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In clinical research, knowledge of the mechanical behavior of bones is helpful for diagnos-
tics and therapeutic processes and the failure of compact bones is a necessary study in
clinical analysis, accidentology, and traumatology. The purpose of this paper is to anal-
yse the failure properties of compact bones using a statistical model to interpret stress
and strain measurements obtained by INSTRON and X-ray scanner devices. Samples
were prepared from a lamellar structure of compact bovine bones and the density of
each sample is controlled and taken to be constant (1.9 g/cm3). The experimental re-
sults data thus depend only on defects in the samples. This model may help physicians
and surgeons predict bone failure when inserting a prosthesis, for example.

Keywords: Compact bone; X-ray scanner; traction experiments; statistical model; con-
stitutive laws.

1. Introduction

Bone failure often occurs in accidental shock but is also sometimes the result of

bone diseases (osteoporosis, cancer), and can occur during prosthesis insertion in a

clinical context. Cortical bones exhibit tear, damage and failure mechanisms when

they receive shocks. Failure of compact bones is representative of brittle behavior

when bones are subjected to tensile stresses. It is then observed that failure strain

and stress vary greatly from one experiment to another, so that the failure stress

is mainly the result of the defects distribution; the largest defect in the structure

will create failure. Brittle failure is presently analyzed by a statistical model which

is validated by experimental studies performed using a traction device. Damage

and failure of compact bones have already been studied in tensile experiments

(Burstein, A. H. et al. 1972, Carter, D. R., Hayes, W. C. 1977, Cooke, F. W. et al.

1973, Norman, T. L. et al., 1996, Pope, M. H., Outwater, J. O., 1972, Reilly, D.T.,

Burstein, A. H. 1975, Sedlin, E. D. 1965). Results obtained by these authors show

large variations in the values of the failure stress (from 100–200 MPa) and failure

strain (from 0.4–4%), so there is little precision in the mechanical characteristics of

compact bones. None of these authors have developed a statistical model to analyze
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this large variation in the mechanical properties of compact bones at failure. The

purpose of this paper is to develop a statistical model to help explain the results

obtained by experiments performed on bones with a density which vary slightly

around 1.9× 103 kg/m3, subjected to tensile loading. This statistical law is used to

analyze the failure stress variation, and may help in developing a constitutive law

of compact bones.

2. Material and Methods

Among the parameters which can influence the failure of compact bones, we will

highlight only bone density and microscopic structure. To reduce these parameters,

a procedure is developed using an X-ray scanner and a microscope which can an-

alyze the sample density and structure. We use an X-ray scanner ND8000 of the

Laboratoire de Mécanique et d’Acoustique (Desrues, J. et al. 1996, Bonnenfant, D.

et al. 1998). With this scanner, images are created on different sections of bone.

The sections are taken at every 10 mm on a 110-mm long sample (Fig. 1).

We then analyze more precisely the density variation in the section, and this

varies slightly through the lamellar structure of every bones studied (around 1.9×
103 kg/m3). In the osteonal structure, the density varies between 1.8 × 103 kg/m3

and 2.1 × 103 kg/m3. The scanner image obtained in one section of a bone is pre-

sented in Fig. 2.
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Fig. 1. Radiological image of a bovine bone.
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Fig. 2. Scanner image of a transverse section (samples were cut from the areas in rectangles).

The samples were taken from ten fresh bovine femoral bones. Two samples

were cut in areas where the density varied slightly (around 1.9 × 103 kg/m3) in

the anterior lateral and anterior medial. These samples have a lamellar structure.

Tensile experiments were developed using an INSTRON machine (Fig. 3) used at

various velocities (0.5–50 mm/min) with a 500-kg tensile force.

The epiphyses were cut so as to be able to focus only on compact bone. Test-

pieces were obtained by first cutting bones in the axial direction and then removing

the marrow from each part. Samples were then machined with a numerical device,

and shaped as shown in Fig. 4(a). In the center, the sample width is reduced in order

Fig. 3. INSTRON device.
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Fig. 4. (a) Sample geometry (b) sample equipped with a strain gauge.

to make sure that failure will be localized in this part of the sample and not close

to the ends. Lastly, a strain gauge was applied to measure the local deformation of

the sample during the failure process (Fig. 4(b)). A statistical model was developed

to analyze the tensile results.

3. Statistical Model

As density has a large influence on the failure process, and as we studied samples

with low density variation, we can assume that the results depend mainly on the

presence of a defect which will be taken into account. The statistical model de-

veloped to estimate the failure behavior of compact bones analyzes brittle failure

of bones.

We consider a structure of volume V , consisting of N elementary volumes V i0 .

V i0 must be small enough to contain a few fissures and large enough to be

independent of neighboring volumes.

Let pRi(σ, V
i

0 ) (respectively (PR(σ, V )) be the failure probability of the volume

element V i0 (resp. volume V ) subjected to stress σ. The quantity 1 − pRi(σ, V
i

0 )

(resp. 1 − PR(σ, V )) is the probability of non-failure of the volume V i0 (resp. V )

subjected to one-dimensional tensile stress σ:

1− PR(σ, V ) =

N∏
i=1

(1 − pRi(σ, V i0 )) (1)
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The logarithm of Eq. (1) can be expressed:

ln[1− PR(σ, V )] =

N∑
i=1

ln[1− pRi(σ, V i0 )] (2)

Considering the material homogenous, every elementary volume has the same failure

probability. As the volume V is divided into N elementary volumes V0, where

N = V
V0

, we get:

ln[1− PR(σ, V )] = N ln[1− pR(σ, V0)] (3)

The failure probability f(σ) is given by:

PR(σ, V ) = 1− exp

(
− V

V0
f(σ)

)
(4)

The stress function is defined as:

f(σ) = ln

[
1

1− pR(σ, V0)

]
(5)

To approximate this unknown function, Weibull proposed the function f(σ)

(Beremin, F. M. 1983, Weibull, W. 1939 and 1951, Hild, F., Domergue, J. M.

1994, Hild, F., Feillard, P. 1997) such that:

f(σ) =

(
σ − σu
σ0

)m
(6)

In this expression, σu is the stress threshold under which the failure probability is

zero. We assume that the stress threshold is usually equal to zero (σu = 0).

With f(σ) = ( σσ0
)m, Eq. (4) can be written as:

ln

[
ln

(
1

1− PR(σ, V )

)]
= mlnσ +K (7)

with

K = mln

(
V

V0

) 1
m

σ0

)
(8)

When we graph ln[ln( 1
1−PR(σ,V ) )] as a function of lnσ, points are aligned on a

straight line. The slope of this straight line is equal to Weibull’s modulus m. In the

Weibull law, parameters V0 and σ0 are not independent. V0 is the failure stress of

a structure containing a volume V0. Local stress-strain curves were generated by

experiments with the traction machine to determine failure stress and failure strain

variation (Fig. 5). The statistical model is then used to calculate the probability of

obtaining failure.
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Fig. 5. Stress-strain curves obtained with the INSTRON device for ten samples. Experiments
were performed at a strain rate of 0.5 mm/min

4. Results

4.1. Experiments Measured Using the INSTRON Device

From these results, the local mechanical properties of compact bones were deduced

where failure occurred. Stress-strain curves can be divided into two parts (Fig. 5).

The first part of the curve is a linear elastic region in which the Young’s modulus

of the bones can be calculated. The curves then becomes weakly nonlinear. This

part can be assimilated to a damaged region. Finally, failure occurs suddenly.

Failure stress can vary by about 53%, and the Young’s modulus about 35%,

which is quite a broad domain of variation (Table 1). However, these results are in

line with those published in the literature (Burstein, A. H. et al. 1972, Reilly, D.

T., Burstein, A. H. 1975, Currey, J. D. 1970, Cezayirlioglu, H. et al. 1985).

4.2. Statistical Model

The Weibull statistical model described in the method is used to analyze the ex-

perimental data. The experimental failure probability PR is deduced from Table 1.

Then we plot ln[ln( 1
1−PR(σult,V ) )] as a function of lnσult (Fig. 6). Finally, the curve

Table 1. Variation of the failure stress (σult) and the failure strain (εult) obtained with the
INSTRON device.

Results

E(MPa) 17000 ≤ E ≤ 26000

σult(MPa) 100 ≤ σult ≤ 190

εult(%) 0.4 ≤ εult ≤ 1
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Fig. 6. Analyze of experimental measurements and least squares fit on a logarithmic scale.
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Fig. 7. Failure probability law of compact bones.

(Fig. 6) obtained is approximated by a straight line using a least squares fit (Fig. 6):

ln

[
ln

(
1

1− PR(σult, V )

)]
= 5.75 lnσult − 29.3 (9)

Considering the volume V chosen as the volume of the structure (1980 mm3), σ0 is

equal to 43.5 MPa.

The failure probability law is then defined by:

PR(σult) = 1− e−[
σult
162.7 ]5.75

(10)

This law plotted in Fig. 7 is the failure probability and corresponds to a constitutive

law of compact bones.

7



January 15, 2002 14:36 WSPC/170-JMMB 00012

Using this law, we can say that there is no possibility of sample failure before

50 MPa; a 46% chance of failure before 150 MPa; and certainty of sample failure

after a stress greater than 220 MPa.

5. Discussion and Conclusion

A statistical model was developed to analyze bone failure, and thus to improve

physicians’ knowledge of this phenomenon in clinical applications. We first per-

formed tensile tests to analyze the variation of failure stress and failure strain. The

brittle behavior of compact bones shows that the failure strain varies between 100

MPa and 190 MPa, which corresponds to a range of 53%. An important point of

this work is that the samples tested were always taken from the same part: anterior

lateral and anterior medial part of the bone with a controlled density. Then the

structure of the samples was analyzed and samples were cut only on the lamellar

structure of the bovine femur. This is a new approach for studying bone charac-

teristics, combining the use of a microscope, an X-ray scanner and an INSTRON

device. The use of a strain gauge makes it possible to obtain local results: the strain

is measured where the failure appears in the sample. Compact bone properties are

comparable to a brittle material, so the results can be analyzed by a statistical

model. The statistical method also provides a prediction of bone failure, which is

important for surgeons when inserting a prosthesis, for example. In parallel of these

experimental studies, we perform a numerical model of the microscopic behavior of

compact bone at failure. Our topic is to link the statistical model at the macroscopic

level with the microscopic model (Pithioux, M. 2000).
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