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Abstract—This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose 13 

a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. 14 

The non linear diffusion approaches are based on the definition of a partial differential equation that allows 15 

us to simplify the images without blurring relevant details or discontinuities. Computing the structure 16 

tensor which provides information on the local orientation of the geological layers, we propose to drive the 17 

diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In 18 

SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the 19 

regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the 20 

efficiency of the proposed approach.   21 
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1. Introduction 23 

The acquisition and processing of reflection seismic data result in a 3D seismic block of acoustic 24 

impedance interfaces. The interpretation of these data represents a delicate task. Geological patterns are 25 

often difficult to recognize for the expert.  26 

This interpretation of seismic blocks mainly consists in reflector picking (i.e. identifying and recording the 27 

position of specific reflection events) and fault plane locating.  To be able to pick the reflectors wherever 28 

they are located throughout the seismic volume, the interpreter must be able to determine the vertical 29 

displacement across faults, and above all, he must discriminate whether a discontinuity is due to noise or 30 

artefacts or is evidence of a fault (Fig. 1). 31 

As manual interpretation is both costly and subjective, some authors have investigated the use of image 32 

processing to develop automatic approaches (Admasu and Toennies, 2004; Randen et al, 2001; Sønneland 33 

et al, 2000). The resulting automatic tools are useful for structural interpretation of seismic data, but these 34 

tools failed in tracking horizons across faults especially if the level of noise is high. 35 

One way to improve the efficiency of both manual and automatic interpretation is to increase the quality of 36 

the 3D seismic data by enhancing the structures to track as preserving the faults.   37 

Among the different methods to achieve the denoising of 2D or 3D data, a large number of approaches 38 

using non-linear diffusion techniques have been proposed in the recent years (Weickert, 1997). These 39 

techniques are based on the use of Partial Differential Equations (PDE).  40 

The simplest diffusion process is the linear and isotropic diffusion that is equivalent to a convolution with a 41 

Gaussian kernel.  42 

 43 
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The similarity between such a convolution and the heat equation was proved by Koenderink (1984): 44 

 ( )UcdivUc
t

U ∇=∆=
∂

∂
 (1) 45 

In this PDE, U represents the intensity function of the data; c is a constant which, together with the scale of 46 

observation t, governs the amount of isotropic smoothing. Setting c=1, (1) is equivalent to convolving the 47 

image with a Gaussian kernel of width t2 . div indicates the divergence operator. 48 

Nevertheless, the application of this linear filter over an image produces undesirable results, such as edge 49 

and relevant details blurring.  50 

To overcome these drawbacks Perona and Malik (1990) proposed the first non-linear filter by replacing the 51 

constant c with a decreasing function of the gradient, such as: 52 

 ( ) ( )2
/1

1

KU
Ug

∇+
=∇  (2) 53 

where K is a diffusion threshold. The diffusion process is isotropic for contrast values under the threshold 54 

K; gradient vector norms higher than K are producing edge enhancing.  Despite the quite convincing 55 

practical results, certain drawbacks remain unsolved: staircase effect (Whitaker and Pizer, 1993) or pinhole 56 

effect (Monteil and Beghdadi, 1999) are often associated with the Perona Malik process. In addition, in the 57 

strongly noised regions, the model may enhance the noise. Since the introduction of this first non-linear 58 

filter, related works attempted to improve it (Catte et al, 1992). 59 

Weickert (1994; 1995) proposed two original models with tensor based diffusion functions. The purpose of 60 

a tensor based approach is to steer the smoothing process according to the directional information contained 61 

in the image structure. This anisotropic behaviour allows for adjusting the smoothing effects according to 62 

the direction.  63 
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The general model is written in PDE form, as: 64 

 ( )UDdiv
t

U ∇=
∂

∂
 (3) 65 

with some initial and reflecting boundary conditions.  66 

In the Edge Enhancing Diffusion (EED) model, the matrix D depends continuously on the gradient of a 67 

Gaussian-smoothed version of the image ( σU∇ ). The aim of this Gaussian regularization is to reduce the 68 

noise influence, having as result a robust descriptor of the image structure. For 2D application, the diffusion 69 

tensor D is constructed by defining the eigenvectors (
→

1v ) and (
→

2v ) according to σUv ∇
→

1  and 70 

σUv ∇⊥
→

2 (Weickert, 1994). The corresponding eigenvalues 1λ , 2λ  were chosen as:  71 
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In this manner, EED driven processes are smoothing always along edges ( 12 =λ ) and, in the direction of 73 

the gradient, the diffusion is weighted by parameter 1λ  according to the contrast level in that direction.  74 

Besides the EED model which enhances edges, Weickert proposed also a model for enhancing flow-like 75 

patterns: the Coherence Enhancing Diffusion - CED - (Weickert, 1999). The structure tensor introduced in 76 

this model is a powerful tool for analyzing coherence structures. This tensor ρJ  is able to measure the 77 

gradient changes within the neighbourhood of any investigated point: 78 

 )()( σσρσρ UUKUJ ∇⊗∇∗=∇  (5) 79 
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Each component of the resulted matrix of the tensor product ( ⊗ ) is convolving with a Gaussian kernel 80 

( ρK ) where σρ >> . The eigenvectors of ρJ  represent the average orientation of the gradient vector (
→

1v ) 81 

and the structure orientation (
→

2v ), at scale ρ . The diffusion matrix D (3) has the same eigenvectors as ρJ , 82 

but its eigenvalues are chosen according to a coherence measure. This measure is proposed as the square 83 

difference between the eigenvalues of the structure tensor. The diffusion process acts mainly along the 84 

structure direction and becomes stronger as the coherence increases. In this manner, the model is even able 85 

to close interrupted lines.    86 

Due to the characteristics of tensor D (symmetry and positive eigenvalues), well posedness and scale-space 87 

properties were proved for both EED and CED models. 88 

Based on these classical approaches, Terebes et al. (2002) proposed a new model, which takes advantage of 89 

both scalar and tensor driven diffusions. The mixed-diffusion combines the CED model with an original 90 

approach of the Perona Malik filter.  The model aims at using the anisotropic diffusion in case of linear 91 

structures and a scalar diffusion otherwise. In order to avoid the development of false anisotropic structures 92 

and corner rounding (caused by the CED model), the scalar diffusion is applied to the regions with a noisy 93 

background and to junctions. The decision between types of diffusion is taken with respect to the global 94 

confidence proposed by Rao (1990). A strictly tensorial approach where the amount of diffusion was 95 

weighted by a sigmoid function depending on the Rao confidence is proposed in Terebes et al (2005).  96 

Concerning the 3D applications, anisotropic diffusion has been frequently used in medical image 97 

processing. These works concern noise elimination (Gerig et al, 1992) but more often boundary detection 98 

and surface extraction (Krissian et al, 1995; Dosil and Pardo, 2003). Recently, specific PDE-based 99 

approaches were devoted to the seismic images filtering (Dargent et al, 2004a; Dargent et al, 2004b). 100 



 

 6 

As we have seen, in most approaches an adaptive behaviour is obtained taking into account the local image 101 

structure and more particularly the local orientation. Concerning the characterization of the local structure, 102 

we have to mention the advanced works based on filter banks. These tools have proven efficient for 103 

orientation analysis (Granlund and Knutsson, 1995). In particular the first efficient approach was the 104 

steerable filters proposed by Freeman and Adelson (1991). Van Ginkel et al (1997) introduced an original 105 

deconvolution scheme leading to a better angular resolution of a Gaussian filter. Martens (1997) presented 106 

an application concerning the anisotropic noise reduction based on the sampled Hermite transform, 107 

efficient to represent 1-D structures in image. More recently, Gauthier et al (2005) proposed an application 108 

of a particular type of filter bank called “Complex Lapped Transform” for seismic data filtering. In this last 109 

case, due to the computational cost and the non-separability of the proposed transform, the application 110 

concerns only 2D slides of a 3D-Block. In addition, the authors conclude that the results have to be 111 

improved in term of fault preserving. 112 

Furthermore, another non-PDE-based technique dedicated to the denoising of seismic structures was 113 

proposed by Bakker et al (1999). The authors combine edge preserving filtering with adaptive orientation 114 

filtering. The adaptive orientation filter consists in an elongated Gaussian filter steered by the eigenvectors 115 

of the structure tensor. Besides, a generalized Kuwahara filter, in which the window with higher confidence 116 

value is taken as a result, is proposed as edge preserving filter. This method leads to an enhancement of the 117 

faults when applied over the seismic images, but this enhancement is accompanied by a strong modification 118 

of the seismic data. We can note that one interest of this approach lies in its low computational cost. 119 

In this paper we present a new approach based on the CED model, dedicated to 3-D seismic blocks 120 

processing. Seismic data are composed of strongly oriented patterns - stacks of almost parallel surfaces 121 

broken by faults. The aim of our method is to deliver a 3-D accurate image, from the fault detection point 122 

of view. So, our filtering consists in a data pre-processing method, which takes into consideration the 123 

enhancing of relevant discontinuities. 124 
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In section II we present the general 3-D CED model and some specific improvements for seismic data. A 125 

measure will be chosen to steer the diffusion along different coherence structures, such as plane-like or 126 

line-like structures. Relevant results, for both synthetic and real images, will be illustrated in section III. 127 

Finally, conclusions and further work will be presented.  128 

2. Seismic data enhancing using 3-d anisotropic diffusion 129 

In this section, we present the extension of CED model in the 3-D case. Thanks to a confidence measure, 130 

we propose some improvements of this filter with respect to our type of data.  131 

A. 3-D CED model 132 

The 3-D model is a particular case of the general CED model (Weickert, 1995). 133 

The structure tensor (5), becomes: 134 
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The smoothed version of intensity ( σU ) is obtained after a convolution with a 3-D Gaussian kernel: 136 
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The noise scale (σ ) establishes the minimum size of the objects preserved in the smoothed image. An 138 

average of the orientation, at integration scale ρ , is applied to deliver the orientation of the significant 139 

structures. Usually, the integration scale is chosen larger than the noise scale. 140 
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Due to the structure tensor properties (symmetric positive semi-definite), the eigenvalues are real and 141 

positive. These may be ordered as follows: 142 

 321 µµµ ≥≥  (8) 143 

The corresponding eigenvectors (
→→→

321 ,, vvv ) form an orthogonal system. The largest eigenvalue carries the 144 

contrast variation in the dominant orientation of the averaged gradient vector (
→

1v ). The orientation 145 

corresponding to the lowest contrast difference is indicated by the third vector (
→

3v ). 146 

Weickert introduces this knowledge of orientation in the general anisotropic model (3). Matrix D has the 147 

same eigenvectors as the structure tensor. The orientation of the diffusion is driven by these eigenvectors 148 

and the intensity of the process by the eigenvalues of D. The author proposes the following system for 149 

choosing the eigenvalues of matrix D: 150 
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 (9) 151 

The parameter α  represents the amount of diffusivity in the orientations of the highest fluctuation 152 

contrast. In order to hamper the diffusion in these orientations, the parameter α  is chosen nearly 0. For 153 

theoretical reasons this parameter must be positive.    154 

The measure of coherence k is defined as: 155 

 2
32

2
31

2
21 )()()( µµµµµµ −+−+−=k  (10) 156 
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The threshold parameter C is usually chosen equal to 1. In the coherent structures ( Ck >> ), the diffusion 157 

processes essentially along 
→

3v ( 13 ≈λ ). On the other hand, if the structure becomes isotropic ( 0→k ), the 158 

amount of diffusivity in all three orientations is no more thanα . 159 

This coherence measure k depends on the gradient energy. For this reason, the amount of diffusivity ( 3λ ) 160 

in the third vector orientation always tends to 1. In conclusion, this system will smooth only in one 161 

orientation of space, which is not adapted to seismic data.  162 

In order to deal with plane-like structures like seismic horizons, the first idea consists in forcing the 163 

diffusion process along both the second and third eigenvectors. We can easily obtain such a result by 164 

choosing a set of eigenvalues different from (9):        165 
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 (11) 166 

In the result section, the original weickert’s approach will be denoted CED-1D and the approach based on 167 

this new set of eigenvalues will be denoted CED-2D as it allows filtering of 2D structures.   168 

Using the CED-2D approach leads to a diffusion process steered along the 2D horizons even in the 169 

presence of faults. As a consequence, this method presents the drawback of smoothing the signal across 170 

faults leading to a loss of relevant seismic information.      171 

Considering the behaviour of the CED-1D and CED-2D methods, we will propose a new approach which 172 

consists in choosing an appropriate set of eigenvalues to both enhancing the structures to track and 173 

preserving the faults as relevant details. 174 

 175 
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 176 

B. Confidence measures for seismic data 177 

Among important features of seismic 3-D data, faults represent an interesting point for our treatment. A 178 

simplified view describes the seismic data like stacks of almost parallel planes (horizons) broken by faults. 179 

We may interpret these strongly oriented data as linear structures. Van Kempen et al (1999) define the 180 

notion of dimensionality of structures. In 3-D case, beside the isotrope structures corresponding to three 181 

shift invariant orientations, two types of linear structures are possible: 182 

• plane-like linear structure – shift invariant along two orientations, 183 

• line-like linear structure – shift invariant along one orientation. 184 

Analysis of the linear structure may be issued by the computation of the structure tensor. Thus, the vectors 185 

of the structure tensor point out the principal axes of orientation and the number of the zero eigenvalues 186 

indicates the number of the shift invariant orientations. 187 

In the seismic case, the horizons can be viewed as plane-like structures. A horizon is characterized by a 188 

large eigenvalue and two others close to zero. A fault is characterized by two large eigenvalues and the 189 

other close to zero. This property is due to the fact that the orientation of the average gradient around the 190 

fault is a mixture of two distinct orientations corresponding to the neighbourhood regions. Thus, we can 191 

model the fault as a line-like structure, although, from a seismic point of view, it is rather a plane than a 192 

line. 193 

In 2001, Bakker et al, following the works of Bigun et al (1991), proposed two measures to estimate the 194 

semblance of seismic data with this type of linear structures: 195 
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These measures are combined to obtain a fault confidence: 197 

 )1( planelinefault CCC −=  (12) 198 

We can note that the author proposes to introduce this measure as a confidence value to select the optimal 199 

mask in an approach combining orientation adaptive filtering and edge preserving filtering. The 200 

introduction of such a priori measures leads to a technique which strongly enhances the detected faults. The 201 

more serious drawback of this approach is that it leads to a too important data transformation. 202 

 203 

C. Seismic Fault Preserving Diffusion 204 

We propose a new approach of the general CED model, more appropriate for seismic data. Keeping the 205 

general equation of the anisotropic diffusion (3) we introduce an adaptive system to fix the D matrix 206 

eigenvalues. 207 

We intended to create a system adapted to local context, which acts in specific ways for different regions. 208 

We chose the confidence measure Cfault from the various set of measures dedicated to this purpose (Rao, 209 

1990; Berthoumieu, 2006). The reason why we selected this type of measure is its closed link to the nature 210 

of our seismic data. We propose the following system: 211 
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where )(shτ  is described in (Terebes et al., 2005): 213 
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The eigenvalue 2λ  depends continuously on the confidence measure ( faultC ) and takes values 215 

between 1λ and 3λ . In the neighbourhood of a fault, 2λ tends to 1λ  whereas it tends to 3λ  when 0→faultC . 216 

Through the value of two parameters the threshold τ  and the slopeγ , the sigmoid function )(shτ  allows a 217 

better control of transition between two homogeneous regions.  218 

Within presumptive fault zones ( 1→faultC ), the process will only smooth along the smallest variation of 219 

contrast (
→

3v ). In this case the amount of diffusivity in the first and in the second orientation given by the 220 

2λ and 1λ  values is equal to α chosen near to 0. 221 

The regions where 0→faultC  are rather characterized by plane-like structures ( 1→planeC ). In these 222 

regions the process will diffuse in the plane defined by the vectors 
→

2v  and 
→

3v . This plane is orthogonal to 223 

the average gradient. For this type of horizons the coherence measure k is high ( 321 µµµ ≈>> ) and forces 224 

the 2λ and 3λ  values to reach 1. 225 

3. Results 226 

This section illustrates the efficiency of our approach on both synthetic and real seismic blocks. The 227 

noise reduction and the faults preserving are evaluated. Our filter is compared with both the CED-1D and 228 

CED-2D models.  229 

3.1. 3D-synthesized blocks 230 

Since it is much easier to judge the efficiency of the algorithms on a synthetic image, we propose to use a 231 

3-D synthetic block composed by a stack of layers with a sinusoidal profile and broken by two crossed 232 

faults. Figure 2 shows a front section of the original block.  233 
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The data are corrupted with additive Gaussian white noise. Figure 3 shows the noisy blocks for signal-to-234 

noise-ratio (SNR) of 1 dB, 3 dB and 5 dB. Each noisy block is filtered with our method and the CED 235 

methods. Parameters common to the various algorithms take on the same values 236 

(dt=0.05, 4.0=σ , 2.1=ρ , 410−=α , 120 iterations). In addition, parameters specific to SFPD are set to 237 

1.0=τ and 10=γ . We show in Figure 4 the results obtained using an explicit numerical scheme.  238 

Figure 5 shows the top views (i.e. time slices) corresponding to the SFPD and both CED results for the 3 239 

dB noisy block. 240 

The efficiency of our method was evaluated by the means of root-mean-square-error (RMSE) which 241 

allows quantifying the similarity between each diffused block and the original synthetic block: 242 

 
( )

n

zyxUzyxU
RMSE zyx

� −
= ,,

2
0 ),,(),,(

 (15) 243 

where U0 denotes the value of the voxel with coordinates (x,y,z) in the original non-noisy block (Fig. 2) 244 

and U the value of the same voxel in the processed image. n denotes the total number of voxels.  245 

Firstly, the original block was segmented in two regions: faults and non-faults. This segmentation was 246 

achieved using a simple thresholding on the Cfault value. Then, for each processed block, the RMSE has 247 

been computed in these two different zones in order to illustrate the behaviour of the methods in particular 248 

in the fault regions. The resulting RMSE values are provided in Table 1.  249 

Considering the quality of the denoising, our approach performs well when compared with the CED 250 

models, in terms of both visual quality and global RMSE. In particular, false anisotropic structures appear 251 

in the block processed with the CED 1D model (Fig. 5c) while our approach does not create this type of 252 

structure (Fig. 5d). This is also reflected in the RMSE values corresponding to the non-fault region. 253 
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 Like our model, CED 1D preserve the faults producing comparable RMSE values in fault region, which 254 

is not the case of CED 2D model. On the other hand CED 2D model provides a good quality in the non-255 

fault zones (Fig. 4c, 4f, 4i). 256 

Finally, considering both the noise reduction and the fault preserving, we can conclude that the proposed 257 

SFPD model takes advantage of the 1D and 2D Weickert’s models.     258 

3.2. Real 3D-reflection seismic data 259 

Figure 6 compare results generated on a real seismic block (Fig. 1) by CED 1D, CED 2D and SFPD 260 

respectively. These results illustrate that SFPD is better adapted to remove the noise while preserving the 261 

fault.  262 

4. Conclusions 263 

We have proposed a new approach of tensorial diffusion which takes into account the characteristics of 264 

seismic data. More precisely, we make sure that our denoising approach preserves the faults. For this 265 

purpose we use a measure of fault confidence in a tensor driven diffusion process adapted to the local 266 

context. This measure allows us to diffuse only in one orientation in a fault neighbourhood and to perform a 267 

diffusion process guided by two orientations along the layers otherwise. This approach also exempts from 268 

the creation of false anisotropic structures, artefacts typically observable in images processed with the 269 

classical tensorial models. Our method can be used as a preprocessing for automatic or manual 270 

interpretation of 3D reflection seismic data. 271 

Future works will focus on improving our model by adding more seismic-data-specific properties. 272 
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RMSE Original SNR 

values (dB) 

Methods 

Fault regions non-Fault regions Whole block 

SFPD 14.548 7.560 8.569 

CED 1D 16.629 14.370 14.628 

1.0 

CED 2D 18.648 7.412 9.564 

SFPD 11.523 3.893 5.002 

CED 1D 11.681 7.837 8.247 

3.0 

CED 2D 18.113 5.205 8.037 

SFPD 10.930 2.835 4.067 

CED 1D 10.330 5.582 6.109 

5.0 

CED 2D 18.058 4.622 7.691 

Table 1. RMSE values for the diffusion of noisy synthesized 3D-blocks in both fault and non-fault regions. 

 

Figure 1: A section of 3D seismic data 
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Figure 2: Front section of a synthesized block 

       
 (a) (b) (c) 

Figure 3: Front section of noisy synthesized 3D-blocks. SNR= (a) 5dB (b) 3dB (c) 1dB 
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 (a) (b) (c) 

       
 (d) (e) (f) 

       
 (g) (h) (i) 

Figure 4: Diffusion Results for synthesized block.  First row: diffusion of the noisy block with SNR=5dB 

(a) CED 1D,  (b) SFPD, (c) CED 2D ; second row: diffusion of the noisy block with SNR=3dB: (d) CED 

1D, (e) SFPD, (f) CED 2D ; third row:  diffusion of the noisy block with SNR=1dB: (g) CED 1D, (h) 

SFPD, (i) CED 2D. 

 

 



 

 22 

 

    
(a)    (b) 

       
(c)    (d)    (e) 

Figure 5: Top view of diffused blocks. (a) Original (b) noisy-SNR=3dB (c) CED 1D-diffusion 

 (d) SFPD diffusion (e) CED 2D diffusion 
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(a) 

 
(b) 

 
(c) 

Fig.6 Diffusion Results for the real 3D seismic block. (a) CED 1D diffusion (b) SFPD-diffusion  

(c) CED 2D-diffusion 

 


