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Abstract. This paper analyses the security of dirty paper trellis (DPT)
watermarking schemes which use both informed coding and informed em-
bedding. After recalling the principles of message embedding with DPT
watermarking, the secret parameters of the scheme are highlighted. The
security weaknesses of DPT watermarking are then presented: in the wa-
termarked contents only attack (WOA) setup, the watermarked data-set
exhibits clusters corresponding to the different patterns attached to the
arcs of the trellis. The K-means clustering algorithm is used to estimate
these patterns and a co-occurrence analysis is performed to retrieve the
connectivity of the trellis. Experimental results demonstrate that it is
possible to accurately estimate the trellis configuration, which enables
to perform attacks much more efficient than simple additive white Gaus-
sian noise (AWGN).

1 Introduction

Beside conventional measurements of performances such as robustness to channel
transmission, receiver operating characteristics (ROC) curves or imperceptibility,
security has recently been acknowledged to be also of fundamental importance
in digital watermarking. By definition, security oriented attacks “aim at gain-
ing knowledge about the secrets of the system (e.g. the embedding and/or the
detection keys)” [1]. In practice, it implies that if the security of a scheme is
compromised, different attacks such as message modification, message copy or
message erasure are possible while keeping a very low distortion. Hence, water-
marking schemes need to be carefully analysed to identify its security level, e.g.
the number of contents that are needed to estimate accurately the secret key [2].

Security of watermarking schemes can be assessed either with a theoretical
analysis or with a practical evaluation. Theoretical security analysis consists
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in calculating the information leakage occurring when observing several water-
marked contents by means of information theoretic measures such as equivoca-
tion or mutual information between the secret key and the observations [2,1,
3]. These measurements prove whether or not there is some information leakage
that might be exploited to estimate the secret key. However, they do not give
any clue about the tools that could be used to perform this estimation.

On the other hand, practical security analysis consists in designing attacks
which make possible to estimate the secret parameters used during embedding.
Only a few attempts in this direction have been reported so far and they have
mostly focused on basic watermarking schemes. For example, in [4-6], the au-
thors propose different blind source separation methods to estimate secret pat-
terns that are used in spread-spectrum or spread transform dither modulation
schemes for both independent and identically distributed (iid) and non-iid sig-
nals. In [3], the authors adopt a set-membership approach to estimate the dither
vector used during DC-DM embedding.

This paper proposes a practical security analysis of dirty paper trellis (DPT)
watermarking schemes, which have been proven to achieve high performances
with respect to robustness and payload [7]. Section 2 first recalls the principles of
DPT watermarking. In Section 3, the different parameters that define the secret
key are identified, and a worst case attack (WCA) relying on the estimation of the
secret key is introduced. In Section 4, practical tools are proposed to estimate
each parameter of the trellis, namely the patterns attached to the arcs and
the configuration of the trellis. Section 5 reports the performances of the WCA
according to both the embedding distortion and the number of observed contents.
Finally, some perspectives to improve the security of DPT watermarking schemes
are presented in Section 6.

2 Dirty Paper Trellis Watermarking

2.1 Notations and Parameters Definition

In this paper, the host vector is denoted x and the watermarked vector y. The
latter one carries a N, bits message m. Each bit of the message is encoded on
N, coefficients and therefore x and y are both N, - N,-dimensional vectors .
Moreover, ||v|| denotes the Euclidian norm of the vector v and v(k) the k!
component of v. Finally, embedding distortions are given using the watermark
to content ratio (WCR) expressed in decibels.

2.2 Trellis-based watermarking

The use of trellis for watermarking is a practical way to perform dirty paper
coding [8]. Dirty paper coding implies the use of a codebook C of codewords

4 Note that an attacker will have the opportunity to observe N, watermarked contents.
Practical values of N, can go from 1 (a single image for example) to several thousands
(a set of videos where each frame carries a payload).
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Fig. 1. Example of the structure of a 10 steps trellis with 6 states and 4 arcs per states.
Bold and normal arcs denote respectively 0 and 1 valued labels.

with a mapping between codewords and messages. The key difference with con-
ventional codes is that different codewords can map to the same message. This
defines a coset C,,, of codewords for each message m. The watermarking process
then reduces to (i) identify the codeword in the coset C,,, related to the message
to be hidden, which is the nearest from the host vector x, and (ii) move the host
vector inside the detection region of the selected codeword. According to Costa’s
framework, using this setup the capacity of the channel does not depend on the
host x.

DPT codes have two main assets: the generation of the codebook C is sys-
tematic and the search for the nearest codeword can be efficiently performed
with a Viterbi decoder [9]. A DPT is defined by several parameters:

1. the number of states N,

2. the number of arcs per state N,

3. the connectivity between the states i.e. in which state an arc starts and in
which state it ends,

4. the N,-dimensional pseudo-random patterns associated to each one of the
N,.N arcs, which can be assimilated to the carrier used in spread spectrum
schemes,

5. the binary label associated to each one of the N,.Ny arcs,

6. the number of steps NV, in the trellis.

Figure 1 depicts an example of a DPT. One can notice that the configuration
of the trellis is simply repeated from one step to another without any change.
Moreover, the number of outgoing and incoming arcs per state is constant. These
are common assumptions in trellis coding.

A DPT is thus associated with a codebook C = {c;,i € [1,..., N5 - NNt} of
Ng-N év ® codewords in a NN, - IVp-dimensional space. Each codeword corresponds
to a path in the trellis and encodes a N, bits message. This message can be
retrieved by concatenating the binary labels of the arcs along the corresponding
path.

DPT watermarking makes makes use of both informed coding and informed
embedding [7]. Informed coding consists in selecting the codeword g in the code-
book C that is the closest to the host vector x and that encodes the desired
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Fig. 2. Main principles of DPT watermarking. In this example N, = 3, N, = 3, N, = 2.
Three alternative codewords are available in the expurgated trellis to represent the
message m. The codeword g with the highest correlation with x is identified using
the Viterbi algorithm. Afterward, the watermarked vector y is computed taking into
account g. On the receiver side, the detector uses the whole DPT to retrieve the
embedded payload.

message. The selection is done by running a Viterbi decoder with an expur-
gated trellis containing only arcs whose binary labels are in accordance with the
message to be embedded. As a result, any path through the trellis encodes the
desired message. The Viterbi decoder is then used to maximize/minimize a given
function i.e. to find the best codeword in this subset according to some criterion.
In their original article [7], the authors proposed to keep the codeword with the
highest linear correlation with the host vector x.

At this point, informed embedding is used to reduce the distance between
the host vector x and the selected codeword g. It basically computes a water-
marked vector y that is as close as possible from x while being at the same time
within the detection region of the desired codeword g with a guaranteed level of
robustness to additive white Gaussian noise (AWGN). In practice, a sub-optimal
iterative algorithm is used combined with a Monte-Carlo procedure to find this
watermarked vector y [7].

On the receiver side, the embedded message is extracted by running a Vit-
terbi decoder with the whole DPT. The optimal path is thus identified and the
corresponding message retrieved by concatenating the binary label of the arcs
along this path. The whole procedure is illustrated in Figure 2.

3 DPT Secret Key and Worst Case Attack

First, some parameters of the DPT will be assumed to be public. It may not
always be true in practice, but usually these parameters are fixed according to
the desired robustness or payload of the algorithm. In this study for instance,
the three parameters Ng, N, and N will be known.

Furthermore, processed contents will be assumed not to be shuffled before
embedding i.e. they are directly watermarked without prior permutation of the
samples position. The problem of inverting a hypothetical shuffle relies on the
security of the shuffle itself and is far beyond the scope of this paper.
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To define the secret key relative to a DPT watermarking scheme, it is neces-
sary to identify which information is required by the attacker to perform security-
oriented attacks such as:

— decoding the embedded message,

— altering the embedded message while producing the minimal possible distor-
tion,

— copying the message to another content while producing the minimal possible
distortion.

To decode the embedded message, the previous section recalls that all param-
eters of the DPT are needed. This includes by definition the patterns attached
to the arcs, the connectivity between the states, and the binary labels of the
arcs. To copy a message in an optimal way, it is first necessary to decode them
and then to embed them into another content. Therefore, the same parameters
are required. On the other hand, to alter the embedded message, all previous
parameters are needed except the binary labels. Indeed, the watermarked vector
y only need to be moved toward another vector ys so that it no longer lies
in the decoding region of g. As long as a neighbour codeword is selected, it is
unlikely to encode the same message and it will be close enough to avoid large
distortion. This threat can be seen as the worst case attack (WCA) for DPT
watermarking [10].

To perform this attack, it is necessary to know the two closest codewords from
the watermarked vector y, i.e. the embedded codeword g, and the second closest
codeword from y (b; in Figure 3 (a)). The attacker simply needs then to move
the watermark content y somewhere inside the decoding region of this second
best codeword (ya in Figure 3 (a)) to make the detector fail while minimizing
the distortion of the attack. In practice, this second best codeword is identified
by feeding the Viterbi decoder with the watermarked vector y and successively
forbidding a single step of the optimal path g. This results in /N, candidates and
the closest to y is retained as the second best codeword to be used in the WCA.
This procedure is depicted in Figure 3 (b).

4 DPT Parameters Estimation

For the sake of generality, the analysis will be done according to the Watermarked
content Only Attack (WOA) setup [2], where the attacker observes different con-
tents watermarked with different messages using the same secret key. The aim
of this section is to present different techniques that can be used to estimate dif-
ferent parameters of a DPT that constitute the secret key, namely the patterns,
the connectivity and the binary labels of the arcs.

4.1 Side Effects of Informed Embedding

Let U = {u;,i € [1,...,N, - Ns]} be the set of patterns, also referred to as
carriers, associated with the arcs of the DPT. In practice, each pattern is usually



6 Patrick Bas and Gwenaél Doérr

Optimal path

identification
—» b°,

encoding

(b)

Fig. 3. Worst case attack for DPT watermarking. (a): To be optimal, the attacker needs
to find the closest point to y outside the detection region of the embedded codeword
g (grey area). To do so, he needs to identify the second nearest codeword from y, i.e.
b in the Figure. (b): To identify the second best codeword, the Viterbi decoder is run
several times with a single step of the optimal trellis forbidden. The codeword amongst
the N, candidates which is the closest to y is retained.

normalised, e.g. ||u;|| = 1,Vi. As a result, each pattern can be seen as a point
on the surface of the IV,-dimensional unit sphere. Moreover, each codeword c;
of the DPT is a N, - Np-dimensional vector of norm /N, and can be considered
as a point on the surface of a IV, - Np-dimensional sphere of radius v/ /Ny, denoted
Se.
Viterbi decoding aims at finding the codeword ¢ € C which is the most
correlated with some input vector v, i.e. it evaluates and maximises:
Ny-N,, . .
COI"I‘(C' V) _<cv> Zj:bl Ci(J)V(J)
v NN, Ny - N, ’

(1)
which is equivalent to:

v||.||c;|| cos(8;
corr(c;, v) = [¥illel] cos(6:) ]|lsz-||NU ( 1), (2)
where 60, denotes the angle between v and c¢;. Because ||v||, ||c;|| and Ny - N, are
constant terms, the codeword that is selected basically maximises cos(6;).

In other words, the Viterbi decoder returns the codeword which is at the
smallest angular distance from the input vector. This implies that when one
wants to embed a codeword g in a host vector x, it is necessary to produce a
watermarked vector y whose angular distance with g is lower than with any other
codeword in C. Moreover, the higher the robustness constraint, the closer the
watermarked contents to the desired codeword. Consequently, considering the
distribution of normalized observations y* = y/||y|| one might observe clusters
corresponding to the codewords in C on the surface of the N, - N}, dimensional
sphere S..
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4.2 Patterns Estimation using a Clustering Method

Data clustering algorithms enable to analyse a large set of data by partitioning
the set into subsets called clusters. Clusters are build such as to minimize the
average distance between each data point and the nearest cluster center, also
referred to as centroid. Given k the number of clusters, a clustering algorithm
also returns the label of the centroid associated with each data point.

K-means algorithm. In this work, the K-means algorithm has been used
to provide a partition of the observed space. This algorithm labels each data
point to the cluster whose centroid is the nearest. The centroid is defined as the
center of mass of the points in the cluster, and its coordinates are given by the
arithmetic mean of the coordinates of all the points in the cluster.

The implemented version of the algorithm was proposed by MacQueen [11]
and is described below:

1. Choose k the number of clusters,

2. Initialise the centroids,

3. Assign each data point to the nearest centroid,

4. Update the centroid coordinates,

5. Go back to step 3 until some convergence criterion is met.

This algorithm is easy to implement, fast, and it is possible to run it on
large datasets. However K-means does not yield the same result for each run,
i.e. the final clusters depend on the initial random assignments. One solution to
overcome this problem is to perform multiple runs with different initialisations
and to keep the result which provides the lowest intra-cluster variance. To en-
sure that the initial clusters are evenly distributed over the data set, a random
initialisation using the KZZ method [12] has been used.

Definition of the dataset. A segment s is a portion of the observed water-
marked vector y corresponding to a single step. Therefore, s is of size N, and y
is composed of N, segments. Two alternative strategies are possible to estimate
the secret parameters of the DPT:

1. Apply the K-means algorithm to estimate the centroids representing the
codewords of the trellis. Then it has to find k = N, - N2 centroids in a
N, -Np-dimensional space using a dataset of normalised watermarked vectors.

2. Apply the K-means algorithm to estimate the centroids representing the
patterns of the trellis. Then it has to find &k = N, - N, centroids in a N,-
dimensional space using a data-set of normalised watermarked segments.

Observing N, watermarked contents is equivalent to observing N, - N wa-

termarked segments. As a result, the two strategies proposed earlier involve

respectively o— and Ye Mo ghservations per centroid. In other words, the
Ns-N2'b Ns-Ng ’

second solution provides N, - NNo~1 times more observations per centroid than
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the first one to perform clustering. This problem is related to the curse of di-
mensionality, well known in machine learning, which states that the number of
observations needed to learn topological objects such as clusters is exponential
with respect to the dimension of the problem. Since the main concern here is
the estimation of the patterns used in the DPT, the second solution is preferred
to improve the estimation accuracy for the same number of observed contents.

Analysis of estimation accuracy according to distortion. The accuracy
of the estimated patterns is inherently related to the embedding distortion, and
therefore with the robustness constraint. Figure 4 depicts two typical examples
of 3D distributions of normalised watermarked segments for two different embed-
ding distortions. In this case only 6 codewords are used and one bit is embedded.
The yellow balls indicate the centroids estimated using the K-means algorithm
and the grey balls the position of the true patterns. In this example, patterns
are chosen to be either orthogonal or collinear (the set of orthogonal patterns is
multiplied by -1 to obtain collinear ones). Each point of the distribution has a
color depending on the center it has been associated.

In each case, the detection regions are represented by clusters which are
clearly identifiable. Moreover the mapping between detection cells and embedded
contents is consistent. However, for the smallest distortion (WCR=-6.6 dB),
watermarked vectors are not uniformly distributed inside the embedding region.
This is due to the fact that if two neighbour codewords encode the same message,
their border region will have a density of codewords less important than if they
encode different messages. This uneven distribution of watermarked codewords
in each detection region results in a erroneous estimation of the codeword, the
cluster center being “attracted” by the dense borders as illustrated on the right-
hand distribution.

Figure 5 shows the accuracy of the DPT patterns estimation in the case
of a realistic watermarking scenario. The different parameters of the trellis are
defined here by N, = 12, N, = 10, Ny = 6, N, = 4, which means that the clus-
tering algorithm has to estimate 24 patterns of 12 samples each®. To evaluate
the estimation process, the average of the difference between the two largest nor-
malised correlations between each real and estimated patterns for each pattern
is computed i.e.:

1

A=—
NG'N(L

Z [max1;(corry(cl;, u;)) — max2;(corry(cl;, u;))] (3)
3

where cl; is the estimated centroid of the i*" cluster, corry denotes the nor-
malised correlation, and max1; (resp. max2;) represents the first (resp. second)
value when an array is sorted by descending order. As previously, the set of 24
patterns are orthogonal or collinear between themselves. As a result, A is equal
to one if the estimation of each pattern is perfect and decreases with respect to
the accuracy of estimations.

5 N, = 12 is the number of DCT coefficients that are used in the image watermarking
scheme presented in [7].
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WCR= 1.5dB, N, =1 WCR= -6.6dB, N, =1

Fig. 4. Distributions of normalised watermarked contents (N, = 3, N, = 1, N5 = 3,
N, =2, N, = 5000). Locations of the real (gray) and estimated (yellow) patterns using
the K-means algorithm. The visualization is easier using a color output.

The difference between the two highest correlation score magnifies the con-
trast between accurate and non-accurate estimation of the DPT patterns when
they are orthogonal or opposite. A score A close to 1 means that each estimated
pattern is much closer to one of the original patterns than the others. On the
other hand, a score A close to 0 means that each estimated pattern is equally
distant from two original patterns. Consequently, the estimation of the original
patterns is not possible. Using only max1() would have decreased the difference
between accurate and non-accurate estimations because even random patterns
may have an important correlation with fixed ones if N, is low.

The evolution of the estimation accuracy with respect to different embedding
distortions and different number of observations is given in Figure 5 for observa-
tions composed of either one or two segments. If the considered dataset is com-
posed of couples of segments, the number of observations necessary to obtain the
same accuracy than for one segment is roughly multiplied by 4. This confirms
the “curse of dimensionality” effect mentioned earlier. Moreover, as expected,
the estimation accuracy increases with the number of observed contents and the
embedding distortion i.e. the robustness constraint. While more than 128000 ob-
servations are needed to obtain an accuracy of 0.9 with WCR = —11.5dB and a
data set of single segments, 24000 and 8000 observations are needed respectively
for WCR = —10.3dB and WCR = —9.1dB.

4.3 Note on Label Estimation

As mentioned in Section 3, the estimation of the binary label associated to each
arc is not possible in the WOA framework. Note however that, for the Known
Message Attack scenario (KMA) where each embedded message is known [2],
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Fig. 5. Accuracy of the DPT patterns estimation (N, = 12, N, = 10, Ns = 6, N, = 4).
Average after 10 trials. For each trial, 10 K-means runs are performed.

the binary labels can easily be estimated by examining the bits associated to
each segment. For an estimated centroid, the binary label will be determined as
the most frequent bit related to the segments within the cluster.

Another way to deal with this issue is to use supervised clustering techniques
such as Learning Vector Quantization [13]. This approach might be more efficient
than K-Means since it considers the class of observations as a-priori information.

4.4 Connections and State Estimation

In the DPT estimation process, the next step is to estimate the connectivity of
the trellis. This can be seen as learning which patterns are emitted at step t + 1
knowing that a given pattern has been emitted at step ¢. This estimation can be
done by using a co-occurrence matrix C which is a square matrix of size Ny - N,,.
Each element C(i, j) of the matrix is expressed by:

C(i,j) = occ(st € Cl;,8e41 € CJ)) (4)

where CJ, denotes the set representing the k*® cluster and occ(4, B) is an occur-
rence function that counts the number of times both A and B are true. The test
(st € C;) is performed using the classification results of the K-means algorithm
used for the patterns estimation. As a result, if the pattern ¢ has been emitted
at step t, the N, maximum values in the i*" row of the co-occurrence matrix C
indicate the index of the patterns that can be emitted at step ¢+ 1. This method
implicitly assumes that a different pattern is attached to each arc in the trellis.
Therefore, it will fail to deal with the recent improvements proposed for DPT
watermarking based on trellis coded modulation [14].

Using the established co-occurrence matrix, it is possible to check whether
the estimated connectivity matches the one of the original trellis. For each line
7 in the matrix, the index of the N, highest elements are retrieved. As stated
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before, each index points to the pattern that can be emitted at step ¢t + 1 when
the pattern i has been emitted at step ¢. This leads to N, - N2 possible couple
of patterns, that can be referred to as connections. The connection error rate
is then defined as the ratio of connections which are actually not allowed by
the original trellis. The lower the connection error rate, the more accurate the
estimated connectivity. As depicted in Figure 6, the accuracy relies again on the
embedding distortion and the number of observed contents. It should be noted
that the number of observed contents necessary to achieve a good estimation
of the connections is of the same order of magnitude than for the estimation of
patterns.

08—

7

o
=
-

Connection error rate

o—o WCR=-115dB
=—s WCR=-10.3dB
+— WCR=-9.1dB

/N
7

10000 1e+05
Number of observed contents

Fig. 6. Connection error rate (N, = 12, N, = 10, N; = 6, N, = 4). Observation: single
segment. Average after 10 trials. For each trial, 10 K-means runs are performed.

At this point, using the co-occurrence matrix, it is possible to identify for
each pattern, which can also be viewed as an arc, which are the incoming and
outgoing states. Each state is estimated up to a permutation with respect to the
original trellis. However, this permutation does not hamper the ability of the
decoder to retrieve the correct succession of patterns.

All the arcs going toward a given state will give similar rows in the co-
occurrence matrix C. Indeed, the rows indicate the choice of patterns that can
be emitted afterward when an arc is traversed. Same rows implies same choice
i.e. for all these arcs, the same state has been reached. To deal with the potential
noise in the co-occurence matrix, a K-means algorithm is run on the rows of C
to identify Ny clusters. Each row is then labeled in accordance to the cluster it
belongs to. This label indicates the outgoing state when an arc is traversed i.e.
when a given pattern is emitted. For instance, in Figure 7, if the third pattern
is emitted, the systems reaches state 1 and can only emit the patterns 1 and 4.

One can then build an outgoing state matrix: it is a simple matrix with entries
at the estimated connection index which indicates the outgoing state when the
pattern ¢ is emitted at step t. An example is given in Figure 7. This matrix
can be read row by row: if the pattern 3 is emitted at step ¢, then the system
is in the third row and one can see that the state 1 is reached. Moreover, this
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Co-occurrence matrix Outgoing Outgoing state
K-means state matrix
233 21 1 221 ———» state 1 1 X X 1
12 214 204 2 —————————» state 2 X 2 2 X
211 7 17 197 ————» state 1 1 X X 1
3 182 198 2 ———» state 2 X 2 2 X

Lol e

Incoming  state 1 state 2 state 2 state 1
state

Fig. 7. Example of incoming and outgoing state estimations.

outgoing state matrix can also be read column by column: if the pattern 3 has
been emitted at step ¢+ 1, then the system is in the third column and the entries
indicates the possible states of the system before the emission of the pattern i.e.
the incoming state. A simple majority vote along each column to accommodate
for potentially noisy observations gives then the most likely incoming state for
each pattern. In the example depicted in Figure 7, one can see for instance that
the pattern 3 is coming from state 2 and is going toward state 1.

5 Results on the worst case attack

Once all the secret parameters of the DPT have been estimated, it is possible
to perform the WCA described in Section 3. Results are plotted on Figure 8 for
the same setup than previously: N, = 12, N, = 10, Ny, = 6, N, = 4 and three
different embedding distortions. T'wo different scores are computed to assess the
efficiency of the WCA: the classical bit-error rate (BER) and the message error
rate (MER). The MER is the most meaningful score because it measures the
ability of the WCA to move the watermarked vector y outside the detection
region of the embedded codeword. The BER plot in Figure 8 highlights the fact
that the WCA does not necessarily yield the same BER for different embedding
distortions once the estimation of the trellis is accurate enough. Indeed, for
different distortions, the second best codeword may be different and thus induce
a different BER.

The security level s can be defined as the number of watermarked contents
necessary to perform a successful WCA e.g. with a MER close to 100%. The
values of s for different embedding distortions are reported in Table 1. This
table also provides a comparison of the average watermarked signal to noise
ratios (SNR) for the WCA and AWGN required to yield equivalent BER. The
WCA induces a SNR that is between 12 dB and 14 dB more important than for
AWGN (the comparison between MERs would have been even more dramatic).
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Bit Error Rate (%)
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Fig. 8. Message Error Rate and Bit Error Rate after the WCA (N, = 12, N, = 10,
Ns = 6, No = 4). Average after 10 trials. For each trial, 10 K-means are performed.

Watermark to Content Ratio|—11.5 dB|—10.3 dB|—9.1 dB
security level s 6410° | 2410° | 810°

SNR for the WCA 16.9 dB | 16.9 dB |16.9 dB
SNR for AWGN 45dB | 3.5dB | 24 dB

Table 1. Comparison of the security level and the signal to noise ratio of the WCA and
AWGN for equal BER. For SNR, an accurate estimation of the trellis (N, = 124000)
is performed.

6 Conclusion and perspectives

This paper has investigated security issues for DPT watermarking schemes. Dif-
ferent properties of this class of schemes have to be highlighted:

— Using the WOA setup, it is impossible to estimate the binary labels associ-

ated with each arc of the trellis and consequently it is impossible to copy the
message embedded in one content to another one without introducing unac-
ceptable distortion. This property relies on the fact that coding is informed
i.e. it is dependent of the host signal. Note that this property is not true for
classical Spread Spectrum [5].

The WOA setup enables however to perform a WCA for this scheme. Ma-
chine learning techniques can be used to identify clusters that are created
in the data set during the embedding. This estimation has been performed
using a K-means algorithm. Different tests suggest that an accurate estima-
tion of the trellis is possible but depends on two parameters: the number of
observations and the embedding distortion which is directly linked with the
robustness of the scheme.

The assumptions made in this paper on the trellis structure may first look

restrictive but encompass a large variety of practical implementations:

— The trellis structure was the same for each step. This hypothesis is important

if one want to deal with synchronisation problems. Moreover, if it is not the
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case, because the trellis structure is the same for each content in the WOA
setup, it is still possible to observe at least N, similar segments (instead of
N, - Ny) and to estimate the patterns for each step.

— The number of outgoing and incoming arcs per state was assumed to be con-
stant. Nevertheless the presented connection and state estimation algorithms
can also be used if the arcs change from one step to another.

— The WCR considered are was the order of -10 dB. In the case of smaller
WCRs (around -20 dB) either other clustering techniques or a more impor-
tant number of observations would be necessary. Nevertheless a WCR around
-10dB on a dedicated subspace, like medium frequency DCT coeflicients for
example, is practically realistic.

— In a more the general setup some additional techniques would be required to
estimate Ny and N, for each step, one possibility would be to use hierarchical
clustering algorithms to estimate these parameters [15].

Our future works will be focused on the design of secure DPT watermarking
schemes. One solution might be to perform the embedding in such a way that
the distribution of codewords is similar to the distribution of secure but non-
informed coding schemes such as circular watermarking [16].
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