mutually exclusive.

All task models define the following events:

• estarted: the task is started.

• eaborted: the task execution support (UNIX process,

hardware) has terminated unexpectedly. In case of tasks

that control hardware, it means that the state of the

underlying hardware is unknown. Handling of execution

support will not be presented in detail in this paper.

• efailed: the task has terminated, but did not realize its

purpose.

• esuccess: the task has realized its purpose. A task is

achieved when its esuccess event is.

• estopped: the task has terminated. If this even is control-

lable, the task is interruptible.

Obviously, no task event can be achieved before estarted

or after estopped, and all of above events can only be achieved

once for a given task instance. Note that all events except

estarted describe a termination of the task. We therefore

would want that, for instance, if efailed is achieved then

estopped is achieved too. Forwarding eaborted to efailed, and

forwarding efailed and esuccess to estopped ensures that.

Task models are managed in hierarchies, where a parent

model defines a more generic task than a child model. This

hierarchy is different hierarchy than the refinement hierarchy

of task instances presented in Sec. III-C.

• as tasks are defined by a set of parameters, a child model

defines at least the same parameters as its parent. It can

define more, but not less.

• a child model defines a super-set of the events defined

in its parent model

It follows that a task t1 can be substituted by another

task t2 if its model is a child of the model of t1 and if its

parameter set is included in t1’s parameter set.

For instance, NDD::MoveTo and P3D::MoveTo are

submodels of MoveTo (Fig. 4), which takes two arguments:

the origin and the destination. Submodels of MoveTo can

take more arguments, such as specific parameters for the

algorithms of each modality. Moreover, the system can

dynamically add a new event B on MoveTo instances, which

is achieved when the robot crosses a geometric point B. If

new events have been added, then specialized task instances

can be used for substitution only if the same events can be

added to them.

Root task model

success

stopped

failedaborted
started

Genom::Runner

ready

blocked

MoveTo

P3D::MoveTo NDD::MoveTo

Fig. 4. Examples of task model hierarchy. The abstract MoveTo task
is implemented by more specialized models. Another unrelated model,
Genom::Process, is used to represent the Unix process of the modules
in our functional layer.

C. Task instances graph

To form a plan, we need to describe task interactions.

The core model defines two kind of relations between

tasks, which form directed acyclic graphs: realized_by and

planned_by. We use the convention that, if a task t1 is the

parent of another task t2 in any relation graph, then t2 is

directly useful for t1. This is used to determine what task is

useful to the robot missions.

1) Task refinement hierarchy: Task refinement is repre-

sented by the realized_by relation: a task T is realized_by

a task t if the achievement of T requires the achievement of

some of t’s events. In that case, t is a child of T and T is

a parent task of t. The child tree is the tree formed by the

realized_by relation and rooted by T . Unlike TDL or TCA,

however, the tasks do not form a task tree but a task graph:

one task can have many children and many parents, which

allows to easily reuse tasks already in the plan.

The realized_by relation has the following parameters,

which are needed for plan management:

• a (model, arguments) pair which defines what kind

of task T needs, following the substitution principle

explained earlier.

• a set Ef of failure events from the child task. If any of

these events is achieved, we know that the child task

will not realize what the parent task was expecting.

• a set Es of success events from the child task. If any of

these events is achieved, then the child task performed

what the parent was expecting.

Usually, Es = {esuccess} and Ef = {efailed}. In Fig. 3,

GetPicture needs the MoveTo task only until B is

achieved, thus Es is {eB}. Note that the achievable state

of the events in Es is important.

2) Planning tasks: t is planned by T if T represents

the planning process in charge of the achievement of t. In

general, it means that all or part of the subtree of t has

been produced, and can be changed by T . Planning tasks

can also be used to represent situations where a set of tasks

are abstract (not executable), and will be developed later. It

also allows to integrate repair capabilities of planners, as the

planning tasks are involved in exception handling (see IV-C)

On Fig 3, we see that MoveTo is planned_by the

ChooseModality task, whose role is to choose continu-

ously between the two motion modalities, either in proactive

manner or because the current modality has failed. The latter

case is presented in section IV-C.

IV. PLAN MANAGEMENT

The pDB defines the following services for plan manage-

ment:

• task replacement

• automatic plan cleanup mechanism, to remove unneeded

tasks

• handling of errors using both a conditional plan struc-

ture and exceptions

• transactions, a tool to concurrently modify and execute

the plan

A. Task replacement

The replace(t, T) operator transparently replaces the task

t in the plan with a new task T . This is only possible if T

is a valid substitution of t for all the hierarchy relations t is

part of. To replace running tasks, we need to check that the

two task models are equivalent (which is done by the pDB),

but also that they are in the same execution state. This is

done internally by the two tasks: T should provide a method

which ensures that its state is equivalent to the one of t, given

the task models needed by t’s parents. In simple cases like

the MoveTo replacement, it simply ensures that a running

task is replaced by a running task.

B. Plan cleanup

During the lifetime of the system, tasks will be inserted

and removed dynamically. We need to be able to determine

what tasks can be removed, given that we know what are the

high-level goals of the robot: if we remove a high level task

like GetPicture in Fig. 3, we need to remove some of its

children (in this case, Camera::TakePicture). There

are therefore two kinds of tasks in a plan: the missions are

the high-level goals of the robot and the remaining of the

plan exists to achieve these missions. It follows that the plan

can be split into a set of tasks needed by the set of missions,

and a set of tasks that are not useful in the context of the

current missions. The first set is part of the child tree of

a mission, while the second is not. Note that a mission is

in general not explicitly removed by an external tool: it is

marked as not being a mission anymore, and the system will

clean it up itself.

It is impossible to remove tasks that have parents (in any of

the task graphs): it is possible that they take part in the parent

task’s shutdown process. Therefore, the cleanup algorithm is

as follows:

1) remove all tasks in the plan which are not needed

anymore, which have no parent task and which are

not running. Loop until there is none to remove.

Program 1 Definition of an exception handler in the

ChooseModality task model. The change_modality

method creates the new planning task and returns it.

class ChooseModality

on_exception(ChildFailedError) do |error|

if error.task == planned_task

new_planner = change_modality

plan.repair(new_planner, error)

end

end

end

2) compute the set of tasks which are not needed anymore

and which have no parent. All tasks in this set are

running because of the previous step.

3) for all tasks in this set, call estopped if it is controllable.

C. Error handling

We want to be able to express plans where failure is ex-

plicitly taken into account: like ESL [4], and unlike TDL [2],

we do not consider that failures are always exceptional

conditions. While TDL would for instance handle a failed

movement as an exception [8], this is an error so common

in unknown environments than its correction should have

already been planned.

To that end, plan repairs are tasks that are handling some

non-nominal events (separation between different failure

modes is done by defining new events which are forwarded

to efailed). Moreover, repairing a plan can take time, and it

may be perfectly fine to keep the plan broken for a period of

time short with respect to the system dynamics: we associate

a repair with a timeout.

However, if the failure event is not handled – or if the

repair fails – an exception is raised. The system then passes

the exception up in the hierarchy graph, checking at each

task if the task or its planning task both defines an exception

handler and that this handler accepts the exception (and thus

repairs the plan). The following two rules are added to handle

parallel branches in the task graph:

1) the same exception shall be merged when two parallel

branches meet in the task hierarchy.

2) if two handlers are found in parallel branches for the

same error, we let the decision control decide which

of the two repairs should be applied to the plan.

For instance, the ChooseModality introduced in

Sec. III-C.2 can define an exception handler for the

ChildFailedError exception (Prog. 1), which is raised

if a child task failure is not handled by the plan. This handler

can trigger replanning of MoveTo and thus repair the plan.

The planning of the new modality is done asynchronously,

and the exception handler defines the planning task as a plan

repair.

D. Concurrent plan modification and execution

While one can modify the global plan directly, it is

dangerous as the executive could begin the execution of

some part of the plan that is not finished yet. Currently, most

executives solve this problem by forbidding the modification

of the short-term plan. We find this solution quite limited

since a low-level executive must often do reactive modifica-

tions. Our pDB offers transactions, which gives a context to

build a set of plan modifications outside of the global plan,

modifications which are then committed atomically (either all

at once, or not at all) and synchronously (they have their own

slot in the execution cycle). Therefore, the use of transactions

guarantees that the plan being executed is always sound as

long as the generated plans are.

As we saw in section II, concurrent execution and planning

can lead to invalid transactions: in our example, the B event

used in the transaction is emitted by the execution. Therefore,

the plan represented by the transaction becomes invalid and

the transaction cannot be committed. An invalid transaction

can be discarded or repaired by changing the transaction,

the global plan, or both. Choosing the way to handle this

invalidation is done by the decision control component,

whose role here is two choose between a modification of

the transaction or a modification of the plan, by calling plan

generation components if needed. Moreover, if an execution

operation (like a signal) invalidates a transaction, the decision

control component shall choose between this operation and

the transaction invalidation. If the signal is chosen, the

transaction is invalidated and the resolution procedure is the

same as before. However, if the transaction is chosen, an

exception is thrown from the signal source, whose effect

would be to either change the plan so that the MoveTo task

shall not be stopped, or remove the part of the plan which

was relying on this signal.

V. IMPLEMENTATION AND FUTURE WORK

The pDB is currently implemented in the Ruby language.

We use the object-oriented capabilities of Ruby as a way to

define task models and task instances as classes (and class

hierarchies) and objects (Prog. 2), thus gaining a lot of time

in the development of the prototype. Moreover, developing

the system in a general-purpose language promotes code

reuse in supervisors: the development for our rover shows

that a great level of modularity can be achieved by defining

generic task models which are subclassed by specific ones

and because it allows to extend the system by defining

libraries of often-used plan modification operators.

The GenoM [9] functional layer provides the functional

modules on top of which the supervisor is built. These mod-

ules are integrated seamlessly in the supervisor by defining

a task for each GenoM activity (an activity is a request

which is being handled by the module). The UNIX process

of the GenoM module is also represented, and all GenoM

requests depend on it: the termination of a GenoM module

is handled at the plan level by emitting the eaborted event on

the corresponding requests, which will trigger pDB’s error

handling.

Fig. 5 is a partial representation of the generated plan.

We see PlanningTask and PlanningLoop tasks which

represent the handling of plan generation processes:

Program 2 Code example to define (left) the generic task

model and (right) the abstract MoveTo model. In order,

MoveTo has two arguments, adds the terminal event eblocked,

makes efailed and estop controllable. estop commands calls

efailed’s command. efailed does nothing: we rely here on

the pDB’s cleanup mechanisms to kill its children when it

is finished. If a specific cleanup order was needed, the event

command would have defined a chain of events to define it.

class Task

event :start

event :failed

event :success

event :stop

on :failed=>:stop

on :success=>:stop

end

class MoveTo < Task

arguments :from, :to

event :blocked

on :blocked=>:failed

event failed do emit(:failed) end

event stop do failed! end

end

Pom::Localization

PlanningTask

Dtm::Perception

P3d::MoveTo

Rflex::TrackSpeedStart

PlanningLoop

Dtm::FillP3dPoster Dtm::FuseDtm

PlanningTask

P3d::RunnerDtm::Perception

Dtm::Runner

P3d::GoToDtm::Mapping

realized_by

executed_by

planned_by

Task relations

running

pending (not running yet)

successfully finished

Task states

Legend

Fig. 5. Partial view of the task structure executed for the Dala rover.
The Runner task represent the Unix processes of the Genom modules
which execute requests like for instance Bitmap::FuseLCLMap.. The
plan-generation tasks PlanningTask and PlanningLoop are briefly
described in section V

• PlanningTask represents an asynchronous plan-

generation process which uses the simple script-based

plan generation.

• PlanningLoop develops and synchronizes sequences

of the same action. In this plan, the terrain mapping

Dtm::Mapping is realized by a sequence of percep-

tions (Dtm::Perception) executed in a loop.

The algorithms that are used during the cycle execution

are either O(1) or O(N) where N is the number of tasks in the

system. More CPU intensive tasks are done asynchronously

in separate threads thanks to transactions. It follows that the

current implementation is quite efficient, regardless of the

slowness of the Ruby interpreter itself: the current execution

cycle for the rover supervisor is below 10ms. The downside

of using Ruby is the slowness of its garbage collector.

It is not uncommon that the interpreter blocks for 40-

50ms because of Ruby’s garbage collection. However, the

development of incremental garbage collectors in for instance

the Java virtual machine shows that it is possible to keep

this timespan controlled. We therefore run the controller at

a cycle length of 100ms, which is enough for our needs and

keeps the garbage collector issue under the cycle length.

One of our research objectives is to allow the simultaneous

use of multiple planners in the same system, in order to use

the more efficient planner according to current needs. This

cannot be achieved without plan merging mechanisms. The

development of this merge operator is an ongoing work that

is based on the presented substitution principles, event and

task structure and an additional conflict predicate for tasks

that can not be executed in parallel.

Finally, the pDB would benefit greatly of an estimation of

the time of event achievements. Since we represent all pro-

cesses in the system, including planning, we could develop

advanced scheduling schemes to balance between planners

needing the most precise information available (plan as late

as possible) and the executive needing the resulting plan

(make sure that the plan is ready when execution begins). The

information needed for that will be given by the task models:

like Claraty, the pDB will expect task instances to give

information about event achievement, using internal models

that are not known to the pDB engine. These information

will then be used to compute a complete temporal model by

using event and task structures.

VI. CONCLUSION

The contributions of this paper are the plan model and

the set of plan management mechanisms built around it.

The pDB allows insertion and removal of tasks, using the

task hierarchy to detect the consequences of the removal

operations. It also provides a mechanism to safely modify

a plan online, transactions. By the modular nature of the

system, we expect that the pDB can be extended and used in

various contexts, including multi-robot systems and human-

robot interaction.

REFERENCES

[1] R. Simmons, “Concurrent planning and execution for autonomous
robots,” IEEE Control Systems Magazine, vol. 12, 1992.

[2] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in Proceedings of IEEE IROS, 1998.

[3] F. Ingrand, R. Chatila, R. Alami, and F. Robert, “PRS: A high level
supervision and control language for autonomous mobile robots,” in
Proceedings of ICRA, 1996.

[4] E. Gat, “ESL: a language for supporting robust plan execution in
embedded autonomous agents,” in Proceedings of the IEEE Aerospace

Conference, 1997.
[5] T. Estlin, R. Volpe, I. A. D. Nesnas, D. Mutz, F. Fisher, B. Engelhardt,

and S. Chien, “Decision-making in a robotic architecture for autonomy,”
in Proceedings of 6th i-SAIRAS, 2001.

[6] A. Finzi, F. Ingrand, and N. Muscettola, “Robot action planning and
execution control,” in Proceedings of IWPSS, 2004.

[7] T. Peynot and S. Lacroix, “A probabilistic framework to monitor a
multi-mode outdoor robot,” in Proceedings of IEEE IROS, 2005.

[8] R. Simmons and E. Coste-Manière, “Architecture, the backbone of
robotics systems,” in Proceedings of ICRA, 2000.

[9] S. Fleury, M. Herrb, and R. Chatila, “Genom: A tool for the specifica-
tion and the implementation of operating modules in a distributed robot
architecture,” in Proceedings of IROS, 1997.

