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CLUSTER ANISOTROPIES IN COLLOIDAL AGGREGATION IN THE PRESENCE OF GRAVITY

The colloidal aggregation problem coupled with the sedimentation experienced preferentially by the large clusters is stratified, the structural and dynamical quantities describing the aggregates depending on the depth at which they are measured. In this work we will use a new computer algorithm for colloidal aggregation coupled with sedimentation, that is capable of proportioning the average of these quantities inside a layer at a fixed depth and of arbitrary thickness in the aggregation prism. The dynamics, using this algorithm, will be shown to be in accordance with the experimental results. We have also found that (i) in some cases of sedimentation strengths and layer depths, the mean width (perpendicular to the gravitational field direction) and the mean height of the large settling clusters scale with the size as a power law, with the same scaling power, in some range of cluster sizes. This leads to self-similar clusters with an appreciably higher fractal dimension (d f ) than the d f of aggregating clusters driven purely by diffusion (DLCA). However, (ii) there are some other cases for which the parallel and perpendicular scaling powers differ. (iii) There are still cases for which only the mean width or the mean height scale as a power law. Finally, (iv) there are further cases for which neither the mean width nor mean height scale as a power law with the size. In the last (ii), (iii) and (iv) cases the settling clusters are anisotropic and a fractal dimension cannot be defined by them.

INTRODUCTION

Particle aggregation is of great interest not only due to the variety of roles it plays in biological systems, medical diagnostics, paints and coatings, and numerous foods, but also as a model system for growth under non-equilibrium conditions. In the past two decades, work has focused on the formation of aggregates, including their geometry and growth kinetics, in the absence of sedimentation. After the proposal of a single-aggregate model by Witten and Sander [1], and more adequate for our purpose of colloidal aggregation, after the development of a diffusive model for cluster aggregation, simultaneously made by Meakin [2] and by Kolb et al [3], the number of works dealing with the aggregation of particles has increased considerably. However, many real aggregation phenomena rarely take place under quiescent conditions but instead occur in the presence of gravitational fields or macroscopic flows. In addition, external fields, including electrical, magnetic, and optical, have proven useful for assembling and moving colloidal particles, techniques that should be useful when dealing with particles of nanometers in size, since they are barely affected by gravity. Among the many examples for which the sedimentation effect is important we can cite the clearing or clarifying of liquids, the settling of bacteria clusters in quiet water, the aggregation and deposition of asphaltenes in crude oil, and a number of precipitation techniques employed by the chemical industry.

By adding salts or flocculants, which screen the electrostatic repulsion between the particles or which establish bridges between them, it is induced the aggregation of the particles into clusters, which themselves collide with other clusters, stick together and become larger. Initially, the aggregates are small and essentially move by diffusion. As the aggregation proceeds, the settling velocity of the large aggregates becomes significant, and a new mechanism for the movement of these large clusters appears. As the sedimentation velocity of the small aggregates is lower than that for the larger ones, these large clusters catch up with the smaller ones, actually sweeping them and becoming in the process larger and larger. As a result, the hitting rate between aggregates increases, which leads to an acceleration of the aggregation kinetics. However, as the colloidal matter in the bulk becomes more and more scarce, the aggregation kinetics eventually slows down. In the final state and for the non-gelling cases (low concentrations), the system is composed of a tenuous sediment on the bottom and a clear fluid above.

Experimentally, this new problem of aggregation coupled with sedimentation has been studied more extensively by Allain and collaborators [4,5,6], who found an increase in the fractal dimension (d f ) of the large, settling aggregates (reaching values as high as 2.2) [5,6]. They attributed this increase in the d f of the large clusters to a restructuring mechanism, due to the hydrodynamic stresses felt by their branches when they drift downwards. They also found the large settling aggregates to be non-rotating. This behavior was interpreted in Refs. [7,8] in terms of a non-homogeneity of these clusters, being denser in their lower part, which is the one that is sweeping the smaller clusters that attach to them. The large clusters therefore act as badminton shuttlecocks that, when left rotating at a certain altitude, at the end they fall at constant velocity without rotation.

On the simulational side and in our first works [7,8,9] that consider both sedimentation and deposition (through a rarefaction of colloidal matter in the bulk), due to computational limitations, the structural (d f ) and dynamical quantities (basically the weight-average cluster size S w (t)) were obtained from averages over the clusters inside the aggregating prism, independent of their vertical position. This assumption was necessary in order to have good statistics for the evaluation of the averages of highly fluctuating quantities. However, the colloidal aggregation problem coupled with sedimentation is not homogeneous on the vertical direction. In Fig. 1 we are reproducing figure 1 of Chapter III of Ref. [4] (the horizontal straight lines were added by the present author). In their system with a colloidal volume fraction of φ = 0.001, the Calcium Carbonate spherical colloidal particles were of a diameter of 0.07 µm; therefore, they cannot be optically seen unaggregated, and even the smallest points shown in the confinement prism are actually clusters of many particles. The prism was illuminated from behind in such a way that what we actually see are the shadows of the clusters. We can clearly see in this figure that, for a sufficiently long time, the large clusters lie preferentially deeper than the smaller ones, which leads to a stratification of the system, as mentioned. Moreover, in each of the seven sublayers shown, we can also see that the average cluster size increases with time and peaks at a certain time, diminishing afterwards. The deeper the layer is, the longer the time it takes to peak and the higher the value at which it peaks.

More recently, in Ref. [10], the authors considered a two-dimensional lattice model for aggregation coupled with sedimentation; that is, they considered the z coordinate on the direction of the field and only one horizontal coordinate. They found that, for some cases of high sedimentation strengths and within some range of sizes, the mean width of the large settling clusters scaled as a power law with the cluster size while the mean height did not, leading to anisotropic clusters for which a fractal dimension could not be defined. To proceed further in this problem, what we actually need is an algorithm capable of proportioning the average aggregation quantities at a fixed depth in the prism, and consider a good number of cases of sedimentation strengths and layer depths. In Ref. [11] such an algorithm was presented in the form of a letter in which, by the nature of its size, it was not possible to show all the different cases of sedimentation strengths and depths, that lead to different behaviors in this problem. In this paper we consider a number of interesting cases of sedimentation strengths and depths, with such algorithm, presenting in more detail two of the cases.

To simulate such a system of diffusing, sedimenting and aggregating particles and clusters, one needs to know by which amount a cluster of N particles undergoes sedimentation as compared to the distance diffused, during a certain Monte Carlo time. Let us consider the sedimentation velocity v s experienced by a cluster of N spherical particles of radius a and mass m o :

v s = m o (1 -ρ/ρ o )gN f = m o (1 -ρ/ρ o )g k B T DN , (1) 
where ρ o is the particles density, ρ is that of the suspension fluid, f is the cluster's friction coefficient, D (= kB T 6πηRg ) is its diffusion coefficient, R g is its radius of gyration, η is the solvent viscosity and T is the temperature. Let t o be the time for which the cluster diffuses a particle diameter (d = 2a), that is, t o = 2a 2 /3D. During the same Peclet number gives the sedimentation strength felt by the particles, being a number much smaller than one for most colloidal systems with a size generally smaller than 1µm. It is in fact not difficult to show that if the colloidal particles are 1 µm in diameter, 1 -ρ/ρ o is less than but of the order of unity, and T is room temperature, P e is of the order of unity. However, if the diameter is 0.1 µm such quantity is of the order of 10 -4 , while if the diameter is 10 µm, P e goes as high as 10 4 . Therefore, 1 µm marks the transition between diffusive and drifting behavior for individual particles, with density different from that of the medium.

The details of the algorithm are too long to be reproduced here. The interested reader is referred to Ref. [11] for those details. The volume fraction was fixed at the value φ = 0.001. We considered 4 depths: Z = 500, 5000, 50000 and 500000, measured in terms of the diameter. For each of those depths, 5 Peclet numbers were considered: P e = 0.0001, 0.001, 0.01, 0.1 and 1.0 . In turn, for each Peclet number, a series of 10 simulations of 274625 particles were made in order to have enough statistics to evaluate the structural and dynamical quantities.

DYNAMICAL RESULTS

In Fig. 2 are shown the weight-average cluster sizes as a function of time, S w (t), for the Peclet numbers (a) 1.0, (b) 0.1, (c) 0.01 and (d) 0.001. As we can see in the figures, S w increrases with time, peaks at a certain time and diminishes afterwards, a behavior that is in accordance to what we saw qualitatively in Fig. 1. We also note in all four figures that the deeper the layer we are considering, the longer the time it takes to peak and the higher the value at which it peaks, again in correspondance with Fig. 1.

STRUCTURE

The addition of a gravitational field on the vertical z direction in the colloidal aggregation problem, felt preferentially by the big clusters, introduces some degree of anisotropy in the structure of these clusters, as we will see below. It is therefore necessary to define and study some anisotropy measures of the clusters before trying to do a radius of gyration (R g ) vs size (N ), log-log analysis, in order to see if it is possible to extract a fractal dimension from such plots. Let us define the anisotropy measures A xz ≡ < R gx /R g > / < R gz /R g > and A yz ≡ < R gy /R g > / < R gz /R g >, where R gx , R gy and R gz are the diagonal components of the radius of gyration tensor, such that R 2 g = R 2 gx + R 2 gy + R 2 gz , and where the average values are calculated over all clusters inside segments of constant magnitude in the logarithmic size scale. Note that for isotropic clusters, the measures A xz and A yz should be equal to one, up to the statistical uncertainties. After studying the A xz and A yz quantities, we will make plots of not only < R g > vs N , but also of < R gx > vs N , < R gy > vs N and < R gz > vs N , to find any regions for which we have a power law scaling of those quantities. Here again the averages of the different radii are made over the same segments of constant magnitude in the logarithmic size scale. We have found a whole variety of behaviors for the structure of the clusters in this problem, depending on the sedimentation strength (P e), the layer depth (Z) and the region of sizes considered. Generally speaking, the four radii (R gx , R gy , R gz and R g ) scale as a power law with N , with the same scaling power, for the small, non-settling clusters, except for a number of cases with a high sedimentation strength: P e = 1.0 for all depths and P e = 0.1 for Z = 500000. In those cases of cluster isotropy it is therefore possible to define a cluster fractal dimension, This behavior shall be called the quasi-DLCA regime, where the "quasi" means that, as there is still some sweeping of even smaller clusters, the fractal dimension is a little bit higher than the usual DLCA d f . For the large, settling clusters, we have found cases for which (i) the four radii again scale as a power law with N , with the same scaling power, making it possible to define a settling-clusters fractal dimension, a behavior that shall be called the sweeping scaling regime. There are however cases for which (ii) the scaling powers for the horizontal and vertical directions differ, obtaining therefore self-affine settling clusters. There are still some cases for which (iii) only the mean width or the mean height scale as a power law with N , and even further cases for which (iv) no scaling as a power law of the four radii is obtained.

The sweeping scaling regime

This regime is obtained at deep layers and intermediate Peclet numbers; the deeper the layer considered, the lower the P e that can be used to attain the regime. In our studies we have found this regime for Z = 500000 with P e = 0.01, 0.001 and 0.0001, and for Z = 50000 with P e = 0.001. In Fig. 3 we are showing the case for Z = 500000 and P e = 0.001. The anisotropy measure A yz is first shown in Fig. 3a. As we can see, A yz stays very close to one for all sizes up to about 10000, which is therefore the upper bound in this case for trying to obtain a fractal dimension from the log-log plots of the four radii vs N . After this upper bound, the clusters become definitely oblate. It should be mentioned that for the anisotropy measure A xz we obtain a quite similar plot, with the same upper bound. In Fig. 3b is shown the log-log plot of the average radius R gx vs N . After an initial curvature, correspondig to the corrections to scaling zone for small sizes, we obtain not one but two straight lines, before the upper bound is reached. This means that there are two zones for which we have scaling as a power law of the R gx with N , one defined by the arrows labeled "a" and the other by the arrows labeled "b". The first one corresponds to the quasi-DLCA regime, with an inverse of the scaling power equal to d f ax = 1.842 ± 0.008, while the second one has an inverse of the scaling power of d f bx = 2.086 ± 0.111. After the upper bound, the R gx does not scale with N as a power law. For the average radius R gy vs N a very similar plot is obtained, but this time with d f ay = 1.851 ± 0.010 and d f by = 2.003 ± 0.055. The log-log plot of the average R gz vs N is shown in Fig. 3c, where we can extract the following inverses of the scaling powers: d f az = 1.847 ± 0.006 and d f bz = 2.044 ± 0.106. Up to the statistical uncertainties, the scaling powers for the "a" zone coincide as well as those for the "b" zone. This means that it is therefore possible to obtain a fractal dimension for each zone. This is done in Fig. 3d, where we are plotting now the average R g vs N . The inverses of the scaling powers provide us now with the following fractal dimensions: d f a = 1.852 ± 0.005, which corresponds to the quasi-DLCA regime, and d f b = 2.060 ± 0.049, corresponding to what we have called the "sweeping scaling regime" [8,11].

Cases for scaling of the mean height or the mean width only

We have found cases for which the mean height scales as a power law with N while the mean width does not and viceversa. The cases of scaling of the mean height were for P e = 0.1 with Z = 50000 and 5000, while those of scaling of the mean width were for P e = 0.01 with Z = 50000, and for P e = 0.1 with Z = 500. In Fig. 4 we are showing the case P e = 0.1 with Z = 50000. In Fig. 4a we can see that the anisotropy measure A xz decreases very soon from one, reaching values around 0.8, which indicates somewhat elongated clusters. Afterwards it starts increasing very rapidly, crossing one and reaching values close to 3.0, which indicates this time very oblate clusters. A very similar plot was found for A yz . In these cases of high P e ′ s, the quasi-DLCA regime disappears, hidden in the curvature of the zone of the corrections to scaling. However, for the settling clusters we can see that there is no scaling as a power law of the average R gy vs size, as shown in Fig. 4b. The graph is all curved, with no possibility to define a straight line. A quite similar plot is obtained for the average R gx vs size. Notwithstanding this, in Fig. 4c we can clearly see a zone of the settling clusters with a well defined straight line, which indicates scaling as a power law of the average R gz vs N . The inverse of the scaling power was found as d f bz = 1.927 ± 0.018, above the DLCA fractal dimension. For the average of the whole R g vs N we see again a curved graph, with no possibility to define a fractal dimension, as shown in Fig. 4d.

CONCLUSIONS

As it was seen, it is possible to devise an algorithm to study the colloidal aggregation problem coupled with sedimentation, that can provide us with the average aggregation quantities at a fixed depth in the aggregating prism. The higher value of the d f for the sweeping scaling regime comes, in our case, from the sweeping of the small clusters by the large settling ones, which in turn occlude the holes and cavities of these large aggregates, increasing in this way their compacticity. Note that we cannot invoke a restructuring mechanism since it is not built-in in our model. Notice however that we have found a lower fractal dimension (∼ 2.05) for the settling clusters than the one found by the experimentalists (∼ 2.2) [6]. It is conceivable that also a restructuring of the large clusters would make them still more compact, helping to push its d f up to about 2.2 . However, some other mechanisms could be pre-sent, like a sticking probabilitry lower than one (which would increase the d f ), the breakage of the clusters above a certain size (which may also increase their d f ), or the inclusion of the hydrodynamic interactions (whose effect on the d f is unclear). As we have also seen, the present problem is richer than the colloidal aggregation problem driven purely by diffusion due to the whole variety of anisotropic cases obtained.
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 1 Figure 1: The states at different times of a Calcium Carbonate aggregating suspension of spherical particles, for the following times: (a) 5 min 20 s, (b) 6 min 20 s, (c) 6 min 40 s, (d) 7 min, (e) 7 min 20 s, (f) 7 min 40 s, (g) 8 min (from Ref. [4]).
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 2 Figure 2: A log-log plot of the time evolution of the weight-average cluster size, S w , for the Peclet numbers: (a) P e = 1, (b) P e = 0.1, (c) P e = 0.01 and (d) P e = 0.001. In all four figures the labels of each of the curves: a, b, c and d, correspond to the following depths: 500, 5000, 50000 and 500000, respectively.
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 3 Figure 3: All four figures correspond to the layer at Z = 500000 and P e = 0.001. (a) A plot of the anisotropy measure (see the text) A yz vs the size. (b) A plot of R gx vs the size. (c) A plot of R gz vs the size. (d) A plot of R g vs the size. In Figs. (b), (c) and (d) the plotted radii are averages over all clusters inside segments of constant magnitude in the logarithmic size scale N .

Figure 4 :

 4 Figure 4: All four figures correspond to the layer at Z = 50000 and P e = 0.1. (a) A plot of the anisotropy measure A xz vs the size. (b) A plot of R gy vs the size. (c) A plot of R gz vs the size. (d) A plot of R g vs the size.
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