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Abstract. This paper presents an extension of the classical Quanti-
zation Index Modulation (QIM) data-hiding scheme in the context of
valumetric distortions. This scheme uses a fractal quantization structure
during the detection but also a content dependent quantization grid to
achieve both global constant robustness and the ability to recover the wa-
termark after non-linear valumetric distortions. Previous works are first
presented. Then the construction of a floating quantizer that addresses
the problem of non-linear transformations is introduced. The embedding
and detection schemes for digital image watermarking are afterward in-
troduced, the main characteristic of this scheme is the fact that the
detection scheme can use a hierarchical set of quantizers to deal with
non-linear valumetric transforms while preserving an average constant
quantization step. Finally the performance of this scheme and the com-
parison with other robust quantization schemes considering valumetric
transforms and noise addition are presented.

1 Introduction

Quantization watermarking techniques1, first introduced by Chen and Worwell
[1] are widely used in watermarking applications because they provide both
robustness to the AWGN channel and high capacity capabilities while preserving
the fidelity of the host document. Basically, the Quantization Index Modulation

1 The work described in this paper has been supported (in part) by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT and
the National French project Fabriano.



(QIM) scheme uses one different quantizer for each code word that is transmitted
and the set of quantizer is span on the range of possible values that can be
taken by each sample. For example, using a two stages codeword (e.g. a bit of
information) requires two disjoints quantizers. The embedding rule of a bit b in
a coefficient C is the following:

If b[k] = 1 : Cw = 2∆E
(

C+∆/2
2∆

)

− ∆/2

If b[k] = 0 : Cw = 2∆E
(

C−∆/2
2∆

)

+ ∆/2
(1)

Where ∆ represents the distance between one quantized value and the next one,
and E(x) is the integer part of x. For security issues, it is also possible to add a
key-dependant random signal on the future quantized sample before performing
the quantization step and to remove the random signal (call the dither signal)
on the quantized value. Chen et. al have first introduced such a method called
dither modulation (DM) and have combined it with a distortion compensation
module.
However the usage of quantization techniques such as QIM or DM are not
straightforward in real application scenarios such as video watermarking where
valumetric distortions are often present during the broadcasting process.

1.1 QIM/DM and valumetric distortions

A valumetric distortions can be defined by any function f(p) that modifies the
value of the original pixel p. In practical cases, f() can be either linear (e.g.
f(p) = α(p)) and represents a gain, or non-linear to represents more widely used
distortions. For example, the gamma correction function Γγ(p), which has to be
especially considered in video watermarking applications when the watermarked
signal has to suffer DA/AD conversions, is given by:

Γγ(p) = pMAX

(

p

pMAX

)γ

where pMAX is the maximum value of a pixel. A valumetric transform will
consequently alter the quantized value in such a way that, if pw − f(pw) > ∆/2,
the decoding step will probably lead to an error. Such an effect is depicted on
Fig. 1 which outlines the displacement of the different quantized values after
linear and non-linear valumetric transforms.

1.2 Previous works

The goal of this subsection is to present a brief overview of the other works that
address the problem of QIM/DM detection in presence of valumetric distortions.

Histogram analysis: Eggers et. al have presented a scheme to address the
case of an affine valumetric distortion f(p) = αp + β [2]. This method is based



Fig. 1. Effects of valumetric transforms on quantized values: the initial quantization
grid (first axis) cannot be used to decode the watermark neither after a linear transform
(second axis) nor after a non linear transform such as the Gamma transform (third
axis). In many cases, the decoding will lead to erroneous results.

on the analysis of a two-dimentional probability density function (pdf) that de-
pends on the received sample r and the range of the possible deviations for one
secret key k. The resulting pdf presents periodical components for each deviation
and the period is proportional to α∆. Consequently the authors propose to ap-
ply a DFT and a phase shift function for each deviation of the two-dimensional
PDF before summing the spectra of the pdfs on the k axis. The maximum of
the overall spectrum reveals then the term α and the term β is derived from
the phase at the location of the maxima. In [3] the authors have also addressed
the problem of the non-linear gamma transform by trying to invert the gamma
transform before the estimation of α and β but this method need a full search
of the γ parameter and consequently increase the complexity of the algorithm.

ML estimator: Lagendijk et. al have proposed a similar approach than the
previous one that also uses the Fourier transform of the histogram to estimate α
[4]. They also have presented in [4] and [5] an estimation of parameter α that is
based on the Maximum Likelihood (M.L.) estimator. The pdf of the watermarked
image after scaling and noise addition is first expressed as f(p, α, σ2

n) where σ2
n

denotes the noise variance. The estimates α̂ and σ̂2
n parameters are calculated

performing a search on the Likelihood function:

(α̂, σ̂2) = arg max
α,σ2

n

L(α, σ2
n) = arg max

α,σ2
n

log fp(p, α, σ2
n)

It is important to notice that the likelihood function is expressed for an host
signal and a noise that have both gaussian distributions. The model of the host
signal does not represent typical distributions of natural images. This can be
seen as a limitation of this approach. Moreover this approach is based on a fixed
valumetric distortion model (in this case linear), and the use of ML estimator
for nonlinear functions is not straightforward.

Host proportional embedding: Another way to deal with the problem of
valumetric transforms is to use a quantification step ∆p that is constructed in
such a way that it is proportional to a valumetric feature of the signal. Pérez-



Gonzaález et. al.[6] have proposed to use a function g(p) which has the property
that g(αpi) = αg(pi) as a weighting function of the initial quantization step2.
This function can be for example the ln vector norm given by:

g(pi) =





1

L

i−1
∑

j=i−L

|pj |
n





1/n

For example if n = 1 and pj ≥ 0 for all j, the quantization step is proportional
to the mean of the vector pi. If n = 2, it is then proportional to the standard
deviation of pi. The authors give the proof that when L → +∞, the presented
scheme, called Rational Dither Modulation, is equivalent to the classical dither
modulation scheme presented by Eggers. Another similar scheme has been also
proposed at the same time by Oostveen et. al[7], in this scheme the proportional
function is chosen as the averaging3 function (n = 1).
As we will see in section 3, host proportional embedding is adapted for linear
valumetric functions when L is large enough. Nevertheless the performances of
proportional embedding quantization schemes are poor for non-linear transforms
beacause the function g(p) has not special properties to cope with a nonlinear-
ity). Additionally for affine transforms, such schemes cannot handle the addi-
tion of an offset value. Another important drawback of proportional embedding
schemes is the fact that the quantization step ∆ is not constant. If L ¿ +∞ and
n = 2 for example, the quantization step is less important in homogeneous areas
than in textured areas. This last point can be a serious handicap considering
addition of noise because homogeneous areas will be more sensitive to provide
detection errors than textured areas.

2 A floating quantization scheme with a fractal structure

As we have mentioned previously, the presented schemes have several drawbacks:
histogram analysis enables to identify a linear distortion but its extension to non
linear distortions is not straightforward, ML estimator depends both on a host
model and a distortion model, host proportional embedding is adapted for linear
distortion but not to affine or non linear distortions and moreover the quantiza-
tion step ∆p is constant only for stationary iid images.
The objectives of the presented scheme are twice, the first is to provide a quan-
tization scheme that is robust both to linear and non-linear distortions and the
second is to provide a constant quantization step for each watermarked coeffi-
cient, or at least to bound the range of values that can be taken by the quanti-
zation step ∆.
In this paper, we propose first to use a floating quantization grid that is based

2 pi represents a vector composed by i neighbour pixel values that have been centered.
3 In this work, the authors do not use the absolute value term because they only

consider pixel (positive) values otherwise the two schemes can be considered as
similar.



on the local features of the host coefficient to provide robustness to both lin-
ear and non linear transforms. A nearly constant quantization step is secondly
guaranteed using a fractal set of quantizers. These ideas are presented in the
following sections.

2.1 Dealing with non-linear distortions

A classical solution to cope with a non-linear distortion f(p) is to locally approx-
imate the function f() by a linear function whose the slope is an approximation
of the derivate of f(p). To estimate this derivate, we have can use the fact that
images are not idd signals but are more often highly correlated. For example
adjacent pixels of an image have highly similar values. We choose in this paper
the two neighbours of a given pixel because these three values are often highly
similar for natural images. The quantization step ∆f is afterward constructed
by taking the minimum pMin and the maximum pixel pMax of these three values
respectively as the lower and upper bounds of the quantization grid. Because
such a grid relies on the host signal and is specific for each pixel, we have named
it a floating quantization grid. The embedding of one bit of information is after
done quantizing the middle value pMid. Fig.2 depicts the principle of the float-
ing quantizer. For clarity purposes only two quantized values p1 and p0 are used
in this figure. We can notice that if the distorted values p′

1 and p′0 are reliable
approximations of their equivalent linear transformations, the respective approx-
imation errors ε1 and ε2 are small under the condition that the nonlinearity is
not too important.

A floating quantizer has however to deal with several limitations that have
to be addressed.
The first one in the fact that the embedding rate is limited to one third of the
total number of sample in the host signal. This is due to the fact that three
samples are needed to embed one bit.
The second point to adress is the case where pMax = pMin. It is however easy
to solve this issue by increasing pMax or decreasing pMin in such a way that
pMax − pMin = ∆min.
The last limitation of this proposal is the fact that the resilience against ad-
ditive noise is not constant because we choose a quantization step ∆f that is
proportional to the range distance r = pMax − pMin. This fact is by nature con-
tradictory with the essence of a quantization based-scheme which aims to give an
equal quantization step for each watermarked coefficient. We have consequently
decided to adopt a specific quantization rule R that is chosen according to the
value of the quantization step r: ∆f = R(r). This last point is addressed in the
next subsection.

2.2 Using a fractal quantization structure:

The main idea is to build a set of N hierarchiezed quantizers Q = {Q1, ..., QN}
such that it is possible to have a bijection between one quantizer and one specific



Fig. 2. Effect of a floating quantizer with the function Γ () considering γ = 2.

value r. In order to have a nearly constant quantization step ∆f for each quan-
tizer one might fix the minimum and maximum possible values of ∆f by setting
α1∆ ≤ ∆f ≤ α2∆ where α1 ≤ 1, α2 ≥ 1 and ∆ is an arbitrary fixed quanti-
zation step. To guaranty that there are no overlapping or impossible affectation
between on quantizer and its adjacent quantizers these parameters are naturally
linked by the relation α2 = 2α1. The choice of α1 depends of different kinds
of applications. For example if we want to guarantee a minimum quantization
step ∆, this leads to α1 = 1. On the other hand, if we consider an uniform host
distribution and want an average quantization step equal to ∆, we then have to
choose α1 = 0.66. The value of the floating quantization step ∆f is given by the
relation:

∆f =
r

2N(r)
if N(r) > 0 (2)

∆f = ∆ if N(r) = 0 (3)

where the power function N() is given using the positive integer part function
E+():

N(r) = E+

(

log2

(

r

α1∆

))

The calculus of ∆f naturally leads to the construction of the set of quantizers Q
because each different value of N(r) is associated to a number of quantization
values. Fig. 3 depicts the set of quantizers which mainly presents a fractal struc-
ture: the basic quantization pattern Q1 is repeated on Q2, Q3 and Q4 using a



contraction factor respectively equal to 1/2; (1/2)2 and (1/2)3. Only the quan-
tizer Q0 is not a member of the fractal set and this quantizer can be additionally
used when initially pMax = pMin. This fractal structure has the main advantage
to avoid to have different quantization cells on the same location on the different
axes. Fig. 4 represents the repartition of the set of quantizer Q in function of the
range value r. We have decided to note each upper border of the quantizer Qi

by qi. Note also that the quantizer Q0 corresponds to the case where N(r) = 0
and in this case, because the value of r is considered as too small, the quantizer
step is forced to be equal to ∆.

Fig. 3. Building of the set of quantizers. Quantizers that are in the gray area represent
a fractal structure. The choice of the quantizer is determined by the value of r.

Fig. 4. Repartition of Q in function of r for α1 = 1.

2.3 Embedding scheme

Based on the building of the specific floating quantizer, we can afterward apply
a classical quantization scheme. The presented scheme is basic but it can be
easily improved by using a dither signal or a distortion compensation module



as proposed by Chen. The embedding of a message b(k) of size N is done by
embedding one bit b for each triplet of the original image. The main steps of the
embedding procedure are listed below:

– Select a triplet of pixels (pi, pj , pk). Note that better performance for non-
linear distortion will be obtained if this triplet corresponds to adjacent pixels.

– Order the triplet in (pMin, pMid, pMax) and compute r = pMax − pMin, ∆f

from (2) and (3) that will provide Qi.

– If Qi 6= Q0 quantize pMid according to Qi and b.

– Else quantize both pMid and pMin for b = 0 or pMid and pMax for b = 1.

– Select another triplet that was not selected before and embed another bit b.

2.4 Detection scheme

The detection procedure has to consider that the received image has undergone a
valumetric transform f(). This implies that a given pixel that has been quantized
using quantizer Qi may be decoded using another quantizer. To deal with this
issue we have first to constrain the possible variations of f() assuming that
β1 ≤ f ′(p) ≤ β2. Assuming that (β1, β2) ∈ [1/2; 1] × [1; 2], the pixels that are
watermarked using a given quantizer Qi may be decoded using Qi and Qi−1 or Qi

and Qi+1. Note that in these particular cases, because we use a set a 2 quantizers,
the robustness may be divided by 2 or 4. Therefore we can also consider another
alternate decoding scheme that consists in using only the decoder Qi. This is
due to the fact that after a valumetric distortion, an initial pixel watermarked
using Qi may still be decoded using Qi if the value of r has not changed of
quantization cell. The differences between these two decoders will be assessed in
the next section. Finally, the different steps of the decoding algorithm are listed
below:

– Select (pi, pj , pk).

– Compute r and ∆f .

– Using the fractal detection: if r > β1qi−1 perform the detection using both
Qi and Qi−1 and choose the nereast quantization cell considering the two
quantizers.

– Using the fractal detection: if r < β2qi+1 perform the detection using both
Qi and Qi+1 and choose the nereast quantization cell considering the two
quantizers.

– Else or for the classical floating quantizer: perform the detection using Qi.



3 Results and comparisons

In this section we outline the capability of the presented scheme to achieve ro-
bustness for linear and non-linear distortions and noise addition. We also com-
pare these performances with classical and proportional QIM/DM embedding
and detection schemes. In each cases, 1/3 of the pixels are watermarked for both
the lena image and baboon image. This is done to achieve the same capacity of
embedding. For proportional quantization, we have chosen to use a proportional
function that skips the future quantized coefficients to improve the estimation
of quantization step. Note that in [6], the authors compute the function g(pi)
using watermarked samples which is an equivalent way to cope with this prob-
lem. We have tested two neighbourhood size: N = 10 and N = 100 pixels and
we also used n = 2 which means that the quantization step is proportional to
the standard deviation of the selected samples. The floating quantization scheme
is tested using both a fractal decoder with β1 = 0.7 and β2 = 1.42 and a non-
fractal decoder.
Fig. 5 and Table. 1 presents the performances of the floating quantization scheme
to non-linear distortions (gamma correction and histogram equalization) for dif-
ferent Document to Watermark Ratios.
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Fig. 5. BER results after gamma correction γ = 0.5 for the lena image.
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Fig. 6. BER results after linear valumetric transform α = 0.5 for the lena image.

In Fig. 5, we can notice that the possibility to use multiple quantizers (named
in the figure by Fractal quantizer) improve the decoding performances com-
paring to only one quantizer. Moreover this figure illustrates the fact that the
proportional embedding is not adapted to non linear distortions even for little
neighbourhood size. In this last case, this is mainly due to the fact that the
quantization step of proportional schemes can be too small. For example, if the
neighbourhood represents a constant portion of the image, the distance between
watermarked samples representing 0 and 1 will be null and will consequenlty lead
to decoding errors. The effect of the used valumetric distortion is illustrated in
Fig. 8.

Table 1 presents the robustness of the floating quantization scheme after
histogram equalizations that are equivalent to an image dependent nonlinear
transform. Fig. 9 represents these functions for the two images and Fig. 8 shows
the result on the Lena image. We can notice that the performance of the floating
quantization is once again superior to the use of proportional embedding but
also depends of the nature of the image. For example, the baboon image, which
is more textured than the lena image, offer weaker performance: as mentioned
before, this is due to the fact that the linear approximation is not reliable when
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Fig. 7. BER results after gaussian noise addition for the lena image.

r is too important, e.g. when the triplet belong to a textured area.

BER (%) fractal non fractal proportional

lena 3.0 3.0 36.2
baboon 12.3 15.5 58.8

Table 1. BER results after histogram equalization for two different images
(WDR=27db, neighbourhood size=200).

Fig. 6 presents the performance of the different schemes when the valumetric
transform is linear for different DWRs. A scaling factor equal to 0.5 has been
applied on the pixels of the watermarked image and no noise is added. Here
the proportional quantization scheme can outperform the floating quantization
scheme if the size of the neighbourhood is important enough (N = 100). Note
however that contrary to floating quantization, proportional quantization is ro-
bust to an affine transform f(x) = ax + b only when b = 0.

Fig. 7 compare the robustness after Gaussian noise addition for a DWR
equal to 25.35dB. In this case, we can see that the classical QIM/DM scheme



Original lena lena after Gamma transform (γ = 2)

Fig. 8. Effects of the gamma transform for the presented tests images.

lena baboon

Fig. 9. f(p) for histogram equalization on two images.

outperforms all the other schemes, and that the floating quantization scheme
is weaker than the proportional quantization scheme for a large neighbourhood
size (N = 100). This is due to the fact that ∆f is proportional to r that is also
subject to noise. When the neighbourhood size is not enough important however,
the proportional quantizer scheme is less efficient that the floating quantizer be-
cause a minimum quantization step is not guaranteed with the first solution.

4 Concluding remarks and perspectives

We have presented in this paper a practical implementation of a quantization
watermarking scheme that is more robust to non-linear distortions than previous
proposed schemes. This performance gain is mainly due to the use of a floating
quantizer and the adoption of a fractal set of quantizers.
Future works will address the capacity limitation of this scheme by performing



an iterative embedding on each sample to achieve a capacity equal to one bit
per sample.
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