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Abstract—We consider the mean delay optimization in the
M/G/1 queue for service time distributions that have a tail with
decresing hazard rate (DHR). If the DHR property is valid for
the whole distribution, then it is known that the Foreground-
Background (FB) discipline, which gives full priority to the
job with least amount of attained service, is optimal among
nonanticipating scheduling disciplines. However, FB may fail to
be optimal if the DHR property is valid only for the tail of the
distribution. An important example is the Pareto distribution
bounded away from zero. In this paper we show that for a wide
class of service time distributions with a DHR tail (including
the Pareto distribution), the optimal nonanticipating discipline
is a combination of FCFS and FB disciplines, which gives
full priority to the jobs with attained service less than some
fixed threshold 6*. These priority jobs are served in the FCFS
manner. If there are no jobs with attained service less than
0, the full priority is given to the job with least amount of
attained service.

I. INTRODUCTION

We consider the optimal scheduling problem in the M/G/1
queue with the objective to minimize the mean delay (i.e.,
sojourn time). We assume that jobs are served accord-
ing to a work conserving and nonanticipating (scheduling)
discipline. A discipline is work conserving if it does not
idle when there are jobs waiting, and nonanticipating if
the remaining service times of jobs are unknown for the
scheduler. In particular we note that the Shortest-Remaining-
Processing-Time (SRPT) discipline does not belong to these
disciplines. However, the discipline may be age-based, i.e.,
based on the attained service of each job. An example is the
Foreground-Background (FB) discipline, which gives full
priority to the job with least amount of attained service,
see [12, Section 4.6]. Our motivation comes from the recent
literature where researchers have studied the performance of
age-based scheduling on the Internet, see [4], [3], [6], [8],
[10], [11], [16], [17], [15].

It is known that for the service times distributions be-
longing to the Decreasing-Hazard-Rate (DHR) class, FB is
optimal [22], [18], whereas the ordinary First-Come-First-
Served (FCFS) discipline minimizes the mean delay for
the service time distributions belonging to the New-Better-
than-Used-in-Expectation (NBUE) class [19]. Roughly said,
DHR distributions have a high variation, whereas NBUE
distributions are much less variable. A high variation is
typical for flow sizes in the Internet, which have been
modelled by distributions like hyperexponential or Pareto

[51, [7]. While the hyperexponential distribution belongs to
the DHR class, the Pareto service time distribution, defined

by
P{S>m}:<§) L e>k>0, &)

does not. The hazard rate for this distribution is first constant
(zero), then jumps up to a positive value at 2 = k&, and finally
decreases from the argument value £ on.

As noted in [21], FB may not be optimal for the Pareto
service time distribution (1). The intuition behind this is
as follows. Suppose that there is a job in the system that
has attained service close but strictly less than k. When a
new job arrives, the FB discipline would immediately start
serving the new job. However, since the minimum service
time is k&, it might be better to keep on serving the job that
is already in the system, and which might leave the system
soon after getting & units of service.

In [1] we proved that FB is not optimal for a modification
of the Pareto distribution. In [2] we made a similar obser-
vation (however, without any proofs due to the strict page
limit) for a class of service time distributions for which the
hazard rate is first constant and then decreasing.

In the present paper, we consider an even more general
class of service time distributions, for which the head of the
distribution has the NBUE property, while the tail satisfies
the DHR requirement. This class includes both the Pareto
distribution (1) and the modification considered in [1]. By
applying the so called Gittins index approach [9], we prove
that for this class of service time distributions the optimal
discipline is a combination of the FCFS and FB disciplines.
More precisely, it is an age-based discipline which gives
full priority to the jobs with attained service less than some
fixed threshold 6*. These priority jobs are served in the
FCFS manner. If there are no jobs with attained service
less than 6*, the job with least amount of attained service
will be served. We use notation FCFS + FB(6*) for this
discipline. We note that the present paper is a complemented
and extended version of the earlier short paper [2].

The rest of the paper is organized as follows. In Sec-
tion Il we define the queueing model and introduce the
relevant service time distribution classes. The Gittins index
is introduced and some related results are presented in
Section I1l. The main results concerning the mean delay



optimization are presented in Section IV. In Section V we
give some numerical results to cast light on the optimal
threshold 0*, as well as the maximum gain achieved by the
optimal discipline in the case of the Pareto distribution (1).
In Section VI we investigate, via a numerical example, what
is the structure of the optimal scheduling discipline when the
service time distribution is an upper bounded Pareto with a
finite support. Section VII concludes the paper.

Il. PRELIMINARIES

Consider an M/G/1 queue with arrival rate A, mean
service time E[S], and load p = AE[S] < 1. Jobs are
served according to a work conserving and nonanticipating
scheduling discipline 7. Let IT denote the family of such
disciplines.

Let F'(z) = P{S < z}, * > 0, denote the cumulative
distribution of the service time of any job. Define F(z) =
1 — F(z), and assume that F'(z) > 0 for all z. In addition,
we only consider distributions with a density function f(z)
that is right-continuous with left-limits. The hazard rate h(x)
is defined by

R

F(z) [ fle+y)dy

It is also right-continuous (h(z) = h(z™)) with left-limits
h(z~). A service time distribution belongs to the class
DHR (Decreasing Hazard Rate) if h(x) is decreasing® for
all z, i.e, h(z) > h(y) whenever x < y. The class IHR

(Increasing Hazard Rate) is defined correspondingly.
In addition, define, for all z,

)d
S ﬂ +m@/ T Tt y)dy
We note that

f(x)

fooo Fle+y)dy 1

Thus, a service time distribution belongs to the class IMRL
(Increasing Mean Residual Lifetime) if H(z) is decreas-
ing for all z, i.e, H(x) > H(y) whenever z < y.
We note that IMRL is a weaker condition than DHR so
that DHR < IMRL. The class DMRL (Decreasing Mean
Residual Lifetime) is defined correspondingly.

A service time distribution belongs to the class NWUE
(New Worse than Used in Expectation) if H(x) < H(0)
for all x. By definition, it is clear that NWUE is a weaker
condition than IMRL so that IMRL < NWUE. The class
NBUE (New Better than Used in Expectation) is defined
correspondingly.

Finally we introduce a new class of service time dsitribu-
tions, called NBUE + DHR/(%), with a threshold parameter
k > 0. A service time distribution belongs to the class
NBUE + DHR(k) if

E[S—z|S>z]=

1Throughout the paper we use the terms “decreasing” and “increasing”
in their weak form so that the corresponding functions need not be strictly
decreasing or increasing.

Al H(z) > H(0) forall x < k,

A2: h(x) is decreasing for all z > k.

Examples related to this distribution class are given below.
In particular, we note that a sufficient (but not necessary)

condition for Al is the following one:

B1: h(x) is increasing for all = < k.

An even more stringent condition is as follows:

C1: h(z) is constant for all x < k.

Thus the class NBUE + DHR (k) includes all the distribu-
tions considered in [2].

EXAMPLE 1. (Pareto) Let o > 1 and define the tail
distribution function F(z) as in (1) so that

. 1, 0<zx<k,
F(r) =

Now the functions h(z) and H (z) are as follows:

0, 0<z<Ek,
h(z) = « .
o x> k.
-1
]{O[717 OSCC<I€,
Hz) = ¢ ka—zla—1)
: x> k;

x

Here the hazard rate is constant zero for all x < k satisfying
the condition C1. The functions h(z) and H(z) are plotted
in Figure 1 for parameter values k =1, o = 2.
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Fig. 1. Functions h(z) (solid curve) and H(z) (dashed curve) for the
Pareto distribution with parameters k =1, o = 2.

ExAMPLE 2. (Exponential+Pareto) Let o« > 1, pu > 0,
and define F(x) as follows:

e M 0<z<Ek,

Flo) = e**(ﬁ)a, x>k

X

Now h(z) is as follows:

M 0<z<k,
g, x> k.
xr



Here the hazard rate is a positive constant for all x < k&
satisfying the condition C1. The Pareto distribution (1)
presented in Example 1 can be considered as the limit of
this distribution with x4 — 0. In addition, the modified
Pareto distribution constructed in [1] is a special case of
this distribution with choices y = Ink and o = k.

ExXAMPLE 3. (Uniform+Pareto) Let o > 1,0 < p < 1,
and define F'(x) as follows:

p

1—Ex, 0<x<k,

F(z) = (1—m(§)i ook

Now h(z) is as follows:

2
k
, 0<x<k,
h(z) = (11—%:0
- > k.
z’ €T =z

Here the hazard rate is (even strictly) increasing for all = <
k satisfying the condition B1.

I1l. GITTINS INDEX

In this section we introduce the Gittins index and give
some auxiliary results.

A. Function J(a, A)
For any a, A > 0, let

. fo t) dt F(a)—F(a+A)
I 8) = fOAF( +t)ydt  [PF(att)ydt @

For a job that has attained service a and is assigned A
units of service, Equation (2) can be interpreted as the
ratio between (i) the probability that the job will complete
with a quota of A (interpreted as payoff) and (ii) the
expected processor time that a job with attained service a
and service quota A will require from the server (interpreted
as investment).
Note that, for any a,

J(a,0) = ggzh@,
_ Flo)
J(a,00) = W—H(Q).

Note further that J(a,A) is continuous with respect to A.
In addition, the one-sided partial derivatives with respect to
A are defined for any pair (a, A), where A > 0, as follows:

Kl fla+ )[R Fla+t)dt

F(a+A) fOA

0
(Jo Fla+t)d)?
FW+M((+M J(a,A))
= A — . (3)
Jy Fla+t)dt
Whether the partial derivative is continuous at point (a, A)
or not, depends on the behaviour of f(z) at point x = a+A.

+t)dt

B. Function G(a)
For any a > 0, let

G(a) = sup J(a,A), 4
A>0
which we call the Gittins index after the author of book
[9], which handles various static and dynamic scheduling
problems. Independently, Sevcik defined a corresponding
index when considering static scheduling problems in [20].
In addition, this index has been dealt with by Yashkov,
see [23] and references therein, in particular the works by
Klimov [13], [14].
For any a > 0, let

A*(a) =sup{A > 0| J(a,A) = G(a)}. (5)

By definition, G(a) = J(a, A*(a)) for all a.

Before studying the specific properties of the Gittins index
for the service time distribution class NBUE + DHR/(k),
we present in Lemmas 1 and 2 two general results that are
needed later on.

Lemma 1. G(x) > G(a) for all a,z such that a < z <
a+ A*(a).

Proof: Suppose that a < = < a+A*(a). Since G(z) =
supasg J(z, A) and G(a) = J(a, A*(a)), it is sufficient to
prove that

J(z,a+ A*(a)
First note that

—z) > J(a,A%(a)). (6)

S p@) dt
JerA I F @y dt
f;+A*(a) f(t) dt
JeA I F@) de

J(a, A% (a)) =

J(z,a+ A*(a) —x) =

Now,

J(a,A"(a))

10 S @y a

(a) F( tydt [T (@) dt
(1=p)J(z,a+ A%(a) — z),

J"-‘rA

=pJ(a,x —a)+

where p € [0,1) refers to
JIF(t)dt
N [ Oy ar
Since J(a,z—a) < G(a) = J(a, A*(a)), we conclude that
J(a,A%(a)) < pJ(a, A*(a)) + (1 —p)J (z,a+ A% (a) ~ ),

from which (6) clearly follows. ]
Lemma 2. G(a + A*(a)) < G(a) for all a such that
A*(a) < o0.

Proof: Suppose that A*(a) < oo. If A*(a) = 0,
then the claim is trivially true. Thus we may assume that
A*(a) > 0. Let A**(a) = A*(a + A*(a)) so that

A*(a) =sup{A > 0| J(a+A%(a),A) = Gla+A*(a))}.



1° Assume first that A**(a) = 0 so that
G(a+ A*(a)) = J(a+ A%(a),0) = h(a + A*(a)). (7)
Due to optimality of A*(a), we have

0

A—A*(a)t
By (7) and (3), this implies that
G(a+ A*(a)) = h(a + A%(a)) < J(a,A%(a)) = G(a).
2° Assume that A**(a) > 0. Consider what happens if
G(a+ A*(a)) > G(a). (8)
This is equivalent to
J(a+ A*(a), A™(a)) > J(a, A*(a)).
Now,
J(a,A%(a) + A™(a))
f;+A*(a)f(t) gt

a+A*(a)

- fa+A*(a)+A**(a) F(f) dt fa+A*(a)+A**(a) F(f) dt

a a

=pJ(a,a+ A%(a))+ (1 —p)J(a+ A*(a), A*(a))

=pG(a) + (1 - p)Gla + A%(a)),
where p € (0, 1) refers to
JOrAE() di
p =

f;+A*(a)+A**(a)F(t) dt
Due to (8), we thus conclude that

J(a, A% (a) + A" (a)) > G(a) = Zu>% J(a, ),

which is a contradiction. Thus the claim must be true also
in this case. ]
Proposition 1: Assume that the service time distribution
belongs to the class NBUE + DHR(k). Then
(i) A*(0) =k,
(i) G(a) > G(0) for all a < A*(0),
(ili) G(a) is decreasing for all a > k.
Furthermore, if A*(0) < oo, then
(iv) G(A*(0)) < G(0), and
Proof: (i) Let 0 < x < k. By Al we have

J(x,00) = H(z) > H(0) = J(0, 00),

which is equivalent to

F_’(:c) < _1
[ZFy)dy ~ [°Fly)dy
= T / Fu)dy> [ Fly)dy— [ Fl)dy
0 _0 0
1 1—F(x)

!

Now the last inequality implies that
G(0) > J(0,00) > J(0, ).

Since this is true for any 0 < x < k, we conclude that
A*(0) > k.

(i) This follows immediately from Lemma 1.

(iii) By A2, h(x) is decreasing for all > k. It follows
that, for any a > k and A > 0,

A J—
h t)F t)dt
Jan) = hMerDFat)
Jo Fla+t)dt
h(a+ A) [ Fa +t) dt
JEF(a+t)dt
By (3), we deduce that J(a, A) is a decreasing function of
A for any a > k. Thus, G(a) = h(a), and thus decreasing,
for all a > k.
(iv) This follows immediately from Lemma 2. [ ]

As an illustration of Proposition 1, we have computed
the functions G(a) and A*(a) for the Pareto distribution

= h(a+ A).

f‘”A*(“HA”(“) £(t)dt (1) with parameters k = 1, a = 2. The results are plotted

in Figure 2. In this case A*(0) = 2 + /3 = 3.732, and

G(0) = G(A*(0)) = h(A*(0)) = =0.536

2
2+V3
while ~(0) = 0 and H(0) = 1/2 = 0.500. For clarity, we
also mention that

{ A*(a) > 0, fora <1,
=0 for a > 1.

=
3

1.25

Gttins index
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Attai ned service

Delta
N
g O N 01w o b

Opti nmal
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Fig. 2. Pareto distribution with parameters k& = 1, o = 2. Top: Gittins
index G(a) as a function of attained service a with the horizontal dashed
line equal to G(0) and the vertical dashed line equal to a = A*(0).
Bottom: Optimal A*(a) as a function of attained service a.



1V. OPTIMAL DISCIPLINE

In this section we introduce the Gittins discipline and give
the main contribution of the paper, which reveals the optimal
scheduling discipline for the NBUE + DHR (k) service time
distributions.

A. Gittins discipline

Let 7* € II be such that service is always given to the
job with the highest Gittins index. We call this discipline
the Gittins discipline. In view of the interpretation of the
function J(a, A), the Gittins discipline serves the job (with
a certain quota) that returns the highest payoff/investment
ratio among all the jobs present in the system.

To illustrate this rule, we consider the Pareto distribution
related to Figure 2. Let us determine the structure of the
Gittins discipline in this case. Assume that the queue is
empty and that a new job arrives. Obviously this job will
start being served immediately. From Figure 2, we see that

G(a) > G(0), forall a < A*(0).

Thus, independently of the arrival process, the service of
this job will not be interrupted until it gets A*(0) units of
service. Once this happens, if no new job has previously ar-
rived, the original job will continue being served. However,
since

G(a) < G(0), forall a > A*(0),

it will be assigned an infinitesimally small quota each time.
Eventually either the service of the original job is completed
or a new job arrives. In the latter case, the server will
immediately start serving the new job in a non-preemptive
fashion until it gets A*(0) units of service. Finally, consider
the situation that all jobs in the system have obtained more
units of service than A*(0). From Figure 2 we observe that
the Gittins index decreases as the attained service increases.
Thus, among these jobs, the full priority is given to the job
with least amount of service. In other words, these jobs will
be served according to the FB discipline. Thus, we conclude
that, in this example, the Gittins discipline turns out to be
FCFS + FB(A*(0)).

Let us now return to the general setting. It is known that
the Gittins discipline 7* is optimal with respect to the mean
delay T for the M/G/1 queue, see [9, Theorem 3.28], [23,
Theorem 4.7].

Theorem1: T° < T for any 7 € II.

Note that this result is, on one hand, very strong: given
any fixed service time distribution, we are able to derive
the optimal scheduling discipline by computing the Gittins
index function G(a). On the other hand, the result is very
implicit: it does not tell straightforwardly under which
conditions some certain fixed discpline is optimal. Thus,
it remains an interesting problem to find out which forms
the Gittins discipline takes under different assumptions
concerning the service time distribution. Below we shed
light on this problem.

B. New optimality result

Below we give the main result of this paper.

Theorem 2: Assume that the service time distribution
belongs to NBUE + DHR(k). Then there is 6* > k such
that FCFS + FB(6*) is optimal.

Proof: By Proposition 1, A*(0) > k and G(a) > G(0)
for all @ < A*(0). Furthermore, if A*(0) < oo, the Gittins
index G(a) < G(0) and G(a) is a decreasing function
of a for all @ > A*(0). Thus, the Gittins discipline is
FCFS + FB(A*(0)) so that the claim follows from The-
orem 1. ]

Note, in particular, that the optimal threshold 6* = A*(0)
does not depend on the arrival rate A at all (but only on the
parameters of the service time distribution).

Another observation is that the two extreme cases, £k =0
and k = oo, correspond to the two known optimality results.
If 0* = o0, the discipline FCFS + FB(6*) reduces to FCFS.
For sure, this is the case when & = oo so that the service
time distribution belongs to NBUE. On the other hand, if
k = 0 so that the service time distribution belongs to DHR,
then G(a) is decreasing for all @ > 0 (by Propostion 1),
which implies that the Gittins discipline is FB.

Further we note that a sufficient condition for 6* < oo is
as follows:

mlingo h(z) =0,
which is due to the facts that G(0) > H(0) > 0 and G(a) =
h(a) for all a > k (see the proof of Proposition 1(iii)). This
is the case, for example, when the distribution has a power-
law tail like in all our examples in Section II.

Finally we note that, in fact, the priority jobs with attained
service less than the optimal threshold 6* may be served in
any non-preemptive fashion. Thus, FCFS may be replaced,
for example, by the Last-Come-First-Served (LCFS) or the
Random-Order-Service (ROS) disciplines.

V. NUMERICAL RESULTS

In this section we give some numerical results related to
Theorem 2 to cast light on the optimal threshold 6*, as well
as the maximum gain achieved by the optimal discipline.
Throughout this section we consider the Pareto service
time distribution (1), which also appeared in Example 1 of
Section 1.

We start by recalling the expressions for the conditional
mean delay for disciplines FB and FCFS + FB(#) found,
e.g., in [12]. The conditional mean delay for the FB disci-
pline with service time requirement of x reads as follows:

TFB(x) _

1—pe

Here TV, refers to the mean workload (i.e., unfinished work)

in an M/G/1 queue with truncated service times S A x =

min{S, z} given by the Pollaczek-Khinchin formula,
AE[(S A z)?]

We=————,
2(1 = pa)



with p, = AE[(S A z)] referring to the truncated load. For
the FCFS + FB(#) discipline, the conditional mean delay
reads as follows:

W{-} + x,
D ),

TFCFS+FB(9) 0<x<4d

T > 0.

Given the conditional mean deIay_T”( ) for. aII a: we get
the (unconditional) mean delay by 7 fO x) d.
Note that, since the density f(x) = 0 for all z < k We have

TFCFS-i—FB( ) _ _ 7B ©)

Furthermore, the mean delay for the FCFS discipline is
known to be
_ AB[S?]
S 2(1-p)
We note that for the Pareto service time distribution
=F —FB
< oo only if a > 2, while 7"~ < oo for all o > 1.

T s + E[9].
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Fig. 3. Pareto distribution with parameters £ = 1, o = 2. Top: Mean

delay ratio TFCFSH:B(Q)/TFB as a function of threshold 6 for loads
p = 0.5 (upper curve) and p = 0.8 (lower curve). Bottom: Minimum

mean delay ratio TFCFS+FB(6 )/TFB as a function of load p.

The results presented in Figure 3 are related to the
Pareto distribution with parameters & = = 2. With
these parameter values, T = < oo but T' > = oo for
any load p > 0. We have depicted the mean delay ratio
TFCFSWB(Q)/TFB for & > k and loads p = 0.5 and 0.8.
The curves start from 1 as stated by (9). The maximum gain
is achieved at point * = A*(0) = 3.732 (independently
of the load), where the mean delay reduces by 18 %
[13 %] for load 0.8 [0.5] as FB is replaced by the optimal
FCFS + FB(6*) discipline.

We have also plotted in Figure 3 the minimum mean delay
ratio T > TFE( /T " for different loads p. Note that,
even though the optimal threshold 6* does not depend on
the load, the gain obtained by the optimal discipline does.

The maximum gain of 18 % is achieved with load p = 0.8.
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Fig. 4. Pareto distributions with parameters fixed & = 1 and varying
«. Top: Optimal threshold 6* = A*(0) as a function of «. Bottom:
Minimum mean delay ratios TFCFS+FB((9 )/TFB (solid lines) and
rCFS+FB(OY )/TFCFS (dashed lines) as a function of « for loads
p = 0.5 (upper curves) and p = 0.8 (lower curves).

The results presented in Figure 4 are related to the Pareto
distributions with fixed ¥ = 1 and varying . We have
plotted the optimal threshold 6* = A*(0) as a function of
the shape parameter «. We recall that this optimal threshold
does not depend on the load p as long as « is fixed. As seen
from the figure, the optimal threshold becomes larger for
larger values of «.. The growth is rather linear and moderate.

In addition, we have compared the optimal
FCFS + FB(6*) discipline to the FB and FCFS disciplines

by plotting in Figure 4 the minimum mean delay ratios

TFCFSJrFB /T and TFCFS+FB( *) /TFCFS s a

function of the shape parameter « for loads p = 0.5
and 0.8. As « is varying, the arrival rate A is modified
accordingly to keep the load fixed. As we see, when
compared to FB, the greater «, the greater the gain. But
when compared to FCFS, the gain is maximal for small
values of «, and it starts to decrease as « increases from
value « = 2 on. In addition, one can observe that the
two curves related to the same reference discipline with
different loads do not cross each other. Thus, the gain
achieved with the heavier load p = 0.8 is greater than that
of the lighter load p = 0.5 when « ranges from 1.3 to 3.1.



V1. IMPACT OF AN UPPER BOUND

In this section we consider the case where the service
time distribution is upper bounded (contrary to the previous
sections), and investigate the impact on the structure of the
optimal scheduling discipline by a numerical example. In
particular we consider an upper bounded Pareto distribution
(cf., for example, [6]) defined by

1, 0<x<k,
= 1— (k/x)*
Flz)y=¢ 1 - —F—F——, kE<z<p,
) T (k/p)" ’
0, T 2 p.
The hazard rate is given by
{ 0, 0<z<k,
h(z) = - k<z<
5 < D
z (1= (z/p)*)

It is easy to see that lim,_.,h(z) = oo. Intuitively,
this means that as the attained service gets close to p,
the probability that the job will depart approaches 1. We
also note that the hazard rate is strictly decreasing for all
E < 2 < p/(1+ a)/e, and strictly incresing for all
x > p/(1+ «)¥/. Let us consider a particular example
with parameters £ = 1, « = 2 and p = 20. For these values
p/(1+a)'/* = 11.547. The hazard rate h(z) is plotted in
Figure 5.
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Fig. 5. Hazard rate h(z) for the upper bounded Pareto distribution with
parameters k =1, p = 20, a = 2.

The Gittins index G(a) as well as the optimal quota
A*(a) for this example are plotted in Figure 6, allowing
us to determine what is the optimal scheduling discipline.
We expect that our qualitative conclusions will also be valid
for a wide variety of the choice of the parameters.

The Gittins index has a clear structure and can be divided
into three parts: (i) 0 < a < A*(0) = 3.855, (ii) 3.855 <
a < 8.284, and (iii) 8.284 < a < p = 20. In the interval
(i) we have G(a) > G(0) for all a, and in the interval (ii)
the Gittins index G(a) is decreasing for all a. Hence, in
the intervals (i) and (ii), the optimal policy is equal to what
we have already seen previously, that is, non-preemptive
service until A*(0) = 3.855, and FB from that on. However,
in the interval (iii), G(a) is increasing for all a, and as a
consequence the structure of the optimal discipline changes
when a job attains service equal to 8.284.

G ttins index
= N
a1 = a1 N ol w

e
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Fig. 6. Upper bounded Pareto distribution with parameters k£ = 1, p = 20,
o = 2. Top: Gittins index G(a) as a function of attained service a with
the horizontal dashed line equal to G(0) and the two dashed vertical lines
equal to a = A*(0) = 3.855 and a = 8.284, repectively. Bottom: Optimal
A*(a) as a function of attained service a.

To explain this let us assume that there are two jobs in
the system with the same amount of attained service a with
3.855 < a < 8.284. These two jobs will be served with a FB
discipline, that is, they will get served in parallel and each
one will get a half of the server’s capacity. When they reach
an attained service equal to 8.284, the optimal discipline will
pick up one of the two jobs, and since G(a) is increasing
for all ¢ > 8.284 it will start serving it in a non-preemptive
fashion. Suppose that when the job has attained service of
12.5 units, a new job arrives. Since the Gittins index at
this point satisfies G(12.5) < G(0), the new arrival will
start being served. Interestingly, the new job will be served
until it obtains 6.436 units of service, where G(6.436) =
G(12.5) = 0.347. At this moment, the scheduler will switch
jobs, and it will start serving the job whose service had been
interrupted. Once the Gittins index of this job exceeds G(0),
its service will not be interrupted anymore by new arrivals,
and hence it will continue being served until it leaves the
system.

Therefore, we conclude that the optimal policy in each of
the intervals will be (i) FCFS, (ii) FB, and (iii) FCFS. But
interestingly, the priority given is not in that order. A job in
the interval (iii) may be served with a higher priority than
other jobs when its Gittins index exceeds G(0).

VIlI. CONCLUSIONS

In this paper we have studied the problem of optimal
scheduling in the M/G/1 queue when the service time dis-
tribution has a DHR tail. In particular, we have considered



the Pareto distribution, which is used in certain queueing
theory related problems, for example, when modelling flow
sizes in the Internet. Contrary to what is optimal for pure
DHR service time distributions, we show that the optimal
scheduling discipline for the Pareto distribution is not FB,
but rather a two-level scheduling discipline, where jobs
that have attained service less than a certain threshold are
served in a non-preemptive way. The gain achieved by the
optimal discipline (as compared to FB) is most remarkable
for medium or heavier than medium loads. Only for the
lightest or the heaviest loads possible, the gain remains
negligible.

In fact we have found the optimal discipline not only
for the Pareto service time distribution but for a whole
class of distributions that satisfy the NBUE condition for
small service times and the DHR condition for the tail.
In addition, we have briefly illustrated the case where the
service time distribution has a finite support (like the upper
bounded Pareto distribution). Continuing into this direction
is interesting but also challenging.

In the future, we also plan to apply the Gittins index
approach in other settings, like in multiple servers scenario,
or in non-work-conserving queueing systems.
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