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Interactions between the physical and physiological properties of cellular sub-units result in changes in
the shape and mechanical behaviour of living tissues. To understand the mechanotransmission
processes, models are needed to describe the complex interrelations between the elements and the
cytoskeletal structure. In this study, we used a 30-element tensegrity structure to analyse the influence
of the type of loading on the mechanical response and shape changes of the cell. Our numerical results,
expressed in terms of strain energy as a function of the overall deformation of the tensegrity structure,
suggest that changes in cell functions during mechanical stimuli for a given potential energy are
correlated to the type of loading applied, which determines the resultant changes in cell shape. The
analysis of these cellular deformations may explain the large variability in the response of bone cells
submitted to different types of mechanical loading.
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INTRODUCTION

Living tissues contain many different types, shapes and

sizes of cells, all of which have similar physical properties,

suggesting that there are underlying universal rules for

cellular and tissue organisation. Most of these cell types

can respond to physiological mechanical stresses and can

alter their architectural and functional features in response

to externally applied loads [1–3]. For example, the shape,

apparent density and stiffness of bone continually change

in response to their environmental load [4]. However, the

cellular mechanisms constituting the mechanosensory

system in bone tissue and driving adaptive remodelling

have not yet been fully elucidated. Similarly, cells

continually respond to their environmental load. The

various modes of loading of the extracellular matrix

(stress or strain fields, fluid pressure, interstitial fluid flow)

induce a series of biophysical coupled events in cells that

affect the overall response of the chondrocytes (changes in

cell shape and volume, deformation of the membrane,

cytoskeleton, organelles and nucleus) [5,6].

However, the cell mechanotransduction phenomena are

complex and not well understood. In fact, changes in cell

shape depend on several factors. Many authors have

shown that (i) cellular stress–strain relationships are non-

linear (the stiffness of the cells increases with applied

stress) [7,8] and that (ii) the cell shape is defined by the

geometrical and mechanical properties of the cytoskeleton

filaments and by the microenvironment (extracellular

matrix–cell and/or cell–cell attachment conditions,

mechanical stress applied) [9,10]. To determine the

inherent factors that characterise the non-linear mechan-

ical behaviour of living cells, we developed a model based

on tensegrity structures. These self stress spatial structures

have been proposed to describe the relationship between

the shape, functions and structure of living cells [11]. We

analysed the variations of strain energy in a 30-element

tensegrity structure that was submitted to major defor-

mations and to different types of loading. To determine the

relationships that reflect the non-linear mechanical beha-

viour of such a tensegrity structure in terms of strain energy

and energy level variations, it is necessary to understand and
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to generalise the mechanical response of living cells

submitted to different types of loading.

THEORETICAL TENSEGRITY MODEL

Definition of the 30-element Tensegrity Structure in the

Reference State

The spatial tensegrity structure studied is composed of six

rigid elements (bars) compressed by 24 pre-stretched

elastic elements (cables) (Fig. 1). Both constitutive

elements ( p ) are defined by their geometry (length lp,

radius rp, cross-sectional area Sp (=pr2p)), and by their

mechanical properties (Young’s modulus Ep). Tc is the

stretching force in the cables and Tb is the compressing

force in rigid bars. The radius and Young’s modulus of

both elements and the length of the bars are considered to

be constant during the overall deformation of the

tensegrity structure.

In the reference state (i.e. in the absence of external

forces) the geometrical symmetry of the structure, in

which the bars are aligned in pairs in three perpendicular

spatial planes, implies the following relationship between

the length of the bars, lb, and the length of the cables, lc,

(exponent (r) means reference state) [12]:

lðrÞc
lb

¼
ffiffiffiffiffiffiffiffi

3=8
p

: ð1Þ

The internal tension of the structure is characterised by

the tension in the elastic cables, the mechanical behaviour

of which is believed to be linear. This tension depends on

the state of deformation (1c) and the physical properties

(Young’s modulus Ec and cross-sectional area Sc) of a

given cable:

Tc ¼ EcSc1c: ð2Þ

In the reference state the tension, Tc, is similar in every

cable in the structure. The stability of the tensegrity

structure shape is obtained from the internal forces

equilibrium and a constant ratio between the compression

of the rigid bars and the tension of the elastic cables [13].

Nodal Attachment Conditions and Forces Applied to

the 30-element Tensegrity Structure

We submitted the 30-element tensegrity model to four

different types of loading (extension–compression, shear

and torsion) and analysed the resulting large deformations.

The structure was always anchored to a rigid base by

spherical joints at the three inferior nodes {#1, #2, #3}.

The rectangular base {
!

i;
!

j;
!

k} constituted the referential

system. When the structure was extended or compressed,

the three superior nodes {#10, #11, #12} move along the

k-axis. When the structure was exposed to shear stress

these three nodes moved along the j-axis and formed a

superior plane that remained parallel to the {
!

i;
!

j} plane.

During torsion this superior plane rotated around the k-

axis and remained parallel to the {
!

i;
!

j} plane.

The strain energy of the overall structure was deduced

from the resolution of the following equations:

{F} ¼ ½K�{u}: ð3Þ

This describes the equilibrium between the internal and

external forces applied to the nodes and takes into account

the mechanical and geometrical properties of the

constitutive elements (bars and cables) and the compat-

ibility between small nodal displacements and the

deformation of the elements [14]. The components of

the column vector {F} (dimension [1 £ 36]) are the

external forces (null or unknown) applied on the 12 nodes

of the structure in the three spatial directions. The

components of the column vector {u} (dimension

[1 £ 36]) are the imposed small nodal displacements in

the three directions. The overall rigidity matrix [K]

(dimension [36 £ 36]) is assembled from each elemen-

tary rigidity matrix [K]p which depends exclusively on the

Young’s Modulus Ep, the internal force Tp (i.e. tension in

the cables, compression in the bars), cross-sectional area

Sp and the length lp of the element ( p ) as following:

½K�p ¼

Ep·Sp2Tp

lp
c2x þ

Tp

lp
symmetrical

Ep ·Sp2Tp

lp
cx·cy

Ep·Sp2Tp

lp
c2y þ

Tp

lp
;

Ep·Sp2Tp

lp
cx·cz

Ep·Sp2Tp

lp
cy·cz

Ep·Sp2Tp

lp
c2z þ

Tp

lp

2

6

6

6

6

4

3

7

7

7

7

5

:

ð4Þ

where the position of the element ( p ) as a result of the

spatial organisation of the structure are taken into account

by the elementary director cosines (cx, cy and cz).

FIGURE 1 Tensegrity structure composed of six rigid bars compressed
by 24 pre-stretched elastic cables. The structure is attached to a rigid
substratum by three nodes {#1, #2, #3}, which define the inferior plane.
The nodes {#10, #11, #12} define the superior plane, which is parallel to
the inferior plane.
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Equation (3) defines small deformations in the structure.

The large deformation resolution used a linear incremental

method, which consisted of incrementing the large

displacement imposed and re-initialising the parameters of

Eq. (3) at each increment (see [14] and Appendix in Ref.

[15]). The strain energy of the overall structure is calculated

at each increment and is expressed as follows:

W ¼ {F}·{u}: ð5Þ

The apparent strain of the overall tensegrity structure

was calculated from the relative displacement (Du) of the

superior plane along the imposed k-axis direction in

extension–compression (and the j-axis during shear):

1 ¼
Du

L ðrÞ
: ð6Þ

divided by the distance in the reference state (L (r))(before

deformation) between the inferior and superior plane.

During shear, extension and compression the relative

displacement of the superior plane is related to the

displacement of the nodes {#10, #11, #12}. During torsion

the overall strain, 1, is defined by the angular displacement

of these three nodes in a plane parallel to the {
!

i;
!

j} plane.

These angular variations are the same for the three nodes.

In this study, the displacements of the other free nodes are

not considered and the displacements of the nodes {#10,

#11, #12} in non-imposed directions are equal to zero.

RESULTS

The numerical results are expressed in terms of the

normalised strain energy, W*, as a function of the overall

deformation of the tensegrity structure. By definition, the

strain energy of the overall structure is normalised by the

elastic energy of a given cable strained at 100% of its free

length. Figure 2 shows the variation of the normalised

strain energy of the 30-element tensegrity structure

submitted to four different types of loading (extension–

compression, shear and torsion). The internal tension of

this structure is given by the normalised elastic tension, T*

(=0.005), which corresponds to the extension, 1c, of the

cables (see Eq. 2) in the reference state of the tensegrity

structure (before loading). The size of the structure tested

was considered to be constant ðlb ¼ 200mmÞ: During the

four different types of loading, the normalised strain

energy of the structure varied non-linearly with its overall

deformation. This non-linearity differed for each of the

four loading conditions; the slope of strain energy–

deformation is greater during extension than during shear

or torsion and this slope is inversed during compression,

i.e. the tensegrity structure became smoother during

compression and harder during extension.

For the four modes of loading, the strain energy levels

appeared to vary when the structure underwent large

deformations ð1 . 30%Þ: These different levels of energy
correspond to the differences between the type of loading

but identical states of deformation of the tensegrity

structure. During small deformations ð1 , 5%Þ; the strain
energy of the structure seemed to remain unchanged

regardless of the type of loading. It is noteworthy that

during the overall deformation of the 30-element

tensegrity structure, the elastic cables were spatially

organised so that some of them were stretched and some of

them were slack. Figure 3 shows the “Normalised strain

energy–strain” relationships, expressed on a logarithmic

scale for three different values of internal tension T*

FIGURE 2 Numerical results: Normalised strain energy,W*, as a function of the overall strain of a 30-element tensegrity structure (length of the bars;
lb ¼ 200mm and normalised internal tension; T* ¼ 0:005Þ submitted to extension–compression, shear and torsion.
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(=0.001, 0.01, 0.1) of the 30-element tensegrity structure.

It appears that the normalised strain energy of the

tensegrity structure increases with the initial tension

regardless of the type of loading. Moreover, following

small deformations, the strain energy is a quadratic

function of the overall strain of the structure (slope +2,

Fig. 3a,b) regardless of the level of internal tension in

extension (Fig. 3a) and in shear (Fig. 3b). This quadratic

relationship is similar to those obtained for an equivalent

continuum medium during small deformations. Therefore,

it appears that the non-linearity of the ðW* –1Þ

relationship differs for each type of loading and level of

internal tension of the tensegrity structure. This non-

linearity threshold seems to appear at overall strain values

that decrease with internal tension (see arrows in Fig. 3). It

is noteworthy that non-linearity does not appear for large

values of internal tension ðT* ¼ 0:1Þ during shearing or

extension.

DISCUSSION

Based on Ingber’s [11] proposal that changes in cellular

shape are closely related to the structural reorganisation of

FIGURE 3 Numerical results in log–log scale: Normalised strain energy as a function of the overall strain of the 30-element tensegrity structure
submitted to (a) extension and (b) shear, for three values of internal tension ðT* ¼ 0:001; 0.01 and 0.1).
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the cytoskeleton (CSK), we developed a theoretical model

based on tensegrity structures that can describe the global

mechanical properties of the cytoskeletal structure as a

function of the geometrical and mechanical properties of

the constitutive filaments (microtubules, microfilaments

and intermediate filaments). Indeed, the overall defor-

mation of the tensegrity structure depends on the

rearrangement of the constitutive rigid bars (microtubules

associated with intermediate filaments) compressed by

pre-stretched cables (microfilaments and/or stress fibres)

and this rearrangement results from the equilibrium

between internal tension and the external forces applied by

the environmental medium. We previously showed that

the 30-element tensegrity structure, comprising six rigid

bars and 24 elastic cables, presents a non-linear “stress–

strain” relationship that depends strongly on internal

tension, structural size (or length of the rigid elements)

and the type of loading [15,16].

In this study, we tried to identify the inherent factors

that determine the non-linearity of the mechanical

response of a 30-element tensegrity structure submitted

to four different types of loading (extension–compression,

shear and torsion). The numerical results obtained from

the resolution of a system of equations that traduce the

equilibrium forces at each node of the tensegrity structure

are expressed in terms of global strain energy. This

structural strain energy permits the normalisation of the

macroscopic mechanical behaviour of the tensegrity

model, which is non-linear and highly heterogeneous.

The numerical results show that the non-linear

behaviour of the 30-element tensegrity model appears

essentially following large deformations ð1 . 10%Þ but

that the threshold of this non-linearity depends on the type

of loading and the level of internal tension of the structure.

During each type of loading the elastic cables of the

structure are stretched differently, some of them are

extended and others are slack. The number of stretched

cables, and the direction and amplitude of extension vary

in the four types of loading. The rigid bars also moved in

different directions and amplitudes with the different types

of loading. Thus, the variations in the non-linearity of the

mechanical behaviour of tensegrity structures are

characteristic of the structural heterogeneity and result

from (i) the so called “geometrical” non-linearity due to

the spatial reorganisation and mobility of the constitutive

rigid elements which predominate the linear deformation

of the elastic cables and (ii) the so called “material” non-

linearity due to the extension of some elastic cables and

not others during the overall deformation of the structure.

Thus, this geometrical non-linearity is more important and

selective considering the type of loading when the pre-

stress is weak.

The mechanical behaviour of cultured cells is known to

be highly non-linear and multifactorial [7,17]. Cellular

stiffness increases with the applied stress [18], this

stiffness closely depends on the cell–cell and/or cell–

extracellular matrix attachment conditions and the type of

stress applied. Interestingly, rigid tensegrity structures

(great internal tension) do not present a non-linear

mechanical behaviour. In contrast, tensegrity structures

with a weak internal tension (T* in the order of 10
23)

present a non-linearity that appears following a small

overall deformation (5%). Internal tension values

corresponding to normalised elastic tension (T*), in the

order of 1023 similar to those of the tensegrity model have

also been observed in cultured cells whose mechanical

response is non-linear [19].

The results obtained by our 30-element tensegrity

model suggest that the changes in cellular functions that

occur during mechanical stimuli are correlated, for a given

level of strain energy, to the type of loading that

determines the cell shape modifications. These results

should allow us to interpret the changes in the internal

energy of the cell induced by cellular adhesion during the

differentiation processes that bone cells undergo. This

tensegrity model might be useful for the quantification of

the average strain energy of living cells and for

comparison with the average energy spent during cellular

metabolism.

This generalised tensegrity model, which also applies to

more complex tensegrity structures that implicate

energetic and chemical environmental exchanges, might

enable us to evaluate the coupling between cellular energy,

shape and functions in every biochemical, mechanical or

thermodynamical process.
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