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Following Eden and Foias we obtain a matrix version of a generalised Sobolev inequality in one-dimension. This allows us to improve on the known estimates of best constants in Lieb-Thirring inequalities for the sum of the negative eigenvalues for multi-dimensional Schrödinger operators.

Introduction

Let H be a Schrödinger operator in L 2 (R d )

H = -∆ -V (1) 
For a real-valued potential V we consider Lieb-Thirring inequalities for the negative eigenvalues {λ n } of the operator H

|λ n | γ ≤ L d,γ R d V d/2+γ + (x) dx , (2) 
where V + = (|V | + V )/2 is the positive part of V .

Eden and Foias have obtained in [START_REF] Eden | A simple proof of the generalized Lieb-Thirring inequalities in one-space dimension[END_REF] a version of a one-dimensional generalised Sobolev inequality which gives best known estimates for the constants in the inequality (2) for 1 ≤ γ < 3/2. The aim of this short article is to extend the method from [START_REF] Eden | A simple proof of the generalized Lieb-Thirring inequalities in one-space dimension[END_REF] to a class of matrix-valued potentials. By using ideas from [START_REF] Laptev | Sharp Lieb-Thirring inequalities in high dimensions[END_REF] this automatically improves on the known estimates of best constants in (2) for multidimensional Schrödinger operators.

Lieb-Thirring inequalities for matrix-valued potentials for the value γ = 3/2 were obtained in [START_REF] Laptev | Sharp Lieb-Thirring inequalities in high dimensions[END_REF] and also in [START_REF] Benguria | A simple proof of a theorem by Laptev and Weidl[END_REF]. Here we state a result corresponding to γ = 1.

Theorem 1. Let V ≥ 0 be a Hermitian m × m matrix-function defined on R and let λ n be all negative eigenvalues of the operator (1). Then

|λ n | ≤ 2 3 √ 3 R Tr V 3/2 (x) dx . (3) 
Remark 1. The constant 2 3 √

3 should be compared with the Lieb-Thirring constant found in [START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities[END_REF] for a class of single eigenvalue potentials and with the constant obtained in [START_REF] Hundertmark | New bounds on the Lieb-Thirring constants[END_REF] which is twice as large as the semi-classical one

4 3 √ 3 π < 2 3 √ 3 < 2 × 2 3π = 2 × 1 2π R (1 -ξ 2 ) + dξ .
This is about 0, 2450

• • • < 0, 3849 • • • < 0, 4244 . . . . Remark 2.
Note that the values of the best constants for the range 1/2 < γ < 3/2 remain unknown.

Let A(x) = (a 1 (x), . . . , a d (x)) be a magnetic vector potential with real valued entries a k ∈ L 2 loc (R d ) and let

H(A) = (i ∇ + A) 2 -V ,
where V ≥ 0 is a real-valued function.

Denote the ratio of 2/3 √ 3 and the semi-classical constant by

R := 2 3 √ 3 × 2 3π -1 = 1.8138 . . . .
By using the Aizenmann-Lieb argument [START_REF] Aizenman | On semi-classical bounds for eigenvalues of Schrödinger operators[END_REF], a "lifting" with respect to dimension [START_REF] Laptev | Sharp Lieb-Thirring inequalities in high dimensions[END_REF], [START_REF] Hundertmark | New bounds on the Lieb-Thirring constants[END_REF], and Theorem 1 we obtain the following result: Theorem 2. For any γ ≥ 1 and any dimension d ≥ 1, the negative eigenvalues of the operator H(A) satisfy inequalities

|λ n | γ ≤ L d,γ R d V d/2+γ (x) dx , where L d,γ ≤ R × L cl d,γ = R × 1 (2π) d R d (1 -|ξ|) γ + dξ .
Remark 3. Theorem 2 allows us to improve on the estimates of best constants in Lieb-Thirring inequalities for Schrödinger operators with complexvalued potentials recently obtained in [START_REF] Frank | Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials[END_REF].

One-dimensional generalised Sobolev inequality for matrices

Let {φ n } N n=0 be an ortho-normal system of vector-functions in

L 2 (R, C M ), M ∈ N, (φ n , φ m ) = (φ n , φ m ) L 2 (R,C M ) = M j=1 R φ n (x, j) φ m (x, j) dx = δ nm ,
where δ nm is the Kronecker symbol. Let us introduce an M × M matrix U with entries

u j,k (x, y) = N n=0 φ n (x, j) φ n (y, k) . Clearly U * (x, y) = U (y, x) . (4) 
The fact that the functions φ n are orthonormal can be written in a compact form R U (x, y) U (y, z) dy = U (x, y) .

(

) 5 
The latter two properties ( 4) and ( 5) prove that U (x, y) could be considered as the integral kernel of an orthogonal projection P in L 2 (R, C M ) whose image is the subspace of vector-functions spanned by {φ n } N n=1 .

Theorem 3. Let us assume that the vector-function φ n , n = 1, 2, . . . N, are from the Sobolev class

H 1 (R, C M ). Then R Tr U (x, x) 3 dx ≤ N n=1 M j=1 R |φ ′ n (x, j)| 2 dx .
Proof. 

By integrating [START_REF] Laptev | Sharp Lieb-Thirring inequalities in high dimensions[END_REF] and taking absolute values one obtains 

1 2 Tr U (x, z) U (z, x) U (x, x) ≤ 1 2 z -∞ Tr d dy U (x, y) U (y, x) U (x, x) + Tr U (x, y) d dy U (y, x) U (x, x) dy

  d dy Tr U (x, y) U (y, x) U (x, x) = Tr d dy U (x, y) U (y, x) U (x, x) + Tr U (x, y) d dy U (y, x) U (x, x)

and 1 2 2 R 2 ≤R 1 n λ n ≥ - 2 3 √ 3 R

 222133 Tr U (x, z) U (z, x) U (x, x) y) U (y, x) U (x, x)+ Tr U (x, y) d dy U (y, x) U (x, x) dy .Taking absolute values and adding the two inequalities yields for any z ∈ RTr U (x, z) U (z, x) U (x, x) , y) U (y, x) U (x, x) dy + 1 Tr U (x, y) d dy U (y, x) U (x, x) dy . (7)Note that we have reproved Agmon's inequality|f (x)| 2 ≤ R |f (y) f ′ (y)| dyfor traces of matrices. By using properties of traces, the Cauchy-Schwarz inequality for matrix-functions and also properties (4) and (5), we find that for all z ∈ R R Tr d dy U (x, y) U (y, x) U (x, x) dy Tr d dy U (x, y) * d dy U (x, y) dy R Tr U (x, y) * U 2 (x, x) U (x, y) dy = R Tr d dy U (y, x) d dy U (x, y) dy R Tr U 2 (x, x) U (x, y) U (y, x) dy = x) dy Tr U (x, x) 3 , x) dy Tr U (x, x) 3 .with X := R Tr U (x, x) 3 dx. Minimising the right hand side with respect to X we finally complete the proof of Theorem Tr V 3/2 (x) dx .
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Thus, using this, and setting x = z in [START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities[END_REF], we arrive at Tr U (x, x) 3 Integrating with respect to x we finally obtain

which completes the proof.

Lieb-Thirring inequalities for Schrödinger operators with matrix-valued potentials

Let us assume that V ∈ C ∞ 0 (R), V ≥ 0, be a M × M Hermitian matrixvalued potential with entries {v ij } M i,j=1 . Then the negative spectrum of the Schrödinger operator H = -d 2 dx 2 -V in L 2 (R) is finite. Denote by {φ n } the ortho-normal system of eigen-vector functions corresponding to the eigenvalues

Clearly,

and by Hölder's inequality for traces,

, so that using Theorem 3