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Abstract. A dynamic unilateral contact problem with nonlocal friction for a viscoelastic body
satisfying a Kelvin-Voigt law is studied. Using a penalty method and compactness results, the
existence of a weak solution of this problem is proved.
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1. Introduction

In this paper, we consider a dynamic Signorini’s problem with a nonlocal friction
law for a viscoelastic body of Kelvin-Voigt type.

G. Duvaut and J. L. Lions [2] studied dynamic and quasistatic contact prob-
lems with Tresca’s (or given) friction law involving linearly elastic and viscoelastic
bodies. Dynamic bilateral contact with nonlocal friction has been analyzed very
recently by K. L. Kuttler and M. Shillor [7].

J. A. C. Martins and J. T. Oden [10] proved the existence and uniqueness, for
a viscoelastic material, of a solution to dynamic contact problems with normal
compliance. Similarly, I. Figueiredo and L. Trabucho [3] extended these results
to a class of (thermovisco)elastic problems. K. L. Kuttler [6] has weakened the
restrictions on the coefficients of the normal compliance law.

More recently, M. Cocou and J. M. Ricaud [1], E. Pratt and J. M. Ricaud [12]
have studied abstract implicit evolution inequalities with applications to dynamic
contact problems for viscoelastic bodies.

An existence and uniqueness result for the wave equation with unilateral bound-
ary conditions for a half-space was proved by G. Lebeau and M. Schatzman [8].
Existence of solutions in the case of a smooth bounded domain subjected to uni-
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lateral conditions on its boundary has been proved by J. U. Kim [5] for the wave
equation and by J. Muñoz-Rivera and R. Racke [11] for a thermoelastic radially
symmetric body.

The dynamic Signorini’s frictionless contact problem for viscoelastic materials
with singular memory has been considered by J. Jarušek [4] who studied also the
case of given friction.

The paper is organized as follows. Section 2 is devoted to strong and weak
formulations of the problem. In Section 3 a penalized problem is investigated by
using an abstract existence and uniqueness result for the solution of some implicit
evolution inequalities. In Section 4 several estimates on the penalized solutions
are established which allow to pass to the limit and to obtain a solution of the
dynamic Signorini’s problem with nonlocal friction.

2. Classical and variational formulations

Let us consider a viscoelastic body that initially occupies a bounded domain Ω
in lRd , d = 2, 3, with a sufficiently smooth boundary Γ = ∂Ω . This boundary is
divided into three disjoint and open parts Γ = Γ̄u∪Γ̄f∪Γ̄c . The body is subjected
to volume forces of density F1 , prescribed zero displacements and tractions F2

on the parts Γu and Γf respectively. To simplify the arguments we assume that
mes(Γu) > 0 and that the part Γc , where the body is in unilateral contact with
a fixed foundation, is a bounded contact zone.

We shall denote by u = (ui) the displacement field, by σ = (σij) the stress
tensor and by ε = (εij) = 1

2(ui,j + uj,i) the strain tensor, for i, j ∈ {1, .., d} . We
denote respectively by A = (aijkl) and B = (bijkl) the elasticity and viscosity
tensors. Suppose that A and B satisfy the usual properties of ellipticity and
symmetry and that aijkl and bijkl are in W1,∞(lRd), ∀i, j, k, l = 1, ..., d .
We shall adopt the usual notations for the normal and tangential components of
displacement vector and stress vector:

u = uNn + uT, uN = uini, σn = σNn + σT, σN = σijninj ,

where n = (ni) is the outward normal unit vector to the boundary. The notation
|.| denotes the absolute value when applied to a scalar and the euclidian norm,
corresponding to the scalar product ”.”, when applied to an element of lRd .

Under the hypothesis of small displacements, the classical formulation of the
dynamic Signorini’s problem with nonlocal friction in viscoelasticity is as follows.

Problem P0 : Find u = u(t,x) such that u(0) = u0, u̇(0) = u1 and for all t
in ]0,T[

div σ + F1 = ü in Ω,

σ = Aε(u) + Bε(u̇),
u = 0 on Γu, σn = F2 on Γf , (1)
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uN ≤ 0, σN ≤ 0, uNσN = 0 on Γc,

|σT| ≤ µ|(Rσ)N | and



|σT| < µ|(Rσ)N | ⇒ u̇T = 0

on Γc,
|σT| = µ|(Rσ)N | ⇒ ∃ λ ≥ 0, u̇T = −λσT,

where µ ∈ L∞(Γc), µ ≥ 0 a.e. on Γc , is the friction coefficient and (Rσ)N is
a regularization of the normal contact force which will be described below. Note
that we can also consider non zero displacements on Γu or prescribed tangential
velocities for the foundation.

The functional framework for a weak formulation of this problem is as follows:
Hs(Ω) = [Hs(Ω)]d, s ∈ lR , V =

{
v ∈ H1(Ω); γ v = 0 a.e. on Γu

}
,

K = {v ∈ V; (γ v)N ≤ 0 a.e. on Γc} , H1
0(Ω) = [H1

0 (Ω)]d, H = [L2(Ω)]d,
L2(Γc) = [L2(Γc)]d, L2(Γf ) = [L2(Γf )]d .

We shall use the notations |.| = |.|H , ‖.‖ = ‖.‖V and we shall omit γ in order to
simplify the notation for the trace mapping.

Assume that

u0 ∈ K, u1 ∈ V, F1 ∈ W1,∞(0,T;H) and F2 ∈ W1,∞(0,T;L2(Γf )). (2)

Using the previous hypotheses, let us denote by L the element of V defined by

〈L,v〉 =
∫

Ω

F1.v dx +
∫

Γf

F2.v ds, ∀ v ∈ V,

where 〈. , .〉 denotes the scalar product on V .
Suppose that R : [L2

s(Ω)]d
2 → [H1(Ω)]d

2
, where [L2

s(Ω)]d
2

= {τ ∈ [L2(Ω)]d
2
;

τ = (τij), τij = τji, i, j = 1, ..., d} , is a linear and continuous operator which has
the following properties : (Rσ(u0,u1))N = 0 and

if u̇k → u̇ in L2(0,T;H), then (Rσk)N → (Rσ)N in L2(0,T;L2(Γc)). (3)

An operator satisfying these conditions can be obtained by extending u and u̇
to all of lRn and by using the convolution with a smooth function, which gives an
averaged normal stress, see for example [7].

We consider the following weak formulation of problem P0 .

Problem P : Find u ∈ W1,2(0,T;V)∩C1([0,T];H−1/2(Ω)), such that u(0) =
u0, u̇(0) = u1, u(t) ∈ K for all t in ]0,T[ and

〈u̇(T),v(T)− u(T)〉H−1/2, H1/2 − (u1,v(0)− u0)

−
∫ T

0

(u̇, v̇ − u̇) dt +
∫ T

0

a(u,v − u) dt +
∫ T

0

b(u̇,v − u) dt (4)

−
∫ T

0

∫
Γc

µ|(Rσ)N |(|vT − uT + u̇T| − |u̇T|)ds dt ≥
∫ T

0

〈L,v − u〉 dt

∀ v ∈ L∞(0,T;V) ∩ W1,2(0,T;H) with v(t) ∈ K for all t ∈ [0,T],
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where a(v, w) =
∫

Ω

aijkl vi,j wk,l dx, b(v, w) =
∫

Ω

bijkl vi,j wk,l dx,

∀ v, w ∈ V, 〈. , .〉H−1/2, H1/2 denotes the duality pairing between H −1/2(Ω) and
H1/2(Ω) and (. , .) is the usual scalar product on H .

The equivalence between P0 and P can be easily proved by using Green’s
formula and an integration by parts.

We assume that the initial conditions u0,u1 satisfy the following compatibility
condition : there exists l ∈ H such that

a(u0,v) + b(u1,v) = 〈L(0),v〉+ (l,v) ∀v ∈ V. (5)

The existence of a solution of Problem P will be proven by using a penalty method.

3. The penalized problem

Let us consider the following strong formulation of the penalized problem, for
ε > 0 , which can be seen as a dynamic contact problem with a normal compli-
ance law.

Problem P0ε : Find uε = uε(t,x) such that uε(0) = u0, u̇ε(0) = u1 , and for
all t in ]0,T[

div σ + F1 = üε in Ω,

σ = Aε(uε) + Bε(u̇ε),
uε = 0 on Γu, σn = F2 on Γf , (6)

σN = −1
ε
(uεN )+ on Γc,

|σT| ≤ µ|(Rσ)N | and



|σT| < µ|(Rσ)N | ⇒ u̇εT = 0

on Γc,
|σT| = µ|(Rσ)N | ⇒ ∃ λ ≥ 0, u̇εT = −λσT.

We shall analyze the following variational formulation of penalized problem.

Problem Pε : Find uε ∈ W1,2(0,T;V) ∩ W2,2(0,T;H), such that uε(0) =
u0, u̇ε(0) = u1, and for almost all t ∈]0,T[,

(üε,v − u̇ε) + a(uε,v − u̇ε) + b(u̇ε,v − u̇ε) +
∫

Γc

1
ε
(uεN )+(vN − u̇εN )ds

+
∫

Γc

µ|(Rσ)N |(|vT| − |u̇εT|)ds ≥ 〈L,v − u̇ε〉 ∀v ∈ V. (7)

The existence of a solution of this problem can be obtained, for example, as ap-
plication of existence results for set-valued pseudomonotone evolution inclusions,
as developed recently by K.L. Kuttler and M. Shillor [7]. This method enables
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us, under less regular conditions on u1 and L , to prove the existence of a solu-
tion having the following regularity : uε ∈ W1,2(0,T;V) and üε ∈ L2(0,T;V′) .
Suitable estimates, which can be calculated if one assumes additional regular-
ity properties of u1 , L and the compatibility condition (5), ensure that uε ∈
W2,2(0,T;H) .

We shall show the existence and uniqueness of solution of problem Pε by using
the following slightly more general version of a direct constructive existence and
uniqueness result obtained by J.M. Ricaud and E. Pratt [12].

Let (H0, |.|) and (V0, ‖.‖) be two Hilbert spaces with the inner products
denoted by (.,.) and 〈., .〉 , respectively, such that V0 is dense in H0 .

We set : W = W1,2(0,T;V0) ∩W2,2(0,T;H0), K = {v ∈ W; v(0) = u0,
u̇(0) = u1} with u0, u1 ∈ V0.

Let a , b : V0 × V0 → lR be two bilinear, symmetric, continuous and V0 -
elliptic forms in the following sense:

∃ Ma > 0 such that for all v, w in V0 ×V0, a(v, w) ≤ Ma ‖v‖ ‖w‖, (8)
∃ Mb > 0 such that for all v, w in V0 ×V0, b(v, w) ≤ Mb ‖v‖ ‖w‖, (9)
∃ ma > 0 such that for all v in V0, a(v, v) ≥ ma ‖v‖2, (10)
∃ mb > 0 such that for all v in V0, b(v, v) ≥ mb ‖v‖2. (11)

Let φ : [0,T] × V3
0 → lR be a weakly continuous mapping such that for all

t ∈ [0,T], (u, v, w) ∈ V3
0, φ(t, u, v, w) = φ1(u, v, w) + φ2(t, u, v, w), and

for all weakly convergent sequences (uk) such that uk ⇀ u in W,

lim inf
k→∞

∫ T

0

φ(t, uk(t), u̇k(t), u̇k(t))dt ≥
∫ T

0

φ(t, u(t), u̇(t), u̇(t))dt, (12)

for all u, v ∈ V0 the mapping φ1(u, v, .) is linear, (13)
φ2(0, u0, u1, .) = 0, φ2(t, u, v, .) is a semi-norm, (14)
∃ η > 0, such that ∀ t1, t2 ∈ [0,T], ∀ u1, u2, v1, v2, w1, w2 ∈ V0,

|φ(t1, u1, v1, w1)− φ(t1, u1, v1, w2) + φ(t2, u2, v2, w2)− φ(t2, u2, v2, w1)|
≤ η(‖u1 − u2‖+ |v1 − v2|+ |t1 − t2|)‖w1 − w2‖. (15)

Let f : [0,T] → V0 be in W1,∞(0,T;V0) . We assume that the initial conditions
u0 and u1 verify the following compatibility condition: there exists l ∈ H0 such
that

a(u0, w) + b(u1, w) + φ1(u0, u1, w) = 〈f(0), w〉+ (l, w) ∀w ∈ V0. (16)

We consider the following problem.

Problem Q : Find u ∈ K such that for almost all t ∈]0,T[ :

(ü(t), v − u̇(t)) + a(u(t), v − u̇(t)) + b(u̇(t), v − u̇(t)) + φ(t, u(t), u̇(t), v)
−φ(t, u(t), u̇(t), u̇(t)) ≥ 〈f(t), v − u̇(t)〉 ∀v ∈ V0. (17)
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Theorem 3.1. Assume that (8)-(16) hold. Then there exists a unique solution of
problem Q .

The proof of this result is not presented here as it is similar to that in [12] ,
where the particular case of φ(t, u, v, w) independent of v has been considered.

In order to solve problem Pε , we shall now use this theorem for a, b of problem

Pε, V0 = V, H0 = H, f = L, φ1(u,v,w) =
∫

Γc

1
ε
(uN )+wNds and

φ2(t,u,v,w) =
∫

Γc

µ|(Rσ(u,v))N ||wT|ds , where σ(u,v) = Aε(u) + Bε(v) .

From the properties of mes(Γu) , of the coefficients (aijkl) , (bijkl) , and using
Korn’s inequality for the V - ellipticity, it follows that a and b satisfy (8)-(11).
The properties (2) imply that L ∈ W1,∞(0,T;V) and (5) implies the compatibility
condition (16). Using the properties of R , one can easily obtain that (12)-(15)
are satisfied. Thus by theorem 3.1 we obtain the following result.

Theorem 3.2. Under the above assumptions, for every ε > 0 there exists a
unique solution of problem Pε .

Now we may study the approximation of a solution of Signorini’s problem with
nonlocal friction law by a sequence of penalized solutions.

4. Existence of a solution of unilateral contact problem

We shall establish for uε several useful estimates, independent of ε , which will
enable us to pass to the limit when ε tends towards 0. Firstly, let us prove that

u̇ε is bounded in L∞(0,T;H) ∩ L2(0,T;V), (18)
uε is bounded in L∞(0,T;V), (19)
(uεN )+√

ε
is bounded in L∞(0,T;L2(Γc)), (20)

by positive constants depending on ‖u0‖, ‖u1‖, |F1| and ‖F2‖ . By integrating
(7) from 0 to t , for any t in ]0,T[ , we obtain

∫ t

0

(üε,v − u̇ε)dτ +
∫ t

0

a(uε,v − u̇ε)dτ +
∫ t

0

b(u̇ε,v − u̇ε)dτ

+
∫ t

0

∫
Γc

1
ε
(uεN )+(vN − u̇εN )dsdτ +

∫ t

0

∫
Γc

µ|(Rσ)N |(|vT| − |u̇εT|)dsdτ (21)

≥
∫ t

0

〈L,v − u̇ε〉dτ ∀v ∈ L2(0,T;V).
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By taking v = 0 we have

∫ t

0

(üε, u̇ε)dτ +
∫ t

0

a(uε, u̇ε)dτ +
∫ t

0

b(u̇ε, u̇ε)dτ

+
∫ t

0

∫
Γc

1
ε
(uεN )+u̇εNdsdτ +

∫ t

0

∫
Γc

µ|(Rσ)N ||u̇εT|dsdτ ≤
∫ t

0

〈L, u̇ε〉dτ.

We integrate the first two terms and find a minorant to the third one by using the

V - ellipticity of b . Since the term
∫ t

0

∫
Γc

1
ε
(uεN )+u̇εNdsdτ can be written as∫

Γc

1
2 ε

(uεN (t))2+ds−
∫

Γc

1
2 ε

(uεN (0))2+ds , we obtain the following result:

1
2 |u̇(t)|2 + 1

2ma ‖u(t)‖2 + c1

∫ t

0

‖u̇‖2dτ +
1
2

∫
Γc

1
ε
(uεN (t))2+ds

≤ 1
2 |u1|2 + 1

2 Ma‖u0‖2 + c2

∫ t

0

‖L‖2dτ,

(22)

where we have used Schwarz’s and Young’s inequalities, the relation u0 ∈ K and
where c1, c2 are positive constants which depend on the initial conditions, the
given forces but not on ε . Thus (18)-(20) are established.

In order to pass to the limit when ε tends towards 0 , we need an estimate on
üε independent of ε . Choosing in Pε, v = u̇ε±ψ , where ψ ∈ L2(0,T;H1

0(Ω)) ,
we have ∫ T

0

(üε,ψ)dt +
∫ T

0

a(uε,ψ)dt +
∫ T

0

b(u̇ε,ψ)dt =
∫ T

0

(F1,ψ)dt (23)

∀ψ ∈ L2(0,T;H1
0(Ω)).

Thus

üε is bounded in L2(0,T;H−1(Ω)) by a constant independent of ε. (24)

Let v be in L∞(0,T;V)∩ W1,2(0,T;H) with v(t) ∈ K for all t ∈ [0,T] . If we
integrate by parts the first term in Pε , then we have

(u̇ε(T),v(T)− uε(T))− (u1,v(0)− u0)−
∫ T

0

(u̇ε, v̇ − u̇ε) dt

+
∫ T

0

a(uε,v − uε) dt +
∫ T

0

b(u̇ε,v − uε) dt (25)

−
∫ T

0

∫
Γc

µ|(Rσ)N |(|vT − uεT + u̇εT| − |u̇εT|)ds dt ≥
∫ T

0

〈L,v − uε〉 dt.

We shall use the following compactness results due to J. Simon [13] (Corollary 4),
which extend some classical results of J.P. Aubin and J.L. Lions.
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Theorem 4.1. Let X , U and Y be three Banach spaces such that X ⊂ U ⊂ Y
with compact imbedding X → U .

Let F be bounded in Lp(0,T;X) , where 1 ≤ p < ∞ , and ∂F/∂t = {ḟ ; f ∈
F} be bounded in L1(0,T;Y ) . Then F is relatively compact in Lp(0,T;U) .

Let F be bounded in L∞(0,T;X) and ∂F/∂t be bounded in Lr(0,T;Y ) ,
where r > 1 . Then F is relatively compact in C([0,T], U) .

First, we consider the following sets:

X = V, Y = H, r = ∞, F = (uε).

Since the imbedding Hs1(Ω) → Hs2(Ω) , with s1 > s2, is compact (see, e.g.
J.L. Lions and E. Magenes [9]) and we have established (18,19), by theorem 4.1 it
follows that

(uε) is relatively compact in C([0,T],H1/2(Ω)). (26)

Now if we consider :

X = H, U = H−1/2(Ω), Y = H−1(Ω), r = ∞ F = (u̇ε),

then, with the estimates (18,24), by Simon’s theorem 4.1 we obtain that

(u̇ε) is relatively compact in C([0,T],H−1/2(Ω)). (27)

Using again theorem 4.1 for :

X = V, U = H, Y = H−1(Ω), p = 2, F = (u̇ε),

it follows that
(u̇ε) is relatively compact in L2(0,T;H). (28)

Thus we have the following result.

Lemma 4.1. There exists a subsequence of (uε) , still denoted by (uε) , and an
element u ∈ C1([0,T],H−1/2(Ω)), such that

uε → u in C([0,T],H1/2(Ω)), (29)

u̇ε → u̇ in C([0,T],H−1/2(Ω)), (30)
u̇ε → u̇ in L2(0,T;H). (31)

From (18, 19) it follows that the subsequence (uε) can be chosen such that

uε ⇀ u weak ∗ in L∞(0,T;V), (32)
u̇ε ⇀ u̇ in L2(0,T;V), (33)

which imply
uε ⇀ u in W1,2(0,T;V). (34)
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Using the relation W1,2(0,T;V) ⊂ C([0,T],V) , we have that (uε(t)) is bounded
in V for all t in [0,T] . Let E be a countable dense subset of [0,T] . By a
diagonal process, we can extract a subsequence, still denoted by (uε) , such that
for all s ∈ E, (uε(s)) converges weakly to u(s) and by similar arguments as in
[1], we obtain

∀t ∈ [0,T], uε(t) ⇀ u(t) in V. (35)

The next convergence result will enable us to pass to the limit in the friction term
(see also [7]).

Lemma 4.2. We have

u̇ε → u̇ in L2(0,T;L2(Γc)). (36)

Proof. Let U be a Banach space such that the imbedding V → U is compact
and there exists a bounded linear operator T : U → L2(Γc).

Then, using (34) and theorem 4.1 for X = V, U, Y = H−1(Ω), p = 2, F =
(u̇ε), we obtain that u̇ε → u̇ in L2(0,T;U) and the conclusion follows. ¤

We may now show the following existence result for problem P .

Theorem 4.2. Let u0, u1, and F2 be given satisfying (2). Then there exists
a subsequence of solutions (uε) of the penalized problems which converges to a
solution u of dynamic Signorini’s problem with nonlocal friction P .

Proof. It is clear that u(0) = u0, u̇(0) = u1. From (35) and the compactness of
the imbedding H1/2(Γ) → L2(Γ) , we have

∀ t ∈ ]0,T[, uεN → uN in L2(Γc),

which with (20) imply

0 = lim inf ‖(uεN )+‖2L2(Γc)
≥ ‖(uN )+‖2L2(Γc)

.

Hence for all t ∈]0,T[, u(t) ∈ K .
We now write inequality (25) as follows:

(u̇ε(T),v(T)− uε(T))− (u1,v(0)− u0)−
∫ T

0

(u̇ε, v̇ − u̇ε) dt +
∫ T

0

a(uε,v) dt

+
∫ T

0

b(u̇ε,v) dt−
∫ T

0

∫
Γc

µ|(Rσ)N |(|vT − uεT + u̇εT| − |u̇εT|)ds dt (37)

≥
∫ T

0

a(uε,uε) dt +
1
2
b(uε(T),uε(T))− 1

2
b(u1,u1) +

∫ T

0

〈L,v − uε〉 dt

∀ v ∈ L∞(0,T;V) ∩ W1,2(0,T;H) with v(t) ∈ K for all t ∈ [0,T].

Note that, using lemma 4.1, (32) and (33), we may pass to the limit when ε tends
towards 0 in the first four terms, containing ε , in the left-hand side of (37). We
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may also pass to the limit in the friction term using the property (3) of R and
lemma 4.2. In the right-hand side, the elastic and the viscous terms are convex
and continuous on L2(0,T;V) and respectively V , and hence weakly sequentially
lower semi-continuous.

Finally, from the convergence properties of the terms in the left-hand side,
using (32), (35) and computing lim of the left-hand side of (37) and lim inf of the
right-hand side, we obtain

(u̇(T),v(T)− u(T))− (u1,v(0)− u0)−
∫ T

0

(u̇, v̇ − u̇) dt +
∫ T

0

a(u,v) dt

+
∫ T

0

b(u̇,v) dt−
∫ T

0

∫
Γc

µ|(Rσ)N |(|vT − uT + u̇T| − |u̇T|)ds dt (38)

≥
∫ T

0

a(u,u) dt +
1
2
b(u(T),u(T))− 1

2
b(u1,u1) +

∫ T

0

〈L,v − u〉 dt

∀ v ∈ L∞(0,T;V) ∩ W1,2(0,T;H) with v(t) ∈ K for all t ∈ [0,T] .

Thus u is a solution of problem P. ¤
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