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SMOOTH TORIC DM STACKS

BARBARA FANTECHI, ETIENNE MANN AND FABIO NIRONI

ABSTRACT. We give a new definition of smooth toric DM stacks in the same spirit of toric
varieties. We show that our definition is equivalent to the one of Borisov, Chen and Smith in
terms of stacky fans. In particular, we give a geometric interpretation of the combinatorial
data contained in a stacky fan. We also give a bottom up classification in terms of simplicial
toric varieties and fiber products of root stacks.
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INTRODUCTION

A toric variety is a normal, separated variety X with an open embedding 7" — X of a
torus such that the action of the torus on itself extends to an action on X. To a toric variety
one can associate a fan, a collection of cones in the lattice of one-parameter subgroups of 7T'.
Toric varieties are very important in algebraic geometry, since algebro—geometric properties
of a toric variety translate in combinatorial properties of the fan, allowing to test conjectures
and produce interesting examples.

In [BCS05] Borisov, Chen and Smith have defined toric DM stacks as explicit global
quotient (smooth) stacks, associated to combinatorial data called stacky fans. Later, Iwanari
proposed in [Iwa06] a definition of toric triple as an orbifold with a torus action having a
dense orbit isomorphic to the torus ! and he proved that the 2-category of toric triples is
equivalent to the 2—category of “toric stacks” (We refer to [Iwa06] for the definition of “toric
stacks”). It is clear anyway that not all toric DM stacks are toric triples, since some of them
are not orbifolds.

A second step is the generalization of the A-collections defined for toric varieties by Cox
in [Cox95b]. This was done by Iwanari in [Iwa07a] in the orbifold case and by Perroni in
[Per07] in the general case.

In this paper, we define a DM torus 7 as a Picard stack isomorphic to T" x BG, where T is
a torus, and G is a finite abelian group; we then define a smooth toric DM stack as a smooth
separated DM stack with the action of a DM torus 7 having an open dense orbit isomorphic
to 7. We prove a classification theorem for smooth toric DM stacks and show that they
coincide with those defined by [BCS05]. In particular, we show that non isomorphic stacky
fans can give isomorphic smooth toric DM stacks.

The first main result of this paper is a bottom-up description of smooth toric DM stacks,
as follows: the structure morphism X — X to the coarse moduli space factors canonically
via the toric morphisms

X - Xrig - Xcan - X

where X — X"8 is an abelian gerbe over X' ; X™8 — X0 ig 3 fibered product of roots
of toric divisors ; and X“* — X is the minimal orbifold having X as coarse moduli space.
Here X is a simplicial toric variety, and X™8 and X" are smooth toric DM stacks. More
precisely, this bottom up construction can be stated as follows.

Theorem 1. Let X be a smooth toric DM stack with DM torus isomorphic to T x BG.
Denote by X the coarse moduli space of X. Denote by n the number of rays of the fan of X.

(1) There exist unique (ay, ..., a,) € (Nsg)™ such that the stack X8 is isomorphic, as
toric DM stack, to

a{/ D%an/Xcan XXcan e XXcan a\n/ D;an/Xcan.
where D{*" is the divisor corresponding to the ray p;.
(2) Given G = Hﬁ:l py,- There exist Ly, ..., Ly in Pic(X™®) such that X is isomorphic,
as toric DM stack, to

b{/ Ll/Xrig X yrig * + © X yrig b{/ LZ/Xrig.

Moreover, for any j € {1,...,(}, the class [L;] in Pic(X"8)/b; Pic(X"8) is unique.

For the meaning of orbifold in this paper, see § 1.2.
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In the process, we get a description of the Picard group of smooth toric DM stacks, which
allows us to characterize weighted projective stacks as complete toric orbifolds with cyclic
Picard group (cf. Proposition 7.26). Moreover, we classify all complete toric orbifolds of
dimension 1 (c¢f. Example 7.29). We also show that the natural map from the Brauer group
of a smooth toric DM stack with trivial generic stabilizer to its open dense torus is injective
(cf. Theorem 6.11).

The second main result of this article is to give an explicit relation between the smooth
toric DM stacks and the stacky fans.

Theorem II. Let X be a smooth toric DM stack with coarse moduli space the toric variety
denoted by X. Let ¥ be a fan of X in Ng := N ®z Q. Assume that the rays of X generate
Nq. There exists a stacky fan such that X is isomorphic, as toric DM stack, to the smooth
DM stack associated to the stacky fan. Moreover, if X is a toric orbifold then the stacky fan
15 essentially unique.

This result gives a geometrical interpretation of the combinatorial data of the stacky fan.
In fact, the stacky fan can be read off the geometry of the smooth toric DM stack just like the
fan can be read off the geometry of the toric variety. Notice that one can deduce the above
theorem when X is an orbifold from Theorem 2.5 of [Per07] and Theorem 1.4 of [Iwa0T7al
and the goemetric characterization of Theorem 1.3 in [Iwa07b].

In the first part of this article, we fix the conventions and collect some results on smooth
DM stacks, root constructions, rigidification, toric varieties, Picard stacks and the action of
a Picard stack. In Section 2, we define DM tori. Section 3 contains the definition of smooth
toric DM stacks. In Section 4, we first define canonical smooth DM stacks and then we show
that the canonical stack associated to a simplicial toric variety is a smooth toric DM stack
(¢f. Theorem 4.11). In Section 5, we prove the first part of Theorem I. In Section 6, we first
prove in Proposition 6.9 that the essentially trivial banded gerbes over X are in bijection
with finite extensions of the Picard group of X’; then, we show that the natural map from
the Brauer group of a smooth toric DM stack with trivial generic stabilizer to its open dense
torus is injective (c¢f. Theorem 6.11). Finally, we prove the second statement of Theorem I.
In Section 7, we prove Theorem II and give some explicit examples. In Appendix B, we have
put some details about the action of a Picard stacks.

Acknowledgments The authors would like to acknowledge support from THP, Mittag-
Leffler Institut, SNS where part of this work was carried out, as well as the European
projects MISGAM and ENIGMA. We would like to thank Ettore Aldrovandi, Lev Borisov,
Jean-Louis Colliot-Thélene, Andrew Kresch, Fabio Perroni, Ilya Tyomkin and Angelo Vistoli
for helpful discussions; in particular Aldrovandi for explanations about group-stacks and
reference [Bre90], Borisov for pointing out a mistake in a preliminary version, Colliot-Thélene
for [Gro68, §6], Tyomkin for [BB93] and Vistoli for useful information about the classification
of gerbes.

1. NOTATIONS AND BACKGROUND

1.1. Conventions and notations. A scheme will be a separated scheme of finite type over
C. A variety will be a reduced, irreducible scheme. A point will be a C-valued point. The
smooth locus of a variety X will be denoted by Xj,,.

We work in the étale topology. For an algebraic stack X, we will write that x is a point of

X orjust z € X to mean that x is an object in X'(C); we denote by Aut(x) the automorphism
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group of the point x. We will say that a morphism between stacks is unique if it is unique
up to a unique 2—arrow. As usual, we denote (G,, the sheaf of invertible sections in Oy on
the étale site of X.

1.2. Smooth DM stacks and orbifolds. A DM stack will be a separated DM stack of
finite type over C; we will always assume that its coarse moduli space is a scheme. An
orbifold will be a smooth DM stack with trivial generic stabilizer. For a smooth DM stack
X, we denote by €y or just € the natural morphism from X to its coarse moduli space X,
which is a variety with finite quotient singularities.

Let ¢ : U — X be an open embedding of irreducible smooth DM stacks with complement
of codimension at least 2. We have that

e The natural map ¢* : Pic(X') — Pic(U) is an isomorphism.
e For any line bundle L € Pic(X), the natural morphism ¢* : HO(X,L) — H°(U,*L)
is also an isomorphism.

The inertia stack, denoted by I(X'), is defined to be the fibered product I(X') := X' X yxx X.
A point of I(X) is a pair (z,g) with z € X and g € Aut(x). The inertia stack of a smooth
DM stack is smooth but different components will in general have different dimensions.
The natural morphism 7(X) — X is representable, unramified, proper and a relative group
scheme. The identity section gives an irreducible component canonically isomorphic to X’;
all other components are called twisted sectors. A smooth DM stack of dimension d is an
orbifold if and only if all the twisted sectors have dimension < d — 1, and is canonical if and
only if all twisted sectors have dimension < d — 2.

Remark 1.1 (Sheaves on Global quotients). According to [Vis89, Appendix|, a coherent
sheaf on a DM stack [Z/G] is a G—equivariant sheaf on Z i.e., the data of a coherent sheaf
Ly on Z and for every g € G' an isomorphism ¢, : Ly — g*Lyz such that ¢z, = h*p4 0 ¢p.

Notice that if the Picard group of Z is trivial, an invertible sheaf on [Z/G] is the structure
sheaf Oz and a one dimensional representation of G i.e., x : G — C*. A global section of
such an invertible sheaf on [Z/G] is a y—equivariant global section of Oy.

We end this section with a proposition extending to stacks a property of separated schemes.
We will prove it in Appendix A.

Proposition 1.2. Let X and Y be two DM stacks. Assume that X is normal and Y is
separated. Lett:U — X be a dominant open immersion of the DM stackU. IfF,.G : X — Y

are two morphisms of stacks such that there exits a 2-arrow F ot £ G oy then there exists
a unique 2-arrow o : F' = G such that a xid, = .

The previous proposition is well-known for X’ a reduced scheme and ) a separated scheme.
Nevertheless, if X is not a normal stack we have the following counter—example: Let ) be
Bus. Let X be a rational curve with one node. Let Fy : X — Y (resp. F3) be a stack
morphism given by a non trivial (resp. trivial) double cover of X. Putting 4 = X'\ {node},
the proposition is false.

1.3. Root constructions. For this section we refer to the paper of Cadman [Cad07] (see
also [RGV06, Appendix B]). In this part & will be a DM stack over C (it is enough to assume

that X' is Artin.)
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1.3.a. Root of an invertible sheaf. This part follows closely Appendix B of [RGV06]. Let L
be an invertible sheaf on the DM stack X'. Let b be a positive integer. We denote by ¢/L/X
the following fiber product

YLJX — BC*

ll

where Ab : BC* — BC* sends an invertible sheaf M over a scheme S to M®. More
explicitly, an object of /L/X over f: S — X is a couple (M, ¢) where M is an invertible

sheaf M on the scheme S and ¢ : M®® = f*L is an isomorphism. The arrows are defined in
an obvious way.

The morphism ¢/L/X — BC* corresponds to an invertible sheaf, denoted by L'* in
[BCO7], on v/L/X whose b-th power is isomorphic to the pullback of L.

The stack v/L/X is a puy—banded gerbe over X (see the second paragraph of Section 6.1
below). The Kummer exact sequence

1 b G,, nb

Gm 1

induces the boundary morphism 0 : H} (X, G,,) — HZ (X, ). The cohomology class of the
wy-banded gerbe V/L/X in HZ (X, up) is the image by 0 of the class [L] € HL(X,G,,).

The gerbe is trivial if and only if the invertible sheaf L has a b-th root in Pic(X). More
generally, the gerbe /L/X is isomorphic, as a p,—banded gerbe, to ¢/L’/X if and only if
[L] = [L] in Pic(X)/bPic(X). We have the following morphism of short exact sequences:

xb

(1.3) 0 Z Z 7/b7 — 0
J J

0 — Pic(X) —— Pic(y/L/X) — Z/bZ —— 0

where the first and second vertical morphisms are defined by 1 — L and 1 +— LY°, respec-
tively.

1.3.b. Roots of effective Cartier divisors. In the articles [Cad07] and [NGV06], the authors
define the notion of root of an invertible sheaf with a section on an algebraic stack: here,
we only consider roots of effective Cartier divisors on a smooth algebraic stack, since this is
what we will use.

Let n be a positive integer. Consider the quotient stack [A"/(C*)"] where the action
of (C*)™ is given multiplication coordinates by coordinates. Notice that [A™/(C*)"] is the
moduli stack of n line bundles with n global sections. Let a := (ai,...,a,) € (N5g)" be
a n—tuple. Denote by Aa : [A"/C*"] — [A™/C*"] the stack morphism defined by sending
x;— xit and \; — A" where z; (resp. \;) are coordinates of A" (resp. (C*)™).
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Let X be a smooth algebraic stack. Let D := (D, ..., D,) be n effective Cartier divisors.
The a-th root of (X, D) is the fiber product

YD/X — [A"/(C)"]

l 0 ya

X —25 [A"/(C)"]

The morphism {/D/X — [A"/(C*)"] corresponds to the effective Cartier divisors D :=
(151, . ﬁn), where D; is the reduced closed substacks 771(D;)rea- More explicitly, an object
of ¢/DJX over a scheme S is a couple (f,(Dy,...,D,)) where f : S — X is a morphism
and for any ¢, D; is an effective divisor on S such that aiﬁi = f*D;.
We have the following properties :
(1) The fiber product of %/D;/X over X is isomorphic to {/D/X (cf. Remark 2.2.5 of
Cad07]).
(2) r[Fhe ca]n)onical morphism {/D/X — X is an isomorphism over X'\ U;D;.
(3) If X is smooth and the D; have simple normal crossing then {/D/X is smooth
(¢f. Section 2.1 of [BCO7]) and D; have simple normal crossing.
(4) We have the following morphism of short exact sequences (cf. Corollary 3.1.2 [Cad07])

Xa

(1.4) 0 zr zr 1. Z/a;Z—0

J

0— Pic(X)—"" Pic ( ¢/D /X) I, Z)aZ——0

where the first and second vertical morphisms are defined by e; — O(D;) and e; —
(9(131-), respectively. Every invertible sheaf L € Pic ({‘/D /X ) can be written in a

unique way as L = M ® [\, O(k;D;) where M € Pic(X) and 0 < k; < a;; the
morphism g maps L to (kq,..., k).
We finish this section with the following observation. Let D; and D, be two effective

Cartier divisors on X such that Dy N Dy # (). The stacks /Dy U Dy/X and “¥/(Dy, Dy)/X

are not isomorphic. Indeed, the stabilizer group at any point in the preimage of x € D; N Dy
in /D1 UDy/X (resp. “%/(Dy, D)/ X) is fia (resp. fta X fla)-

1.4. Rigidification. In this section, we sum up some results on the rigidification of an
irreducible d-dimensional smooth DM stack X. Intuitively, the rigidification of X by a
central subgroup G of the generic stabilizer is constructed as follows: first, one constructs a
prestack where the objects are the same and the automorphism groups of each object x are
the quotient Auty(z)/G; then the rigidification AJ/G is the stackification of this prestack. For
the most general construction we refer to [ROV07, Appendix A] (see also [RCV03, Section
5.1], [Rom05] and [RGV06, Appendix C]).

We consider the union /8"(X’) C I(X) of all d-dimensional components of I(X); it is a
subsheaf of groups of I(X) over X which is called the generic stabilizer. Most of the time in
this article, we will rigidify by the generic stabilizer. In this case, we write X™ in order to

mean X'//1#"(X) and call it the rigidification.
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The rigidification 7 : X — X8 has the following properties:

(1) the coarse moduli space of X™# is the coarse moduli space of X,

(2) X" is an orbifold,

(3) if X is an orbifold then X" is X,

(4) the morphism r makes X into a gerbe over A&,

We refer to Theorem 5.1.5.(2) of [RCV03] for the proof of the following proposition.

Proposition 1.5 (Universal property of the rigidification). Let X be a smooth DM stack.
Let Y be an orbifold. Let f : X — Y be a dominant stack morphism. Then there exists
g: X" — Y and a 2-morphism o : gor = f such that the following is 2—commutative

X HT Xrig
N
y

If there exists ' : X' — Y and a 2-morphism o' : ¢’ or = f satisfying the same property
then there ezists a unique 7 : ¢’ = g such that ao (y *xid,) = .

1.5. Diagonalizable group schemes. In this short section, we recall some results on di-
agonalizable groups.

Definition 1.6. A group scheme G over Spec C will be called diagonalizable if it is isomorphic
to the product of a torus and a finite abelian group.

We use multiplicative notation for diagonalizable group. For any diagonalizable group
G, its character group G¥ := Hom(G,C*) is a finitely generated abelian group (or coherent
Z-module). The duality contravariant functor G — GV induces an equivalence of categories
from diagonalizable to coherent Z-module. Its inverse functor is given by F +— Gp =
Hom(F,C*). Both G — GY and F + G are contravariant and exact.

1.6. Toric varieties. We recall some results on toric varieties that can be found in [Ful93]
(see also [Cox05]). The principal construction used in this paper is the description of toric
varieties as global quotients found by Cox (see [Cox95a]).

We fix a torus T, and denote by M = T the lattice of characters and by N := Hom(M, Z)
the lattice of one-parameter subgroups. A toric variety X with torus 71" corresponds to a fan
Y(X), or just X, in Ny := N ®z Q, which we will always assume to be simplicial.

Let py1,..., p, be the one-dimensional cones, called rays, of X. For any ray p;, denote by
v; the unique generator of p; N N. For any ¢ in {1,...,n}, we denote by D; the irreducible
T-invariant Weil divisor defined by the ray p;. The free abelian group of T—invariant Weil
divisor is denoted by L.

Let ¢ : M — L be the morphism that sends m — " m(v;). If the rays span Ng, the
morphism ¢ is injective, and fits into an exact sequence in Coh(Z)

(1.7) 0 M——1L A 0.

where A is the class group of X (i.e., the Chow group A'(X)). We deduce that the short
exact sequence of diagonalizable groups

(1.8) 1 Gy—— G ——T —1.
7




Let Zy, C C" be the G = (C*)"—invariant open subset defined as Zy, := UyexZ,, where
Zy, :=Ax|z; # 0if p; ¢ o}. The induced action of G4 on Zy, has finite stabilizers (by the
simpliciality assumption) and X is the geometric quotient Zx;/G 4, with torus (C*)"/G 4 (see
Theorem 2.1 of [Cox95al). For any i € {1,...,n}, the T—invariant Weil divisor D; C X is
the geometric quotient

(1.9) ({z: =0}tNZs) /Ga.

If X is smooth then the natural morphism L — Pic(X) given by e; — Ox (D;) is surjective
and has kernel M; in other words, it induces a natural isomorphism A — Pic(X).

If X is a d-dimensional toric variety, we will write X° for the union of the orbits of
dimension > d — 1; in other words, X is the toric variety associated to the fan Y.o; :=
{o € ¥|dime < 1}. The toric variety X is always smooth and the toric divisors D} are
smooth, disjoint, and homogeneous under the T—action (with stabilizer the one-dimensional
subgroup which is the image of p).

1.7. Picard stacks and action of a Picard stack. Deligne defined Picard stacks in
[SGA4, Exposé XVIII| as stacks analogous of sheaves of abelian groups. For the reader’s
convenience, we collect here a sketch of the definition and the main properties we need;
details can be found in [SGA4, Exposé XVIII] and also in [LMBO00, Section 14].

Here we summarize the definition of a Picard stack. For the details we refer to Definition
B.1.

Definition 1.10. Let G a stack over a base scheme S. A Picard stack G over S is given by
the following set of data:

e a multiplication stack morphism m : G x G — G, also denoted by m(g1, g2) = g1 - g2;
e an associativity 2-arrow (g1 - g2) - g3 = g1 - (92 - g3);
e a commutativity 2-arrow g; - go = g2 - G1-

These data satisfy some compatibility relations, which we list in B.1.

The definition implies that there also exists an identity e : S — G and an inverse ¢ : G — G
with the obvious properties; in particular, a 2-arrow € : (e - g) = g.

Definition 1.11 (See Section 1.4.6 in [SGA4]). Let G, G’ be two Picard stacks. A morphism
of Picard stacks F : G — G’ is a morphism of stacks and a 2-arrow « such that for any two
objects g1, g2 in G, we have

F(gl '92) = F(gl) ) F(gz)-

Again we refer to Appendix B for the list of compatibilities satisfied by a. The Picard
stacks over S form a category where the objects are Picard stacks and morphisms are equiv-
alence classes of morphism of Picard stacks.

Remark 1.12. To any complex G* := [G™' — G] of sheaves of abelian groups, we can
associate a Picard stack G. In this paper, G* will be a complex of diagonalizable groups and
the associated Picard stack is the quotient stack [G™'/GY].

Proposition 1.13 (See Proposition 1.4.15in [SGA4|). The functor that associates to a length
1 complex of sheaves of abelian groups a Picard stack induces an equivalence of categories
between the derived category, denoted by DI='0(S,Z), of length 1 complexes of sheaves of

abelian groups and the category of Picard stacks.
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In particular, if G is any sheaf of abelian groups on the base scheme S, the quotient [S/G],
i.e. the gerbe BG, is naturally a Picard stack.

We finish this section with a sketch of the definition of an action of a Picard stack on a
stack. This is a generalization of the action of a group scheme on a stack defined by Romagny
in [Rom05]. We refer to Definition B.12 for the details.

Definition 1.14 (Action of a Picard stack). Let G be a Picard stack. Denote by e the
neutral section and by € the corresponding 2—arrow. Let X be a stack. An action of G on
X is the following data :

e a stack morphism a : G x X — X, also denoted by a(g,z) = g X x;

® a 2-arrow e X T = I;

e an associativity 2-arrow (g; - go) X * = g1 X (g2 X x).
These data satisfy some compatibility relations, which we list in Appendix B.

2. DM TORI

In this Section we define DM tori which will play the role of the torus for a toric variety.
We start with a technical Lemma.

Lemma 2.1. Let ¢ : A° — A' be a morphism of finitely generated abelian groups such that
ker ¢ is free. In the derived category of complexes of finitely generated abelian groups of

length 1, the complex [A° — A'] is isomorphic to [ker ¢ 9 coker o]

Proof. We have a morphism of complexes

(A7 5 AN — [/ A, 5 AYA)
induced by the quotient morphisms. As ker ¢ is free, we deduce after a diagram chasing

that this morphism is a quasi-isomorphism of complexes. In the derived category, we replace

AY/AY with a projective resolution [Z* A Z+*]. Then the mapping cone of the morphism of

complexes [0 — A°/A% ] — [Q : Z° — 7] is [[5@] cAYJAY X 7 — Zd”] which is quasi-

tor tor

isomorphic to [A%/A? 2, AY/AY 1. A morphism of free abelian groups f is quasi-isomorphic

tor tor

to the complex [ker f 2 coker f] and this finishes the proof. O

The reader who is familiar with the article [BCS05] has recognized probably part of the
construction of the stack associated to a stacky fan.

Remark 2.2. Let ¢ : A° — A! be a morphism of finitely generated abelian groups as in the
above lemma. Applying the contravariant functor Hom(-, C*) of Section 1.5 to the complex

A% — A') we get a length 1 complex of diagonalizable groups [G 4 e, G a0]. According to
Remark 1.12, the associated Picard stack [G 40/G 41] is a DM stack if and only if the cokernel
of ¢ is finite.

Definition 2.3. A DM torus is a Picard stack over Spec C which is obtained as a quotient
(G 40/G a1], where ¢ : A° — A' is a morphism of finitely generated abelian groups such that
ker ¢ is free and coker ¢ is finite.

Let G be a finite abelian group. Notice that BG is a DM torus. Recall that by Proposition

1.13, T' x BG has a natural structure of Picard stack.
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Definition 2.4. A short exact sequence of Picard S—stacks is the sequence of morphisms of
Picard S-stacks associated to a distinguished triangle in DI=10(S).

Proposition 2.5. Any DM torus T is isomorphic as Picard stack to T x BG where T is a
torus and G s a finite abelian group.

Proof. Let T = [G40/G a1] with ¢ : A — A! as above. The distinguished triangle [ker G, —

0] — [Ga . G 0] — [0 — coker Gy in the derived category DI=1%(Spec C) induces an
exact sequence of Picard stacks 1 — BG — 7 — T — 1 where T := G 40/G 41. Proposition
1.13 and Lemma 2.1 imply that there is a non canonical isomorphism of Picard stacks
T=BGxT. O

Note that the scheme T in the previous proof is the coarse moduli space of 7.

3. DEFINITION OF TORIC DM STACKS

Definition 3.1. A smooth toric DM stack is a smooth separated DM stack X together with
an open immersion of a DM torus ¢ : 7 — X with dense image such that the action of 7°
on itself extends to an actiona: 7 x X — X.

As in this paper all toric DM stacks are smooth, we will write toric DM stack instead of
smooth toric DM stack. We will see later in Theorem 7.23 that our definition a posteriori
coincide with that in [BCS05] via stacky fans. It seems natural to define a toric DM stack by
replacing smooth with normal in the above definition. All the definitions and results in this
section apply also in this case, with the exception of Proposition 3.7 and Lemma 3.8. Ilya
Tyomkin is currently working on this. A toric orbifold is a toric DM stack with generically
trivial stabilizer. A toric DM stack is a toric orbifold if and only if its DM torus is an
ordinary torus. Hence, the notion of toric orbifold is the same as the one used in Theorem
1.3 of [Iwa06].

Remark 3.2. (1) Separatedness of X and Proposition 1.2 imply that the action of 7
on X is uniquely determined by ¢.

(2) Notice that we have assumed in Section 1.2 that the coarse moduli space is a scheme.
Without this assumption, if the coarse moduli space X of a toric DM stack is a
smooth and complete algebraic space then the main theorem of Bialynicki-Birula in
[BB93] implies that X is a scheme. We don’t know whether such an assumption is
necessary in general.

(3) A toric variety admits a structure of toric DM stack if and only it is smooth.

Proposition 3.3. Let X be a smooth DM stack together with an open dense immersion of
a DM torus v : T — X such that the action of T on itself extends to a stack morphism
a:7T x X — X. Then the stack morphism a induces naturally an action of T on X.

Proof. We will define a 2-arrow 1 : a o (e,idy) = idy and a 2-arrow o : a o (m,idy) =
a o (idx,a) such that they verify Conditions (1) and (2) of Definition B.12. We will only
prove the existence of 7 because the existence of o and the relations (1) and (2) follow with
a similar argument.

Denote by e : SpecC — 7 the neutral element of 7 and by m : 7 x 7 — 7T the

multiplication on 7. Denote by € the 2—arrow m o (e,id7) = ids. As the stack morphism a
10



extends m, we have a 2—arrow « : ao (idr, t) = tom. Denote by [ the 2-arrow (e,idy)ot =
(id7,¢) o (e,id7). Consider the two stack morphisms :
idy
L /N
T—X X.
~__ "7
ao(e,idx)

Applying Proposition 1.2 with the composition of the following 2—-arrows

i axid ei . id, . .
ao (eidy) ot Her? o (id7,¢) o (e,id7) T omo (e,idr) M oidy = ida oL,

we deduce the existence of n: ao (e, idy) = idy. O

Remark 3.4 (Divisor multiplicities). According to [LMBO00, Corollary 5.6.1], the structure
morphism ¢ : X — X induces a bijection on reduced closed substacks. Foreach¢=1,...,n,
denote by D; C X the reduced closed substack with support ¢7*(D;). Since D; N Xy
is a Cartier divisor, there exists a unique positive integer a; such that 5_1(D2- N Xem) =
a;(D; Ne ™ (Xem)). We call a = (ay, ..., a,) the divisor multiplicities of X .

Definition 3.5. Let X (resp. X”) be a toric DM stack with DM torus 7 (resp. 77). A
morphism of toric DM stacks F': X — X' is a morphism of stacks between X and X’ which
extends a morphism of DM tori 7 — 7"

Remark 3.6. The extended morphism F' in the previous definition is unique by Proposition
1.2. Moreover the Definition of morphism between Picard stacks and Proposition 1.2 provide
us the following 2—cartesian diagram:

(F7F|T)
XxT —— X' xT
al O J/a’
X r X’

Proposition 3.7. Let X be a toric DM stack with DM torus 7. Let X (resp. T) be the
coarse moduli space of X (resp. T ). Then X has a structure of simplicial toric variety with
torus T where the open dense immersion © : T — X and the actiona : T x X — X is
induced respectively by o : T — X anda:7T x X — X.

Proof. The morphisms ¢ and a induce morphisms on the coarse moduli spaces 7 : T" — X
and a : T'x X — X, by the universal property of the coarse moduli space. It is immediate
to verify that 7 is an open embedding with dense image and a is an action, extending the
action of T on itself. On the other hand, since X is the coarse moduli space of X, it is a
normal separated variety with finite quotient singularities. Therefore X is a toric variety,
and it is simplicial by [HKK™03, §7.6 p.121](see also [Cox05, Theorem 3.1 p.28]). O

Let X be a toric DM stack with DM torus 7 = T x BG. By Appendix B, we have that BG
acts on X'. Proposition B.15 implies that we have an étale morphism j : G x X — I#"(X).

Lemma 3.8. Let X be a toric DM stack with DM torus 7T = T x BG. The morphism
Jj:Gx X — [#"(X) is an isomorphism.
11



Proof. As the stack X is separated, we have that the natural morphism I(X) — X is
proper. As the projection G x X — X is a proper morphism, the morphism j is also a
proper morphism. Its image contains the substack [(7") = I8"(7") which is open and dense
in /#"(X’). We deduce that the morphism j is birational. As the morphism j is étale and of
finite type, it is quasi—finite. By properness of j, we deduce that j is finite. The morphism
J is a representable, birational and finite morphism to the smooth DM stack X. Zariski main

theorem finishes the proof.
O

4. CANONICAL TORIC DM STACKS

In § 4.1 we define the canonical smooth DM stack associated to a variety with finite
quotient singularities and we show that a canonical smooth DM stack satisfies a universal
property (Theorem 4.6). This should be well known, but we include it for the reader’s
convenience.

In §4.2, we characterize the canonical toric DM stack via its coarse moduli space.

4.1. Canonical smooth DM stacks. In this subsection, we do not assume that smooth
DM stacks are toric. First, we define canonical smooth DM stacks and then we prove their
universal property.

We recall a classical result.

Lemma 4.1. Let S be a smooth variety, and T be an affine scheme. Let S" C S be an open
subvariety such that the complement has codimension at least 2 in S. Let f : 8" — T be a
morphism. Then the morphism f extends uniquely to a morphism S — T

Proof. The morphism f corresponds to an algebra homomorphism K[T'] — I'(S", Og/). Since
the complement has codimension 2, the restriction map I'(S, Og) — I'(S’, Og) is an isomor-
phism. O

Definition 4.2. (1) A dominant morphism f : V — W of irreducible varieties is called
codimension preserving if, for any irreducible closed subvariety Z of W and every
irreducible component Zy of f~1(Z), one has codimy Zy = codimy, Z.

(2) A dominant morphism of orbifolds is called codimension preserving if so is the induced
morphism on every irreducible component of the coarse moduli spaces.

Remark 4.3. For any DM stack, the structure morphism to the coarse moduli space is
codimension preserving. FEvery flat morphism and in particular every smooth and étale
morphism is codimension preserving. A composition of codimension preserving morphisms
is codimension preserving.

Definition 4.4. Let X be an irreducible d—dimensional smooth DM stack. Let ¢ : X — X
be the structure morphism to the coarse moduli space. The DM stack X will be called
canonical if the locus where € is not an isomorphism has dimension < d — 2.

Remark 4.5. Let X be a smooth canonical stack (see §1.2 for the definition).

(1) The locus where the structure map to the coarse moduli space ¢ : X — X is an

isomorphism is precisely e (X, ), where X, is the smooth locus of X
12



(2) The composition of the following isomorphisms
AYX) 5 AY(Xgm) = Pic(Xgm) = Pic(e ™ (Xgm)) = Pic(X)
is the map sending [D] to O(e~*(D)).

Theorem 4.6 (Universal property of canonical smooth DM stacks). Let ) be a canonical
smooth DM stack, € : Y — Y the morphism to the coarse moduli space, and f : X — Y a
dominant codimension preserving morphism with X a smooth DM stack. Then there exists
a unique g : X — Y such that the following diagram is commutative

x 2%y
L
y

Proof. We first prove uniqueness. Any two morphisms ¢, g making the diagram commute
must agree on the open dense subset f~1(Yy,) of X. Since Y is assumed to be separated, g
and g must be uniquely isomorphic by Proposition 1.2.

By uniqueness, it is enough to prove the result étale locally in ), so we can assume that
Y = [V/G] where V is a smooth affine variety and G a finite group acting on V' without
pseudo-reflections. It is enough to show that there exists an étale surjective morphism
p: U — X with U a smooth variety and a morphism g : U — ) such that fop =¢co0g.
In fact, g is defined from g by descent, with the appropriate compatibility conditions being
taken care of by the uniqueness part. In this case Y = V/G, and Y, := V/G where Vo C V
is the open locus where G acts freely. Let Uy := (f o p)~}(Yy). As [V,/G] is isomorphic to
Yy, we have a natural morphism Uy — [V5/G]. This morphism defines a principal G-bundle
Py on Uy and a G—equivariant morphism sq : Py — V4.

(4.7)

Y =V/G

The natural map m(Up) — m(U) is an isomorphism, since the U \ U, has codimension
> 2. The principal G-bundle F, extends uniquely to a principal G-bundle P over U, and

by Lemma 4.1 (since V is affine) the G—equivariant morphism sy : Py — V extends to a
13



morphism s : P — V which is again G—equivariant, yielding a morphism g : U — [V/G]. The
construction above is summarized in the 2-commutative Diagram (4.7) where the squares
are 2—cartesian. This ends the proof. 0

Corollary 4.8. Let X' (resp. ) be a canonical smooth DM stack with coarse moduli space
X (reps. Y). Let f : X — Y be an isomorphism. Then there is a unique isomorphism
f: X — Y inducing f.

Proof. Tt is enough to apply the Theorem twice, reversing the role of X and ). U

Remark 4.9. One can use the corollary to prove the classical fact that every variety Y
with finite quotient singularities is the coarse moduli space of a canonical smooth DM stack
unique up to rigid isomorphism, which we denote by Y*" (do it étale locally and then glue).
If Y is the geometric quotient Z/G where Z is a smooth variety and G is a group without
pseudo-reflections acting with finite stabilizers, then Y = [Z/G]. Notice that this is the
case of simplicial toric varieties (cf. Section 1.6).

We finish this section with a corollary that will play an important role.

Corollary 4.10. Let X be a smooth DM stack with coarse moduli space ¢ : X — X. There
s a unique morphism X — X through which € factorizes.

Proof. Apply the theorem with Y = X, Y = X" and f =e¢. O

4.2. The canonical stack of a simplicial toric variety. In this section, we study the
canonical stack associated to a simplicial toric variety.
The main result of this section is the following theorem.

Theorem 4.11. Let X be a simplicial toric variety with torus T. Its canonical stack X"
has a natural structure of toric orbifold such that the action a®" : T x X" — X" [ifts the
actiona : T'x X — X.

Proof. Denote by ¥ the fan in N ®7 Q of the toric variety X, so that X = Zx,/G 4 (cf. §1.6).
The subvariety of points where G4 acts with nontrivial stabilizers has codimension > 2.
Remark 4.9 implies that the canonical stack X" is isomorphic to [Zy/G4]. Let T :=
(C*)™"/G 4 be the torus of the toric variety X. Notice that 7" = [(C*)"/G 4] is open dense
and isomorphic via €|ren to T'. Proposition 3.3 and the universal property (see Theorem 4.6)
of the canonical stack imply that the action of 7" on X lifts to an action of 7" on X", [

Remark 4.12. (1) Under the hypothesis of Theorem 4.11, we have that the restriction
of the structure morphism ¢ : X" — X to T is an isomorphism with 7.
(2) Let X be a canonical toric DM stack with DM torus 7 = T with coarse moduli space
the simplicial toric variety X. The proof above shows that X = [Zx/G 4] where
G4 = Hom(A'(X),C*) = Hom(Pic(X),C*) (¢f. Remark 4.5.(2)).

Corollary 4.13. Let X be a canonical toric DM stack with torus T =T.

(1) The boundary divisor X \ T is a simple normal crossing divisor, with irreducible
components, denoted by D;, isomorphic to [Z;/G a] where Z; = {x; = 0} N Zy..
(2) The composition morphism L — A'(X) = Pic(X) sends e; to Ox(D;).
14



Proof. The first point of the Corollary follows from the fact that the inverse image inside Zy,

of the torus T'= (C*)"/G 4 is (C*)".
The second part of the Corollary follows from the exact sequence (1.7) and Remark 4.5.(2).
O

Remark 4.14. Let X be a canonical toric DM stack with coarse moduli space X.

(1) Denote by X the fan of X in Ng. If the rays of ¥ span Ng, from the Corollary and
the exact sequence (1.7), we have the following exact sequence

0 M L Pic(X) —— 0.

(2) Foranyi € {1,...,n}, the divisor D; is Cartier. Hence it corresponds to the invertible
sheaf O(D;) with the canonical section s;. Using Remark 1.1, the invertible sheaf
O(D;) is associated to the representation G4 — G, = (C*)* 25 C* where p; is the
1—th projection. Moreover, the canonical section s; is the i—th coordinate of Zs..

(3) Let X be a canonical toric DM stack, then all divisors multiplicities of X are equal
to 1 (for the definition of divisor multiplicity see Remark 3.4).

5. TORIC ORBIFOLDS

In this section, we only consider toric DM stacks with trivial generic stabilizer that is toric
orbifolds.

Let X be a smooth DM stack with coarse moduli space X. By Proposition 3.7 and
Theorem 4.11, the canonical stack X" has an induced structure of toric orbifold. Denote
by ex : X — X (resp. excan : X — X) the morphism to the coarse moduli space.
Theorem 4.6 implies that there exists a unique f : X — X" such that excan 0 f = .

Proposition 5.1. Let X be a toric orbifold with torus T and coarse moduli space X. The
canonical morphism f: X — X is a morphism of toric DM stacks where X" is endowed
with the induced structure of toric orbifold.

Proof. The universal property of the canonical stack (c¢f. Theorem 4.6) applied toid : T — T
implies that f|p: T — T,
O

Notice that the morphism f|r : T — T°*" in the proof above is an isomorphism because
X is a toric orbifold.
Denote D" := (D$*, ..., D) (cf. 1.3.b).

Theorem 5.2. (1) Let X be a simplicial toric variety with torus T. Denote by 3 a fan
of X. For each ray p; of &, choose a; in Nvg. Denote a := (ay,...,a,) € (N5g)™.
Then {/ D" /X has a unique structure of toric orbifold with torus T such that
the canonical morphism m : {/ D"/ Xcan — X" 45 q morphism of toric DM stacks

with diwisor multiplicities a.
(2) Let X be a toric orbifold with coarse moduli space X. Let a = (aq,...,a,) be
its divisors multiplicities.  Then X s naturally isomorphic as toric DM stack to

Y/ D" [ X defined in (1).
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Proof. (1) Let T C X" be the inverse image of T (which is isomorphic to T'). Note
that 7=1(T) C /D" /Xcn is isomorphic to T°" by Property 2 of Section 1.3.b. Let
j: T — D*"/Xcn be the dominant open embedding. We need to prove that T
acts on {/ D" /X compatibly with j. We know that T acts on X". To define T' x
/D ) Xean — &/ D" [ X can we use the universal property and the fact that D" C X
is T-invariant.

(2) For any i € {1,...,n}, denote by D;, D{*" D;(X) the divisor corresponding to the
ray p; in respectively X, X" and X. Theorem 4.11 implies there exist a unique morphism
f X — X such that excan 0 f = ey. By definition of the divisors multiplicities, for any
ray p;, we have f~1D$ = ¢,D;(X). The Cartier divisors D(X) := (Dy(X),...,D,(X))
define a morphism X — [A™/G"] such that the following diagram is 2-commutative :

(5.3) x—22 L [An/(Cy]

L

Xem —2 s [A"/(C*)"]

where the morphism Aa is defined in Section 1.3.b. By the universal property of fiber
product, we deduce a unique morphism g : X — /D" /X guch that the following

diagram is strictly commutative

S

XCal’l

In order to prove that g is an isomorphism, we first notice that {/D"/Xc" is smooth for
property 3 in §1.3.b. We also note that g is birational and proper. It is therefore enough to
prove that it is representable to conclude that it is an isomorphism.

Let U — /D" /Xcan he a surjective étale morphism from a smooth scheme, and U :=

X X & /D X U. It is enough to prove that the induced map g : Y — U is representable,

or in other words that U is a scheme. Note first that g is étale (it is étale away from a subset
of codimension > 2 so we apply the theorem of purity of branch locus). Assume that U
is actually a stack; then there exists an étale representable map [V/K] — U where V is a
smooth variety and K is a finite group. Hence the induced map V' — U is étale; however, by
the universal property, it factors via the coarse moduli space V/K, and the map V' — V/K
is not injective on tangent vectors, hence V' — U cannot be étale.

O

The following Corollary is a consequence of Property 3 of Section 1.3.b and Theorem 5.2.

Corollary 5.4. Let X be a toric orbifold with coarse moduli space X. The reduced closed
substack X \ T is a simple normal crossing divisor.
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Remark 5.5. Let X’ be a toric orbifold with coarse moduli space X. Diagram (1.4) and
Theorem 5.2 imply that we have the following morphism of exact sequences

Xa

(5.6) 0 z" zr " Z)a;l— 0

L

0 —— Pic(X) L Pie(X) —— &P Z/aZ —— 0

where the vertical morphisms sends 1 +— O(D§*) and 1 — O(D;).

6. TorIC DM STACKS

In this section we will show that each toric DM stack is isomorphic to a fibered product
of root stacks on its rigidification. To prove this theorem, we will recall in Section 6.1 the
relation between banded gerbes and root constructions. Then we will show in Theorem 6.11
that any toric DM stack is an essentially trivial gerbe on its rigidification. In Section 6.3,
we will prove the main result in Theorem 6.26.

6.1. Gerbes and root constructions. First, we recall some general notion on banded
gerbes (gerbes lies). We refer to [Gir71] chapter IV.2 for a complete treatment and to
Section 3 of [EHKVO01] for a shorter reference. Let X be a smooth DM stack. Let G be
an abelian sheaf of groups®? and G — X a gerbe. For every étale chart U of X and every
object x € G(U) let a, : G|y — Auty(x) be an isomorphism of sheaves of groups such
that the natural compatibilities coming from the fibered structure of the gerbe are satisfied.
The collection of these isomorphisms is called a G—banding. A G—banded gerbe is the data
of a gerbe and a G-banding. Two G-banded gerbes are said to be G—equivalent if they
are isomorphic as stacks and the isomorphism makes the two bandings compatible in the
natural way. Giraud proved in [Gir71] (chapter 1V.3.4) that the group HZ(X,G) classifies
equivalence classes of G-banded gerbes.

Remark 6.1. We anticipate some observations about the banding which will be useful in
the following:

(1) The b-th root of a line bundle on X is a gerbe which is banded in a natural way by
the constant sheaf p;; the banding is the canonical isomorphism between the group
of automorphisms of any object and p,.

(2) Given G — X a G-banded gerbe, every rigidification of G by a subgroup H of G
inherits a (G/H )-banding from the G-banding of G.

Here we introduce the concept of an essentially trivial gerbe which will play an important
role in this section. The Kummer sequence

1 Ly L Gm Ab Gm 1

induces the long exact sequence

(6.2) o —— HY (X, Gp) =2 H2 (X, 1y) —— H2(X, Gyp) — - -

2The non abelian case has a richer structure but for the sake of simplicity we just skip all these additional
features and refer the interested reader to [Gir71].
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Definition 6.3. A j;,-banded gerbe in HZ(X, i) is essentially trivial if its image by ¢, is
the trivial gerbe in HZ (X, G,,).

Remark 6.4. (1) It follows from Section 1.3.a that a p,—banded gerbe is essentially
trivial if and only if it is a b—th root of an invertible sheaf on X.

(2) As the puy—banded gerbe /L @ M®b/X is isomorphic to v/ L/ X, we deduce a bijection
between essentially trivial u,—banded gerbes and Pic(X')/bPic(X).

Lemma 6.5. There is a natural bijection between essentially trivial gerbes in H%(X, i) and
elements in Ext!'(Z/bZ, Pic(X)).

Proof. By Remark 6.4.(2), it is enough to show that Ext'(Z/bZ,Pic(X)) is isomorphic to
Pic(X)/bPic(&X). This follows from the exact sequence

Hom(Z, Pic(X)) — %+ Hom(Z, Pic(X)) —— Ext'(Z/b, Pic(X)) — 0
O

Let G be a finite abelian group. Fix a decomposition G = H§:1 pp;- We deduce an
isomorphism
‘
(6.6) H2(X,G) @ (X, ;)

Oé’—>(041,...,Oég)

Definition 6.7. Let G be a finite abelian group. A G-banded gerbe associated to a €
H?*(X, Q) is essentially trivial if there is a decomposition of G = Hﬁ:l pp,; such that for any
je{l,..., 0}, the yy,~banded gerbe a; is essentially trivial.

Remark 6.8. Being essentially trivial does not depend on the choice of a decomposition of

G.

Proposition 6.9. Let G be a finite abelian group. Fix a decomposition of G = H§:1 M, -
There are bijections between

{ Essentially trivial gerbes in GB§:1 HZ(X, )}

LN {Fibered products over X of bj—th roots of invertible sheaves}

¢
<—>HP1C )/b; Pic(X) <= [ Bxt'(Z/b,Z, Pic(X))

J=1

Remark 6.10. To be more concrete, let us explicit the last bijection. For the sake of
simplicity, we consider the case j = 1. To the class [Ly] in Pic(X)/bPic(X), we associate
the extension

0—— PIC(X) — PIC(X) X Pic(X)/bPic(X) Z/bZ — Z/bZ — 0

where the fiber product is given by the standard projection Pic(X) — Pic(X)/bPic(X) and
the morphism Z/bZ — Pic(&X') that sends the class of 1 to the class [Lo]. The first morphism

in the extension sends the invertible sheaf L to (L®°,0).
18



Let 0 — Pic(X) — A — Z/b — 0 be an extension. We consider the projective resolution

02827 /b — 0. There exists f and fsuch that the following diagram is a morphism
of short exact sequences.

0 Z / Z]b 0

b

0 —— Pic(X) A Z/b 0

The class [f(1)] in Pic(X')/bPic(X) is the element that corresponds to the above extension.

Notice that different liftings f, f lead to different elements in Pic(X’) with the same class in
Pic(X)/bPic(X).
The two maps define above are inverse to each other.

Proof of Proposition 6.9. Most of the Proposition is a direct consequence of Remark 6.4 and
Lemma 6.5. The only non trivial fact is to prove that an essentially trivial gerbe defined by
a=(ay,...,qp) € @ﬁlegt(X, fy;) is given by a fiber product of the gerbes defined by the
a;’s. Without loss of generality, we can assume that a = (a4, az); the general case is proved
by induction. The gerbe defined by «; (resp. «sz) is isomorphic to the rigidification G/ i,
(resp. G/ iy, ). Hence we have the following 2-commutative diagram

g /g/,ub\ X
%

gi/’l’bl

Remark 6.1.(2) implies that G — G/, (resp. G — G// 1w, ) is a up,—banded gerbe (resp.
iy, —banded). By the universal property of the fiber product we are given a morphism
G — Gy, Xx G/]pp,- Two gerbes banded by the same group over the same base X are
either isomorphic as stacks or they have no morphisms at all; this completes the proof. [J

6.2. Gerbes on toric orbifolds.

Theorem 6.11. Let X be a toric orbifold with torus T'. Denote by v : T — X the immersion
of the torus. Then the morphism
o HZ(X,G,,) — HL(T,G,,)
18 injective.
Notice that in the following proof we will use that a toric orbifold is a global quotient

[Z%/Gx] where Gy := Homy(Pic(X),C*). This will be proven in Theorem 7.7.
We first proof some preliminary results.

Lemma 6.12. Let S be a quasi-compact noetherian scheme. The natural morphism F[gt(S, Gn) —
HY(S,G,,) from the Cech cohomology to the sheaf cohomology is an isomorphism for q =
0,1,2).
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Proof. This statement is well known for ¢ = (0,1). If ¢ = 2 the result is hidden in the proof
of Theorem 4.1 in [Art71]. What Artin proves in this theorem is that the statement is true
for ¢ < n if every subset of n — 1 points of S is contained in an open affine of S. U

Corollary 6.13. Let S be a smooth variety, So C S a closed subscheme of codimension > 2.
Then the natural map H%(S,G,,) — H4(S\ So, G,,) is an isomorphism.

Proof. The statement is obvious if we replace sheaf cohomology with Cech cohomology: to
prove the corollary we just apply Lemma 6.12. U

Lemma 6.14 (Olsson). Let X be an Artin stack and Xy an atlas. Denote by X, = Xo Xx
- Xy Xo. Let F be an abelian sheaf of groups on X and F, its restriction to X,. There is
a spectral sequence with EV'(X) := H%(X,, F,) that abuts to HY (X, F).

Proof. This lemma follows immediately from Corollary 2.7 p.4 and Theorem 4.7 p.13 in
[01s07]. O

Proof of Theorem 6.11. By Theorem 5.2 in the case of orbifolds and Lemma 7.1, we have
that X = [Zy/Gx| where Gy := Homgy/(Pic(&X'), C*). Put

Zy={z€ZscC'WVie{l,....n}, ][z =0}
J#i
the union of T-orbits in Zs, of codimension > 2. The closed subscheme Z; of Zy, is of
codimension 2. Hence the quotient stack [(Zx \ Z)/Gx] is a closed substack of codimension
2 of X. For any i € {1,...,n}, put

U ={z€Zy CcC"Vje{l,...,n}\ {i}, 2 #0}.
We have that U; is isomorphic to A! x (C*)"~! and that the natural morphism

H UZ—>Z2\Z2

i€ {1,m )}

.....

.....

atlas.

Denote by X, = XXy - -xX xXo. From Lemma 6.14 we have a spectral sequence EV(X) :=
H{(X,,G,|x,) abutting to H5 ([(Zs \ Z5)/Gx);Gr). Using this spectral sequence and
Corollary 6.13 we obtain that the natural morphism HY (X, G,,) = H ([(Zs\ Z2)/Gx], G},)
is an isomorphism for ¢ = (0,1,2). Finally, the theorem follows from Lemmas 6.15 and
6.16. U

Lemma 6.15. We have the following morphism of short exact sequences
0—— E%(X)—— H4(X,G,,) — EX*(X) ——0
|- 5 J?
0—— E¥(T)—— H4(T,G,,) —— E®*(T) ——0

Lemma 6.16. The vertical maps a : E3°(X) — E2°(T) and 3 : E*(X) — EY(T) are
mjective.
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Proof of Lemma 6.15. To prove the lemma, we are just interested by EP4(X) for p 4+ ¢ = 2.
We start by proving that we have

(6.17) 0—— E2(X)—— H.(X,G,,) — E®%(X) ——0
Hilbert’s Theorem 90 (cf. Proposition 4.9 of [Mil80]) implies that
Hy(Xp, Gm) = Hyppinq (X, Ok, ) = Pic(X,).
Using the notation of Theorem 4.11, we have that [U,/H] is isomorphic to [A'/p,,] x (C*)"~1.

.....

U = pr’ugm 1fp1::pp
prpe T otherwise.

Hence, for any p we have that EV'(X) = EPY(X) = HL(X,,G,,) = 0. We deduce the exact
sequence (6.17).
We now show that E29(X) = E2°(X) and E%2(X) = ES?(X).

FIGURE 1. Terms E{Y(X) and EYY(X)

FIGURE 2. Terms EY!(X) and EYY(X)

In Figures 1 and 2, the circled terms mean that they will stay constant that is they are
equal to EPI(X). We deduce that E?9(X) = F2°(X) and E%(X) = E®(X).
The same argument for 7" proves the lemma. U
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Proof of Lemma 6.16. First, we show that the morphism p : E2°(X) — E29(T) is injective.
From Figures 1 and 2, we have that

(6.18) E(X) =ker (ds : E3*(X) — ES*(X))
(6.19) E(T) = ker (d3 : E3°(T) — ES*(T))
Moreover, we have that

(6.20) E3*(X) =ker (di : H (X0, Gy,) — Hi(X1,G))
(6.21) E*(T) =ker (di : H3(To, Gr) — Hi (11, Gn))

Recall that U, ~ A x (C*)"~! and Ty = (C*)". By Grothendieck’s Ezposés on the Brauer
group [Gro68, §6 p.133], we have the following long exact sequence :

(6.22) e — H%O_TO(XO, Gn) — HZ(Xo,Gp) —— HE(Ty, G) — -+

Moreover, we have that
e the spectral sequence F3 := HP((Xo\To), Hix,\ 1) (X0, Gin)) converges to Hx\n,)(Xo, Gi)-
[} H(OX()\T())(XO’ Gm) = H(2X0\T())(XO’ Gm) = (0 and H(lXo\T())(XO’ Gm) = 7.
This implies that F3° = F3? = 0. As Xo\Tp = (C*)"!, we have that Fy' = H' (X, \To, Z) =
0.The spectral sequence F2? implies H(zxo\To)(XOma) = 0. Hence, Sequence (6.22) and
Equalities (6.18), (6.19), (6.20) and (6.21), imply that « is injective.
Let prove that §: ES*(X) — ES*(T) is injective. Recall that E3*(X) = ker dy/ Imd; and
EY*(T) = ker dy/ Im d;. We have the following commutative diagram

H(X1, Gr) — HO(Xy, Gr) —2 H(X3, Gy

T |

5 5
HO(Tl, Gm) % HO(TQ, Gm> H2 HO(Tg, Gm>
As T),, — X, is open and dense, the vertical maps are injective. Notice that these maps

are isomorphisms except on U,, and U,,,. Let y € H°(T,,,G,,) such that there exists
z € H(U,,p, Gy,) that lifts 6, () i.e., we have the following diagram :

j
y—01(y)

The morphism 52|TW : HY(T,,,G,,) — H°(T,,,,
any t,g,h € T,,, =T, X j1q, X ftq,, by

Oalr,, (@)(t, 9, h) = G(ht, 9)§(t, h) /F(t, gh).

The divisor U, \ T}, is a principal divisor associate to the rational function ¢. For any
g € [tq,, the function ¥ is rational on U,,|, = U, x {g}. Hence there exists a unique n(g) in
N* such that ™9 is a regular function on U, x {g}. As §(ht, g)y(t, h)/y(t, gh) is a regular

function, we deduce that @™@+n()=nlgh) — 1 Hence, the function n : g , — Z is a group
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homomorphism, therefore n(g) = 1 for every g. We deduce that ¥ is a regular function on
U, which implies that the morphism 3 : EY*(X) — E$*(T) is injective. O

6.3. Characterization of a toric DM stack as a gerbe over its rigidification. Let
X be a toric DM stack with DM torus 7 isomorphic to T x BG and coarse moduli space
X. Denote by X™¢ the rigidification of X (cf. Section 1.4) which is by definition an orbifold
with coarse moduli space X. The universal property of the rigidification and of the canonical
stack (see Proposition 1.5 and Corollary 4.10) imply that we have the following strictly
commutative diagram:

(6.23) X —— yris

| e

Xcan
Section 1.4 and Lemma 3.8 imply that we can define X'//G.

Lemma 6.24. Let X be a toric DM stack with DM torus T isomorphic to T x BG.

(1) The orbifold X™¢ is canonically isomorphic to X[JG.
(2) There is a unique structure of toric orbifold on X™& with torus T such that the mor-
phism r : X — X" is a morphism of toric DM stacks induced by T — T.

Remark 6.25. Let X be a toric DM stack with DM torus 7 isomorphic to 7' x G and coarse
moduli space X.

(1) Proposition 5.1 implies that the morphism f¢ : X*& — X is a morphism of toric
DM stacks. Hence we deduce that the commutative diagram (6.23) is a commutative
diagram of morphisms of toric DM stacks.

(2) Let H be a subgroup of G. The stack X'/ H is a toric DM stack with DM torus
isomorphic to 7 //H ~ T x B(G/H). Moreover, the natural morphism X — X/ H
and X//H — X /G are morphism of toric DM stacks.

(3) Note that we did not use the non canonical isomorphism 7 = T x BG but only the
short exact sequence of Picard stacks 1 — BG — 7 — T — 1.

Proof of Lemma 6.24. (1). As T /]G is isomorphic to the scheme 7" which is open and dense
in X//G, the stack X' /G is an orbifold which is canonically isomorphic to X™&.

(2). The morphisms ¢ : 7 — X and a : 7 xX — X induce morphisms on the rigidifications
e TG ~ T — X' and a™® : T x X" — X"8 by the universal property of the
rigidification (See Proposition 1.5). It is immediate to verify that a™® is an action, extending
the action of T on itself. As r~1(T) is isomorphic to 7, we deduce that this is the only toric
structure on X* which is compatible with the morphism 7. U

Since the morphism r : X — X8 is étale, the divisor multiplicities of X and X*# are the
same.

Theorem 6.26. (1) Let Y be a toric orbifold with DM torus T. Let X — Y be an
essentially trivial G—gerbe. Then X has a unique structure of toric DM stack with
DM torus isomorphic to T' x BG such that the morphism X — Y is a morphism of
toric DM stacks.
(2) Conversely, let X be a toric DM stack with DM torus T ~ T x BG. Then X — X"

1s an essentially trivial G—gerbe.
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Proof. (1). The inverse image of T" in X, denoted by 7, is open dense. The restriction of
the essentially trivial G-banded gerbe X — )Y to T is the essentially trivial G-banded gerbe
7 — T. Remark 6.4.(1) implies that the gerbe 7 — T is trivial. The action of 7" on Y
induces by pullback an action of 7 on X. This is the only structure of toric DM stack on X
compatible with the morphism X — ).

(2). Denote by a € HZ(X"8 @) the G-banded gerbe X — X™&. By Proposition 2.5,
the restriction of a on the DM torus 7 is the trivial G-banded gerbe in HZ(T,G). Fix
a cyclic decomposition of G = H§:1 ty;. By the isomorphism (6.6), the class a is sent
to (a,...,ap) € @ HE (X", 11p,). We have that for any j € {1,...,¢}, the class of a;
restricts to the trivial class in HZ (T, u,,). Theorem 6.11 states the injectivity of +* in the
following diagram.

) bi» /./Xrig . .
Hélt(Xmgv Gm)%He?t(Xna “bj)%Hgt(Xngv Gm)

V¥

1 Hgt(T> /”Lbj)%f—[gt({z: Gm)

A simple diagram chasing finishes the proof. U

Corollary 6.27. Let X be a toric DM stack with DM torus T isomorphic to T x BG.
(1) Given G = H§:1 t,. There exists L; in Pic(X"8) such that X is isomorphic as
G -banded gerbe over X*& to
be /Ll/Xrig X prig + ++ X yrig b{/LZ/Xrig.
Moreover, the classes ([L1], ..., [Lg]) in H§:1 Pic(X™¢)/b; Pic(X™8) are unique.
(2) The reduced closed substack X \ T is a simple normal crossing divisor.

The first part of the corollary is very similar to Proposition 2.5 of [Per07].

Remark 6.28. Let X be a toric DM stack with DM torus 7 isomorphic to 1" x BG. and
G = H§:1 t;. Diagram (1.3) and the corollary above imply that we have the following
morphism of short exact sequences

(6.29) 0 7t — g & Z/bZ — 0

L

0 —— Pic(X8) —" Pic(X) —— @4 Z/bZ —— 0

1/b;

where the vertical morphisms sends e; — L; and e; — L;"™.

Proof of Corollary 6.27. Theorem 6.26.(2) implies that X — X8 is an essentially trivial
G-banded gerbe. The first statement follows from Proposition 6.9.

By Corollary 5.4, we have that the reduced closed substack X"\ 7" is a simple normal
crossing divisor. As the morphism X — X8 is étale, we deduce the second statement of the
corollary. 0
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7. ToriC DM STACKS VERSUS STACKY FANS

In this Section, we will show that the toric DM stacks that we have defined correspond
exactly with those of [BCS05].

In the first subsection, we show that our toric DM stacks are global quotients. The second
subsection makes the correspondence with the article of [BCS05].

7.1. Toric DM stacks as global quotients. Let Z be a scheme such that the Picard
group is trivial. Let G be an abelian group scheme over C that acts on Z such that [Z/G]
is a DM stack. According to Remark 1.1, a line bundle on [Z/G] is given by a character
x of G. Hence the data of an invertible sheaf L with a global section s on [Z/G] give a
morphism of groupoids between [Z/G] and [A'/C*]. Explicitly, this morphism is given by
(5,X): ZxG— A" xC* and s: Z — A!

In the following lemma, we use a slightly more general notion of a root of Cartier divisors

that is a root of invertible sheaves with global sections. All the properties of Section 1.3.b
are still true (see [Cad07] or [RGV06]).

Lemma 7.1. Let Z be a scheme such that Pic(Z) = {1}. Let G be an abelian group scheme
over C that acts on Z such that [Z/G] is a DM stack. Let (L,s) := ((L1,$1),...,(Lk, sk))
be k invertible sheaves with global sections over the quotient stack [Z/G|. Denote by x =
(X1,---,Xk) the representations associated to the invertible sheaves L. Let d := (dy, ..., dy)
be in (N>0)k.

(1) We have that {/(L,s)/[Z]G] is isomorphic to [Z ]G] where Z and G are defined by

the following cartesian diagrams

Z— Ak G— G},
l O l/\d Lﬁ O l/\d
72 Ak G~ Gk

The action ofé on Z is given by
(97 ()\17 .- 7)\ki) ’ (27 (Ila s >$k)) = (gZ, (Alxla .- 9)\kxk)

for any (g, (M, ..., M) € G and (z, (21, . ., i) € eZ.
(2) We have that \d/L/ Z]G] is isomorphic to [Z/G] where G is defined above. The
action ofG on Z is given via .

Proof. Tt is a straightforward computation on fibered products of groupoids. O

Remark 7.2. (1) We have that ker ¢ is isomorphic to Hle tta;- Notice that the action

of G on Z in the second part of the proposition above implies that the kernel of ¢
acts trivially on Z. Hence, [Z/G] is a Hle a,—banded gerbe over [Z/G].
(2) In both cases we have that G € Ext'(G, Hle L, )-
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Lemma 7.3. Let A be an abelian group of finite type. Let E in Ext'(®F_Z/d;Z, A). If we
have a morphism of short exact sequences:

0 Zk — 7k P, z/dz—0

|

DL, Z/diZ——0

—
&

then the left square is cocartesian.

Remark 7.4. Diagrams (5.6) and (6.29) imply that we have the following cocartesian dia-
grams:

(75) ZZ %b Zé Tn * T

J l | |

Pic(X) — Pic(¥/L/X) Pic(X) — Pic( ¢/D/X)

Proof of Lemma 7.3. Denote by P the pushout of Z* — Z* and Z* — A. Using the universal
property of co—cartesian diagrams we deduce a morphism f from P to E and the following
morphisms of extensions:

) &
Z D, Z/d;Z—0

|

0 y/d

0 A ! P coker(q)——0
ol
0——A E—— @' 7/dZ—0

Notice that the composition § o « is the isomorphism in Lemma 7.3. By simple diagram
chasing, we deduce that f is an isomorphism. U

Remark 7.6. Let X be a toric DM stack with coarse moduli space X. Proposition 3.7
implies that X is a simplicial toric variety. Denote by > a fan of X. As explained in
Section 1.6, we have that X is the geometric quotient Zx /G4 where G4 := Hom(A'(X), C*).
Put Gy := Hom(Pic(X),C*). Notice that Gywg acts on Zy via the dual (in the sense of
Section 1.5) of the morphism Z" — Pic(X™8). The group Gy acts on Zyx via the dual of
the morphism Pic(X™8) — Pic(X). Consider the quotient stack [Zs/Gx]. The quotient
stack [(C*)"/Gx] is a DM torus which is open and dense in [Zx/Gxy]. As the natural
action of (C*)" on Zs, extends the action of (C*)" on itself, we deduce a stack morphism
a: [(C)"/Gx| x [Zs/Gx] — [Z%/Gx] that extends the action of [(C*)"/Gx] on itself.
Proposition 3.3 implies that the stack morphism a induces a natural action of the DM torus
on [Zs/Gx] that is [Zs/Gx] is a toric DM stacks.

Theorem 7.7. Let X be a toric DM stack with coarse moduli space X. Denote by X the
fan associated to X. Then X is naturally isomorphic, as a toric stack, to [Zx/Gx] where
Gx = Hom(Pic(X), C*).
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Proof. It X is X" the theorem follows from Remark 4.12.(2). If X' is X™8 the theorem
follows from the right cocartesian square of Diagram (7.5) and Lemma 7.1.(1). For a general
X, it follows from the left cocartesian square of Diagram (7.5) and Lemma 7.1.(2). O

7.2. Toric DM stacks and stacky fans. First we recall the definition of a stacky fan from
[BCS05].

Definition 7.8. A stacky fan is a triple ¥ := (N, X, 3) where N is a finitely generated
abelian group, X is a rational simplicial fan in Ng := N ®z Q with n rays, denoted by
Pls- -, Pn, and a morphism of groups § : Z" — N such that

(1) the rays span Ng,
(2) for any ¢ € {1,...,n}, the element 3(e;) in Ng is on the ray p; where (eq, ..., e,) is
the canonical basis of Z™ and the natural map N — Ng sends m — .

Remark 7.9. Let 3 := (N, X, 3) be a stacky fan.

(1) As the rays span Ng, we have that § has finite cokernel.

(2) For any i € {1,...,n}, denote by v; the unique generator of p; N (N/Ni,) where
Nior is the torsion part part of N. Denote by 3“8 the composition of 3 followed
by the quotient morphism N — N/N;,. There exists a unique a; € N.g such
that 578(e;) = av;. Denote X8 := (N/Ny, 2, f78). There exists a unique group
homomorphism " : Z™ — N/N;., such that we have the following commutative

diagram.
B
(7.10) "
rig
diag(ai,...,an) §
IBC&I]

7" ———— N/Nior

Denote 3" := (N/Nior, X2, 5).
In Remark 4.5 of [BCS05], the authors define the notion of morphism of stacky
fans. The commutative diagram (7.10) provides us the morphisms of stacky fans
3 yrig _, yhean
(3) To the fan ¥, we can associate canonically the stacky fan X",

Construction 7.11 (Construction of the DM stack associated to the stacky fan 3). Now
we explain how to associate a DM stack X' (X) to a stacky fan 3 following Sections 2 and 3
in [BCS05]. Denote by d the rank of N. Choose a projective resolution of N with two terms
that is

OHW&ZH@HNHO
Choose a map B : Z" — Z** lifting the map 3 : Z" — N. Consider the morphism

[BQ] : Z"* — 74+t Denote DG(f3) := coker([BQ]*). Denote by 3V : (Z")* — DG(3) the
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group morphism that makes the following diagram commute

(Z") ————— (z"*')

T, |

DG(f) := coker [BQJ*

Let Zy be the quasi-affine variety associated to the fan ¥ (see Section 1.6). Define the
action of Gy := Homyz(DG(3),C*) on Zy, as follows. Applying the functor Homgz(—, C*) to
the morphism Y : (Z")* — DG((3), we get a group morphism Gs — (C*)". Via the natural
action of (C*)" on C", we define an action of Gx on Zy. Finally, the stack associated to the
stacky fan 3 := (N, X, ) is the quotient stack X' (X) := [Zx/Gx].

Notation. We will later see that the group G is isomorphic to Gy := Hom(Pic(X'), C*).

Notice that in the above construction, we do not use that the rays span Ng.
By Proposition 3.2 of [BCS05], we have that [Zx/Gx] is a smooth DM stack.

Remark 7.12. In [Iwa07b], Iwanari defined a smooth toric Artin stack over any scheme
associated to a stacky fan ™.

Remark 7.13. As it was observed in Section 4 of [BCS05], the condition that the rays span
Ng in Definition 7.8 is not natural. Indeed a DM torus (C*)¢ x BG where G is a finite
abelian group can not be produced as a stack X'(X) for ¥ a stacky fan with the condition
that the rays span Ng. Nevertheless, putting N := Z¢ x G, ¥ = {0} and 8 : {0} — N the
zero morphism, one can apply Construction 7.11 and get the DM torus (C*)¢ x BG.

Lemma 7.14. Let ¥ := (N, X, ) be a stacky fan.

(1) The stack X (X) is a toric DM stack.

(2) The stack X (%) is a toric orbifold if and only if the finitely generated abelian group
N s free.

(3) The stack X(X) is canonical if and only if ¥ = 3.

Proof. (1). The group morphism Gy — (C*)" defined in Construction 7.11 defines the
quotient stack [(C*)"/Gx] which is by definition a DM torus. As the open dense immersion
(C*)* — Zy, is Gg—equivariant, we have that the stack morphism [(C*)"/Gx| — [Zx/Gx]
is an open dense immersion. Using the same arguments of Remark 7.6, we have that the
action of the DM torus [(C*)"/Gx] on itself extends to an action on [Zyx/Gx]. That is X(X)
is a toric DM stack.

(2). The stack X' (X) is a toric orbifold if and only if Gy — (C*)™ is injective, if and only
if 5V is surjective, if and only if N is free.

(3). Assume that ¥ = X", As the coarse moduli space X of X(X) is the geometrical
quotient Zs;/G 41(x) where G a1(x) := Hom(A'(X),C*), we have that X" = [Z5/G z1(x)].
Construction 7.11 implies that G is G41(x). Conversely, if 3 # X" then either N has
torsion (i.e., X(X) is a gerbe) or there exists a divisor D associated to a ray such that any
geometric point of D has a non trivial stabilizer. 0

Remark 7.15. Let X(X) be a canonical stack (i.e., ¥ = X°“"). The proof of the third
statement of Lemma 7.14 implies that DG(8%") = Pic(X(X)).
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Theorem 7.16. Let X be a toric orbifold with coarse moduli space X. Denote by 3 a fan of
X in Ng := N®zQ. Assume that the rays of ¥ span Ng. Then there is a unique 3 : Z" — N

such that the stack associated to the stacky fan (N, X, [3) is isomorphic as toric orbifold to
X.

Remark 7.17. An arbitrary toric orbifold is isomorphic to a product X = X (X) x (C*)*.
We can remove the condition that the rays span Ng as far as we remove this condition from
the definition of a stacky fan (cf. Remark 7.13).

Proof of Theorem 7.16. Denote by a := (ay,...,a,) the divisor multiplicities of X. We
define the morphism of groups 3 : Z" — N by sending e; — a;v; where v; is the generator of
the semi—group p; N N. Denote by X the stacky fan (N, X, 3).

Theorem 7.7 states that X is isomorphic to [Zy/Gy]. In order to prove that the two stacks
are isomorphic, we will show that Gy is isomorphic to G's such that the two actions on Zx,
are compatible. From Diagram (7.10), we deduce a morphism of exact sequences:

0o—— (2" —— (2" —— @\ Z/a;Z.—— O

! |

0 — Pic(X**) — DG(B) — @&} 1 Z/a,Z. — 0

The right cocartesian square of Diagram (7.5) implies that G is isomorphic to Gx such
that the actions of Gx and Gy on Zy, are compatible.

The uniqueness of 3 follows from the geometrical interpretation of the divisor multiplicities.
O

Remark 7.18. (1) The proof shows also that Pic(&X') is isomorphic to DG([3).
(2) Marking a point a;v; on the ray p; NN corresponds geometrically to putting a generic
stabilizer p,, on the divisor D; associated to the ray p;.

Proposition 7.19. Let 3 := (N, X, 8) be a stacky fan. There is a unique o in
Extl(Ntor,Pic(X(E“g))) such that the essentially trivial Hom(Nior, C*)~banded gerbe over
X (X"®) associated to « is isomorphic as banded gerbe to X (X).

Proof. Fix a decomposition N = Z¢ & @?le/ b;Z. It follows from Construction 7.11 that we
have the following diagram:

(7.20) 0 0 0

0 — DG(5"8) — DG(B) —— Sj1 Z/bZ—— 0
GON

0 —— (Z") —— (2" ——— (20— 0

[BQJ* X (b1,...,b¢)

0 —— (Z4) —— (Z+) —— (Z') ——— 0




From Remark 7.18, we have that Pic(X (3"#)) is isomorphic to DG(3#). The first line of
Diagram (7.20) is an element a € Ext!(Nyo,, Pic(X (X"#))). By Proposition 6.9, the element
« induces an element ([Li],...,[Ls]) € Hﬁ:l Pic(X"8)/b; Pic(X™¢). The last row of the
diagram above is a projective resolution of @ﬁzlz/ b;. Hence, we deduce that there exists a
morphism of short exact sequence

(7.21) 0—— (28 —2— (2 —— &' Z/b,Z—— 0

L

0 — Pic(x") — DG(8) — @S, Z/b;Z. — 0

The morphism f is the same as the choice of L1, .. ., L, in Pic(X™8) in the classes [L1], . . ., [Lq].
By the left cocartesian square of Diagram (7.5), we deduce that G is isomorphic to Gy.
We conclude that X' is isomorphic to X'(3). The uniqueness of a follows from Proposition
6.9.

O

Remark 7.22. Denote by &} and by A, respectively the stacks associated to stacky fans
(3, N, 1) and (X, N, B2). The stacks X} and &, are isomorphic, as toric DM stack, if and
only if the extensions defined in Diagram (7.20) in Ext' (N, Pic(X(X"))) are isomorphic.

Theorem 7.23. Let X be a toric DM stack with coarse moduli space X. Denote by ¥ a fan
of X in Ng. Assume that the rays of ¥ span Ng. There exist N and 3 : Z" — N such that
the stack associated to the stacky fan (N, X, 3) is isomorphic as toric DM stacks to X.

Remark 7.24. (1) We can remove the condition that the rays span Ng if we remove
this condition in the definition of a stacky fan (cf. Remark 7.13).

(2) Let ¥ be a stacky fan. Corollary 6.27 and the theorem above imply that X (X)
is isomorphic to a product of root stacks over its rigidification. This result was
discovered independently by Perroni (cf. Proposition 3.2 in [Per07]) and by Jiang
and Tseng (cf. Remark 2.10 in [JT07]).

Proof of Theorem 7.23. If X is a toric orbifold then the statement was already proved in
Theorem 7.16.

Let X be a toric DM stack with DM torus isomorphic to 7" x BG. By Theorem 7.7, we
have that X is isomorphic to [Zs/Gy]. By Theorem 7.16, there exists a unique stacky fan
»U8 = (%, Z%, 518) where d := dim X such that X" is isomorphic to X' (X"#).

There exist (by,...,b)) € (Nsg)® such that G = Hﬁ:l . Put N = Z% & &f_ | Z/b;Z.
Corollary 6.27 gives us ¢ invertible sheaves Ly, ..., L, on X™&. For any j, choose ¢y;, . .., Cpj €
Z such that L; = @ O(D}*®)% where D}'® is the Cartier divisor associated to the ray p;.
Put

B:7" — Lo &\ Z/bZ
ei — (B"8(e:), [cal, - - -, [cul)

where [c;;] is the class of ¢;; modulo b;. It is straightforward to check that X (X) is isomorphic

to X. O
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7.3. Examples.

Example 7.25 (Weighted projective spaces). Let wy,...,w, be in Nyg. Denote by P(w)
the quotient stack [C"™!\ {0}/C*] where the action of C* is defined by A(zg,...,z,) =
(A%0xg, ..., A¥rz,) for any A € C* and any (zo,...,z,) € C"™1\ {0}. The stack P(w) is a
complete toric DM stack with DM torus [(C*)"*1/C*].

We have that

(1) the stack P(w) is canonical if and only if for any i € {0,...,n}, we have that
ged(wo, .., Wy, .. wy,) =1 (e.g., the weights are well-formed).

(2) The stack P(w) is an orbifold if and only if ged(wo, ..., ..., w,) = 1.

(3) The Picard group of P(w) is cyclic. More precisely, we have

‘ |z if dimP(w) > 1
Pic(P(w)) = {Z/woz if P(w) = P(wp).

Proposition 7.26. Let X be a complete toric DM stack of dimension n such that its Picard
group is cyclic. Then there exists unique up to order (wy,...,w,) i (Nsg)"™' such that X
is isomorphic to P(wy, ..., wy,).

Proof. Denote by X the coarse moduli space of X. Denote by ¥ a fan of X. If the Picard
group is isomorphic to Z/dZ then Theorem 7.7 implies that X' = [Zx/uq| with Zx, C C™.
Hence, the fan ¥ has n rays. In this case, X is complete if and only if n = 0. We deduce
that X = Bug ~ P(d).

If the Picard group is Z, Theorem 7.7 implies that X = [Zy/C*] with Zy C C"*!. As
X is complete, the fan X is complete. We deduce that Zy = C™™' \ {0}. The DM torus is
isomorphic to [(C*)"*!/C*]. The action of C* is given by the morphism C* — (C*)"*! that
sends A — (A0, ..., A\"") with w; € Z \ {0}. Notice that if the w;’s do not have the same
sign then X is not separated. If the w;’s are all negative then replacing A by A~! induces an
isomorphism with a weighted projective space. O

Example 7.27 (Non uniqueness of the stacky fan). In this example, we give two isomorphic
stacky fans for P(6,4) which was considered in Example 3.5 in [BCS05]. As we have seen in
Section 7.2, N and ¥ are fixed whereas [ is not unique. Let N be Z x Z/2. Let 3 be the
fan in Ng = Q where the cones are 0, Qs¢, Q<. Put

(7.28) By 7P — 7 x 7)2 By 72— T x 7J2
€1/ (27 1) €1 /> (27 1)
es — (—3,0) ey — (—3,1)

One can check that the stack associated to (N, X, 3;) and (N, X, 3y) is P(6,4).

Let us explicit the bottom up construction in this case. Its coarse moduli space is P!.
The rigidification of P(6,4) is P(3,2). Denote by 1, x5 the homogeneous coordinates of P!
We have that P(3,2) = ®%/(Dy, Dy)/P' where D; is the Cartier divisor (Op:(1), ;). We
have that O]p(g’g) (Dl) = Op(g@)(?)), O]p(g,Q) (DQ) = O]p(g’g)(2) and W*Opl(l) = O]p(g’g)(6) where
7 : P(3,2) — P! is the structure morphism. The stack r : P(6,4) — P(3,2) is a uy—banded
gerbe isomorphic to ¢/Op(s2)(1)/P(3,2). In Pic(P(3,2))/2 Pic(P(3,2)), the class of Op(32)(1)
is also the class of Op(32)(D;) or the class of Op(s2)(D1) ® Op(s,2)(D2). This different liftings
of the class of Op32)(1) lead to the two different stacky fans in (7.28).
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Example 7.29 (Complete toric lines). Here, we explicitly describe all complete toric orb-
ifolds of dimension 1. Notice that the coarse moduli space of a complete toric line is P!.
Denote by z7, x5 the homogeneous coordinates. Let D; the Cartier divisor (O(1),x;). Let
ay,as in Nyg. Denote by d (resp. m) the greatest common divisor (resp. the lowest common
multiple) of a,as. The Picard group of the root stack “v*¥/(D;, Ds)/P! is isomorphic to
Zx (Z/dZ). Notice that it is not a weighted projective space in general. As a global quotient,

the stack ©“1°3/(Dy, Dy) /P! is [(C? \ {0})/(C* xpug)] where the action is given by
C* xpg X ((C2 \ {0}) — (Cz \ {0})
(()\, t), ([L’l, [L’g)) —s ()\m/althI’l, )\m/azt_kle)
1

where ki, ko are integers such that % + %2 =

APPENDIX A. UNIQUENESS OF MORPHISMS TO SEPARATED STACKS
We prove proposition 1.2.

Proposition A.1. Let X and Y be two DM stacks. Assume that X is normal and ) is
separated. Let t : U — X be a dominant open immersion. If F1,Fy : X — Y are two
morphisms of stacks such that there exits a 2-arrow (3 : Fy o 1=>F5 o 1 then there exists a
unique 2-arrow « : Fy = Fy such that a xid, = 3.

Proof. Uniqueness: We first assume that X is a scheme, denoted by X, and ) is a global
quotient [V/G] where G is a separated group scheme. Denote by U the scheme U, open
dense in X. For ¢ in {1,2}, the morphism F; is given by an object x; which is a G—torsor
m » P, — X and a G—equivariant morphism P; — V. Let o, o’ : P, — P, be morphisms
between the objects x; and zo such that a\ﬂ;1(U) = Oé/‘ﬂgl(U). As G is separated, we have
that m; is separated. We deduce that o = «/.

Now we prove the uniqueness of the proposition in the case where Y = [V/G]. Let X be
an étale atlas of X'. By the previous point, we deduce that a|y = o/|x. As Mor(Fy, Fy) is a
sheaf on X, we conclude that a = .

For the general case, we reduce to the previous by covering ) by global quotients and then
we use that Mor(Fy, Fy) is a sheaf on X.

Existence: It is enough to do it for an étale affine chart of X'. By hypothesis, this chart
is a disjoint union of affine irreducible normal varieties. Hence, we can assume that X is an
affine irreducible normal variety, denoted by X. Denote by U the scheme U open dense in X.
The morphism Fjov: U — )Y, the 2—arrow 3 and the universal property of the strict fiber
product give a morphism f : U — U’. The existence of « is equivalent to the existence of a
morphism A : X - -+ X’ such that m;oh =id and hot =go f. Denoteby A: Y — Y x Y
the diagonal. We can sum up the informations in the following diagram :

U%X

X x; 3h
a U ? NX' - Y
l O \ 1 O lA
U (F1><F2) y
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By definition of the separatedness of ), we have the A is proper. By Lemma 4.2 of [LMB00],
we have that A is finite and X’ is a scheme. We deduce that m; : X’ — X is finite. The
morphism go f : U — X' is a section of m;. By Lemma A.2, we deduce a morphism
h: X — X' such that hot = go f. This completes the proof.

O

Lemma A.2. Let X' be a scheme and X be an irreducible normal variety. Let w: X' — X
a finite morphism. Let U — X be an open dense immersion. Let s : U — X' be a section of
. Then the section s extends to a section s: X — X'.

Proof. Denote by Uy the closure of the s(U) in the fiber product U’ := U xx X’. Denote
by p: U — U and ¢ : U — X’ the morphisms induced by the fiber product U’. Looking
at the fractional fields, we deduce that the morphisms s : U — Uy and p|y, : Uy — U are
birational morphisms. Denote by Xy the closure of Uy in X’. As the morphism ¢ is an open
embedding, we have that ¢|y, is dominant. We deduce that 7|x, : Xo — X is birational and
finite. As X be an irreducible normal variety, the Zariski main theorem implies that 7|y, is
an isomorphism. Its inverse is the wanted section of 7. U

APPENDIX B. ACTION OF A PICARD STACK

In this appendix, we recall the definition of a Picard stack. Then we define the action of
a Picard stack on a stack which extends the definition of Romagny in [Rom05]. In [Bre90,
Definition 6.1] Breen defines the notion of a G—torsor over a stack where G is a Picard stack.
Our definition of the action is actually already included in that definition.

To define the notion of Picard stacks, we do not need the stacks to be algebraic.

Definition B.1 (Picard Stacks [SGA4] Exp. XVIII). Let S be a base scheme. A Picard
S—stack G is an S—stack with the following data :

e (Multiplication) a morphism of S—stacks:
G x5 G—"—G
(91, 92)——91 - g2

e (2-Associativity) a 2—arrow ¢ implementing the associativity law:

(B.2) Og1,92.95 (g1-92) 93 =91 (92 93)

e (2-Commutativity) a 2—arrow 7 implementing commutativity:

(B.3) Tgr.92 - 91 92 = G2 g1
These data must satisfy the following conditions:

(1) for every chart U and every object g € G(U) the map m, : G — G which multiplies
every object by g and every arrow by id, is an isomorphism of stacks.
(2) (Pentagon relation) For every chart U and 4—tuples of objects g; € G(U), we have

(B.4) (1dg1 '992793794) 0 04, .95-3.94 © (991 92,93 1dg4) = 041.92.95-91 © Ug1-92.95.94

(3) For every chart U and every object g € G(U), we have 7, , = id,.,.

(4) For every chart U and every objects g1, 92 € G(U), we have 7y, 4, © Tgy.g91 = idgy.q, -
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(5) (Hezagon relation) For every chart U and every triple of objects g1, go, g3 in G(U),
we have

(B.5) 0g1.02.95 © Tgs.g1-92 © Ogsg1.90 = (idgl ‘7'93792) 0 0g1,93.92 © (7_93791 : idgz)

Remark B.6. The Pentagon relation establishes the compatibility law between 2—arrows 6
when expressing the associativity with 4 objects

The third condition means that every object strictly commutes with itself.

The last condition states compatibility between the 2—arrow of associativity and the 2—
arrow of commutativity.

Remark B.7. It can be proved, see [SGA4, Exp.XVIII,1.4.4], that the previous definition
is enough to guarantee the existence of a neutral element in the group stack. More precisely
it is a couple (e, €) where e : S — G is a section and € : e-e = e. A neutral element is unique
up to a unique isomorphism.

Definition B.8 (Morphisms of Picard stacks [SGA4] Exp. XVIII). Let (G, 6, 7) and (H, v, p)
be two Picard S—stacks. A morphism of Picard S—stacks is a morphism of S-stacks F' : G —
H with a 2-arrow ¢, 4, : F(g1 - g2) = F(g1) - F(g2) for any gi, g2 objects of G satisfying the
following compatibility conditions:

e for every chart U and every couple of objects g1, go € G(U) we have:

(B.9) PF(g1),F(g2) © Pg1,9: = Pga,gr © F(Tghgz)
e for every chart U and every triple of objects g1, 92, g3 € G(U) we have:

(B.10) ®g1,92-g3 © (idF(gl) '¢92,93) © F(991792793) = YF(g1),F(g2),F(g3) © (¢g1,92 : idF(g:s)) O Pgy-g2.95

Remark B.11. (1) It should be observed that the morphism F' maps the pentagon
relation (resp. the hexagon relation) for the Picard stack G to the pentagon relation
(resp. the hexagon relation) for H.
(2) Denote by (eg, €g) a neutral element of G and (e, €y) a neutral element of H. The
couple (F(eg), F(eg) o ¢, is a neutral element of H. By Remark B.7 there exists
a unique 2-arrow A : F(eg) = e3 such that Ao F(eg) o ¢ ..)
(3) It can be useful to notice that given o : g; = g2 and 3 : g3 = g4 morphisms in G(U)
the following identities involving morphisms holds:

Flo-B) = by, © (F() - F(B)) 0 by, 4,

Definition B.12 (Action of a Picard stack). Let (G, ,60) be a Picard S-stack. Denote by e
the neutral section and by e the corresponding 2—arrow. Let X be a S-stack. An action of
G on X is the following data :

e a morphism of S—stack :

= 67-(0)\2.

GxgX—— X
g, t————g X X
® a 2-arrow
Ne:eXT =
® a 2-arrow o:
Og1.92,% * (gl '92) X T = g1 X (gg X :L')

These data must satisfy the following conditions :
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(1) (Pentagon) For every chart U, every objects g1, g2, 93 € G(U) and every object x €
X(U), we have :

(ldg1 ngzvga,x) © 0g1,92-93,2 © (991792793 x id,) = Og1,92,95xz © Og1-92,93,2

(2) For any chart U and any object x € X' (U), we have
(ide X7y) 0 Oc e = (€ X id,).

Remark B.13. (1) If the Picard stack is a group-scheme then our definition of the action
is compatible with the one given by Romagny in [Rom05].
(2) Let (G,m,0,7) be a Picard S—stack. The multiplication m defines an action of G on
itself.

Proposition B.14. Let G, and Gy be two Picard S—stacks. Let F : Gi — Gy be a morphism
of Picard stacks with the 2—arrow ¢g, 4, : F(g1-92) = F(g1)- F(92). Let X be a S-stack with

an action of Go giwen by (a,n,0). Then the morphism F induces a natural action of Gy on
X.

Proof. The natural action is given by (a,7,0) where we put:
e ag:=aokF,
e for every object x in X, 7, := (9, o (A x id;)) where A is the 2-arrow defined in
Remark B.11;
e for every couple (g1, g2) of objects of G; and every x object of X, Gy, g, 2 = Tp(g1),F(g),2°
(Pg1,90 X i) -

It is straightforward but tedious to check that the triple so defined satisfies all the properties
in Definition B.12. O

We finish this section with a Proposition about actions on algebraic stacks. We refer to
Definition 12.1 of [LMBO00] for the notion of étale site of a DM stack.

Proposition B.15. Let X be a smooth DM stack and G a finite abelian group. An action
of BG on X induces a morphism of sheaves of groups j : G x X — I8"(X) on the étale site
of X. Moreover, as morphism of stacks, j is étale.

Proof. We may assume X to be irreducible and d—dimensional. First we produce a stack
morphism j : X X G — [#"(X) and we prove that j is étale. Denote by e : SpecC — BG
the neutral section. Denote by A : X — X x X the diagonal morphism. Denote by
a: BG x X — X the action. Using the universal property of the fibered product, we have
the following 2-commutative diagram:

(B.16) X xG

id xe



where p : X x G — X is the projection. The stack morphism j must be unramified since
it is a factor of the étale morphism p : X x G — X. Since every component of I(X’) has
dimension at most d, the stack morphism j is actually étale and its image is contained in
I8 (X)),

Now, it remains to prove that j : X — [8*(X) is a morphism of sheaves of groups on the
étale site of X'. The two upper triangles of Diagram (B.16) are strictly commutative since
I(X) is the strict fibered product. This implies that j is a morphism of sheaves of sets over
X. Notice that on the étale site, the sheaf I(X') is I8 (X).

To finish the proof, we need to show that j is a morphism of sheaves of groups. Let us
check the compatibility between the composition law in I(X) and the multiplication of G.
This compatibility follows from the existence of a dashed arrow such that the upper square
in the following diagram is strictly commutative.

id xm

X xGxdE X x G
5

I(X)

l“ D2

X

where the stack morphism c is the composition law of the inertia stack. The external square
of the diagram above is 2—cartesian and the stack morphism id xm : X x G x G — X x G is
the identity on X and the multiplication in G. By the universal property of the strict fiber
product, we deduce the dashed arrow such that the upper square is strictly commutative.
This ends the proof.

X xG

O
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