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Abstract 8 

 9 

Field delineation is an essential preliminary step for the design of management maps for 10 

grape production. In this paper, we propose a new algorithm for the segmentation of 11 

vine fields based on high-resolution remote sensed images. This algorithm takes into 12 

account the textural properties of vine images. It leads to the computation of a textural 13 

attribute on which a simple thresholding operation then allows us to discriminate 14 

between vine field and non-vine field pixels. The feasibility of the automatic delineation 15 

is illustrated on a range of vineyard images with various inter-row distances, grass 16 

covers, perspective distortions and side perturbations. In most cases it produces precise 17 

delineation of field borders while the parcel under consideration remains separate from 18 

the rest of the image. 19 

 20 
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Introduction 1 

 2 

In the Bordeaux wine producing area of France, all parties involved in wine production 3 

(wine growers, wine grower unions, regional/national authorities, researchers, etc.) are 4 

interested in knowing the vineyard better. They expect various rising technologies (Hall 5 

et al., 2003; Tisseyre et al., 1999; Tisseyre et al., 2006) to provide them with detailed 6 

maps of vine parcels at low cost. Inner-field maps of the soil conductivity (Dabas et al., 7 

2001), of the Nitrogen status, of the hydric stress, of disease infestation or of vegetative 8 

vigor (Hall et al., 2003) can be a great help in the management of vineyards. Such maps 9 

enable the delineation of management zones inside the vine parcels for adapted supply 10 

of pesticides, fungicides and fertilizers. They can also be used to adapt the grass 11 

covering, to remove the surplus bunch of grapes ("green harvest") or even to assess the 12 

best number and location of sampling points for the prediction of the vintage quality.  13 

 14 

Among the new rising technologies, remote sensed multi/hyper spectral imagery has 15 

shown a huge potential in precision viticulture (e.g. Hall et al., 2002; Hall et al, 2003). 16 

Very high resolution images (less than 0.5 m per pixel) even allow detailed description 17 

of vines at the scale of the plant (e.g. Marguerit et al., 2006). The processing of such 18 

high resolution data takes advantage of specific image analysis tools. For instance, 19 

automatic detection of vine rows, addressed in previous works (Bobillet et al., 2003; Da 20 

Costa et al. 2006), enables very accurate biomass measurements to be made. Those 21 

specific tools take into account the specific spatial layout of the vegetation inside the 22 

vine parcels which, by the way, have to be previously segmented from the remainder of 23 

the image. Although GPS (Global Positioning System) tracking is well adapted to give 24 
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information about parcel boundaries, it is not so appropriate for a recurrent survey of 1 

management zones in large areas. A complete image-based framework from the aerial 2 

image acquisition to the design of in-field management maps, including the delineation 3 

of parcels would thus constitute an efficient, easy-to-use and flexible tool for end-users. 4 

 5 

The present work is intended to be integrated in a multi-purpose image processing 6 

toolbox directed at the analysis of vineyard images. We focus on the preliminary step 7 

which consists of the automatic delineation of a specific parcel, i.e. on the segmentation 8 

of this parcel from its neighborhood (roads, buildings, trees and other fields). The 9 

chosen segmentation approach has to be self-consistent in the sense that it makes no use 10 

of external positioning data or GIS (Geographic Information System) facilities. 11 

Furthermore, as a human operator can do the delineation on his own by manually 12 

pointing at a few vertices on the image, the automatic segmentation has to be 13 

computationally efficient. 14 

  15 

Segmentation algorithms have been widely used in remote sensing. They are commonly 16 

classified into three groups: statistical approaches, “split and merge” algorithms and 17 

region-growing methods. Statistical approaches are based on a joint statistical modeling 18 

of the region shapes and of their contents. Among these approaches, Markovian models 19 

are frequently used due to their flexibility (Geman & Geman, 1984). The only drawback 20 

of such statistical approaches is the huge computation time needed to guarantee optimal 21 

segmentation. Sub-optimal algorithms exist but their reliability strongly depends on 22 

their initialization. The split and merge algorithms are also common segmentation 23 

methods. They are easy to implement but tend to favor rectangular regions. Moreover, 24 
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they are very sensitive to the threshold values used to determine the homogeneity and 1 

the similarity of the regions (Spann & Wilson, 1985). The third group of approaches 2 

consists of region-growing methods (Brice & Fennema, 1970; Chang & Li, 1994). This 3 

class of methods is well suited to the case of the delineation of a unique region in a 4 

picture. In previous works, Da Costa et al. (2004) have proposed a segmentation 5 

approach based on a textural description of vine rows with Gabor filters, associated with 6 

a region growing algorithm. The main drawback of the approach is once again its 7 

prohibitive computational time. 8 

Recently, Rabatel et al. (2005) have presented a multi-stage segmentation approach for 9 

unsupervised vine parcel detection. It combines a textural description of images using 10 

co-occurrence matrices, a pre-segmentation step using geodesic active contours, and a 11 

final classification of segmented areas based on Fourier descriptors.  12 

The need for specific multi-stage approaches such as those described above can 13 

generally be explained by the lack of a suitable textural description. Indeed, if some 14 

textural feature discriminates efficiently between vine and non-vine pixels, a simple 15 

thresholding of the feature value should be sufficient for a good delineation of the 16 

region of interest. 17 

 18 

In this paper, we will describe a new algorithm for the segmentation of vine fields based 19 

on their textural properties. It can easily be extended to any crop field image provided 20 

that the latter consists of a periodic layout of anisotropic patterns. Our algorithm is 21 

comprised of four main steps: 22 

1. The first step is the automatic rotation of the image so that the vine rows 23 

comprising the parcel take the horizontal position. This step needs a light 24 
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supervision of the end-user who previously selects a window inside the field he 1 

wants to process. The field orientation is then automatically computed in this 2 

window and is used for the image rotation. 3 

2. Textural features are computed based on the IRON operator (Michelet et al., 4 

2004). These features account for the grey-level homogeneity of texture in the 5 

four natural directions (right, left, up and down). The four textural features are 6 

combined into a single attribute. 7 

3. A thresholding of this attribute is performed which allows the segmentation of 8 

the field. 9 

4. Final morphological operations (hole filling, connected component extraction 10 

and morphological closing) are processed to obtain a fine delineation of the vine 11 

parcel. 12 

In the results section, we evaluate qualitatively the use of our delineation stage using a 13 

set of various vineyard images. The influence of different parcel configurations (various 14 

inter-row distances, grass covers, perspective distortions, side perturbations …) on the 15 

delineation accuracy will be discussed.    16 

 17 

Material and methods 18 

 19 

Acquisition method and images 20 

Our study was carried out on very high resolution remote sensed images. Pictures were 21 

taken from a plane at resolutions of about 0.15 m per pixel. The available data (Fig. 1) 22 

were either color or multi-spectral images. All pictures were taken over vineyards in the 23 

Bordeaux area during the 2002 growing season, from April to August. 24 
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 1 

The method described in this paper applies to grey scale images. Such images can be 2 

obtained from any mono-, multi- or hyper-spectral images by a linear or non linear 3 

combination of the spectral bands. Out of all possible combinations of spectral bands, 4 

the Normalized Difference Vegetation Index (NDVI) or the Ratio Vegetation Index 5 

(RVI), widely used in agricultural engineering, are meaningful measures of plant vigor 6 

(Pearson and Miller, 1972; Rouse et al, 1974). The choice of the appropriate 7 

combination depends on the context and is not addressed here. 8 

 9 

          [FIGURE 1] 10 

 11 

The delineation algorithm we propose relies on the calculation of a textural attribute 12 

that describes the parcel texture. The texture can be viewed as a periodical layout of 13 

anisotropic patterns, the vine rows. It is assumed that there exists a direction of 14 

anisotropy anywhere in the parcel and that this direction is roughly constant throughout 15 

the parcel. To avoid any problem linked to image distortion, care must be taken that the 16 

camera axis is vertical during data acquisition or that the images are geometrically 17 

rectified before processing. 18 

The attribute combines four features based on the operator IRON (Michelet et al., 19 

2004). 20 

 21 

The IRON operator and the heterogeneity feature 22 

The original IRON operator (Michelet et al., 2004) is defined for a given orientation θ 23 

(see Figure 2). It consists of a network of L lines (with orientation θ) and p points per 24 
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line. The spacing between points is one pixel wide, as well as the spacing between lines. 1 

The lines lay on both sides of the pixel of interest if a symmetric network is desired, or 2 

only on one side for an asymmetric one. The grey level intensities of the network points 3 

are obtained by 2-D interpolations.  4 

Figure 2 shows the symmetric and asymmetric operators consisting of L = 3 lines with 5 

orientation θ = 20° and p = 5 points per line. 6 

 7 

[FIGURE 2] 8 

 9 

The textural feature to be processed must be selected to reveal the local orientation of 10 

the texture. The textures that we address in our application are homogeneous in the 11 

direction of vine rows and show a high variance perpendicular to the rows. Hθ , defined 12 

below, is one example of features measuring grey level heterogeneity along the 13 

direction of the IRON network: 14 
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where vi,j,θ is the interpolated grey level on the ith point from the jth line of the θ-oriented 16 

network (Fig. 2) ⋅  denotes the absolute value. 17 

The feature value should be minimal in the direction of the texture and maximal 18 

perpendicularly to this direction. 19 

To characterize the vine parcel texture, the heterogeneity feature is computed on four 20 

asymmetric networks in the directions θ, θ + π/2, θ + π and θ + 3π/2, where θ is the 21 

orientation of the parcel which is considered to be known. Using four asymmetric 22 

features instead of two symmetric features allows us to obtain a much more accurate 23 
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segmentation on the border of the field. A suitable combination of these four features 1 

should be sufficient to discriminate between vine and non vine pixels. 2 

 3 

Shape and size of the network 4 

The length p and the width L of the network have to be chosen so that IRON is both 5 

selective and robust. 6 

IRON is efficient if its selectivity to orientation is good. The heterogeneity feature must 7 

be low if the network is in the direction of the rows but must increase rapidly if the 8 

network deviates from this direction. The longer the lines are, the higher is the 9 

selectivity. At least, the lines must be long enough to be sensitive to transitions between 10 

rows and inter-rows.  However, if the lines are too long, the operator is not local 11 

anymore. In other words, the features to be computed on the network do not refer to 12 

local texture characteristics, which is a critical issue especially on the parcel boundaries. 13 

Concerning the width of the network, the length p of the lines being chosen, the number 14 

of lines L affects its noise robustness. Increasing p increases the noise robustness of the 15 

IRON operator.  16 

In practice, using a balanced network (L = p) with a length p between one or two inter-17 

row distances leads to accurate segmentations.  18 

 19 

Rotating the image 20 

The processing of the heterogeneity features raises the problem of 2-D interpolation 21 

since the intensities of the network points have to be estimated from their neighborhood. 22 

To reduce the computational cost related to interpolations, Michelet et al. (2004) 23 

proposed rotating the image instead and using a horizontal network. 24 
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For that purpose, the global orientation θ of the field is first estimated using the 1 

orientations computed within a window selected by the end-user. Local orientations are 2 

computed on local extrema using the valleyness operator introduced by Le Pouliquen et 3 

al. (2005). Then the average orientation of the field is estimated by computing the 4 

argument of the Directional Mean Vector (Germain et al., 2003).  5 

Once the global orientation θ is computed, we rotate the image in four directions: -θ,  6 

-θ - π/2, -θ - π and -θ - 3π/2, as illustrated in figure 3 and 4. The rotation is 7 

implemented using a three pass algorithm (Unser et al., 1995). This algorithm requires 8 

1-D as opposed to 2-D interpolations. Moreover, as the network used for computations 9 

is horizontal, a recursive implementation becomes possible. Therefore the required 10 

computation time is considerably reduced. 11 

It should be noted that this step requires supervision to select the initial window. We 12 

consider this task to be very easy and it is entrusted to the end-user. 13 

 14 

Computing the four features and combining them into a single attribute 15 

On each rotated image, the chosen heterogeneity feature is processed along the 16 

horizontal asymmetric network. This procedure results in four heterogeneity maps. 17 

Rotating these maps using the opposite angles (θ, θ  + π/2, θ + π and θ + 3π/2), gives us 18 

the four heterogeneity values for each pixel (x,y): ( , )H x yθ , / 2 ( , )H x yθ π+ , ( , )H x yθ π+  and 19 

3 / 2 ( , )H x yθ π+ . 20 

The computational time for this step can be further reduced. Indeed, it is not necessary 21 

to compute both Hθ and Hθ+π (resp. Hθ+π/2 and Hθ+3π/2) since Hθ+π (resp. Hθ+3π/2) is a 22 

horizontally shifted version of Hθ (resp. Hθ+π/2). 23 
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 1 

[FIGURE 3] 2 

[FIGURE 4] 3 

 4 

Hθ and Hθ+π (resp. Hθ+π/2 and Hθ+3π/2) are similar in magnitude except at the border of 5 

the parcel. The feature values differ when the pixel of interest (x,y) is slightly outside 6 

the parcel, on the very border or when it is barely inside the field (see Figure 5). 7 

 8 

The use of four asymmetric features instead of two symmetric ones allows us to obtain a 9 

more accurate segmentation at the border of the parcel. This is illustrated trough Figs. 5-10 

7. The image samples show row-spacing of about 8-12 pixels. The heterogeneity 11 

features are computed on an asymmetric 15×15 network. As shown in Figures 5e and 12 

5f, Hθ+π/2 and Hθ+3π/2 behave differently on the very top of the parcel. Whereas the 13 

values of Hθ+π/2 remain high a few pixels beyond the last row, Hθ+3π/2 values fall down 14 

right at the row. This behaviour is reversed at the bottom of the parcel (not shown here). 15 

Taking the maximum of Hθ+π/2 and Hθ+3π/2 maintains a small margin at both the top and 16 

the bottom of the parcel. In Figure 5, Hθ+π/2 and Hθ+3π/2 discriminate the vine from the 17 

border area with much more efficiency than Hθ and Hθ+π. Thus, in this example, 18 

choosing MAX(Hθ+π/2 , Hθ+3π/2) would lead to a good segmentation of the parcel.  19 

 20 

[FIGURE 5] 21 

 22 

However, the case shown in Figure 6 illustrates the necessity of taking Hθ and Hθ+π into 23 

account. On the one hand, Hθ and Hθ+π  are low everywhere except on the tree which 24 
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shows high variability whatever the direction. On the other hand, Hθ+π/2 and Hθ+3π/2 1 

have high values both within the parcel and on the tree. 2 

 3 

[FIGURE 6] 4 

 5 

Considering these brief examples, combining the four features into a single attribute 6 

seems an obvious choice. The definition of the combination formula itself relies on the 7 

following assumptions: 8 

- on the parcel itself, the image texture shows a high variability perpendicular to 9 

vine rows and a low variability along these rows; 10 

- on paths, on roads and on other vegetation (e.g. grass or trees), texture is more 11 

isotropic; variability is the same whatever the direction.  12 

Therefore we chose the following combination:  13 

( ) ( )/ 2 3 / 2( , ) max ( , ), ( , ) min ( , ), ( , )C x y H x y H x y H x y H x yθ π θ π θ θ π+ + += − . (2) 14 

Figure 7 shows the results obtained on the above examples using feature ( , )C x y . The 15 

parcel is discriminated from the path, the grass and the tree. 16 

 17 

[FIGURE 7] 18 

 19 

Thresholding attribute C(x,y)  20 

As we will see in the next section, attribute C discriminates fairly well between vine and 21 

non-vine pixels. Using a threshold allows the classification of the pixels into the two 22 

categories. The threshold is chosen using the histogram of the C(x,y) values inside the 23 

reference region. A pixel (x,y) is considered as a vine pixel when: 24 
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CrefrefCyxC σβ ×−>),( , 1 

where refC  and Crefσ  are the mean value and the standard deviation of attribute C inside 2 

the reference region, chosen by the end-user before segmentation. β is a parameter 3 

allowing the user to tune the thresholding stage. In practice, choosing β=2 allows 4 

retrieval of most of the parcel without taking the risk of keeping non-vine pixels. The 5 

vine pixels left apart by this thresholding stage are more safely retrieved by spatial 6 

smoothing as explained hereafter.  7 

 8 

Smoothing the contours of the segmented area 9 

Morphological operations are finally processed to obtain a fine delineation of the parcel. 10 

- Extraction of the connected component. After thresholding attribute C(x,y), 11 

several areas belonging to various parcels may be classified into vine. Only the 12 

areas directly connected to the initial user-selected reference region are kept in 13 

the vine class. 14 

- Hole-filling operation: holes (i.e. non vine areas surrounded by vine areas) are 15 

labeled as vine. 16 

- Opening and closing (Serra, 1982) operations are performed to smooth the 17 

borders of the parcel.  18 

 19 

Results 20 

 21 

As a first example, we will detail the whole segmentation process on the parcel in 22 

Figure 1. The first step is the selection of a rectangular area (i.e. the reference region) 23 
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inside the parcel. The choice of this area is not critical as long as it clearly shows the 1 

orientation of the vine rows and is quite representative of the whole parcel. The global 2 

orientation of the field is estimated inside the selected area.  3 

After selection of the area, a square asymmetric network, with 15 lines and 15 points 4 

per line, is applied on the rotated image. The size of the network is related to the inter-5 

row and inter-plant distance (about 10 pixels). The shape of the network derives from 6 

an experimental study and allows us to obtain an appropriate detection of the border of 7 

the vine parcel. We compute the features Hθ, Hθ+π, Hθ+π/2 and Hθ+3π/2 and the attribute 8 

C. The resulting image is thresholded and then rotated back to its original orientation. 9 

Finally, morphological operations are applied. Figures 8 to 10 illustrate the successive 10 

segmentation steps. 11 

 12 

[FIGURE 8] 13 

 14 

Figures 9a and 9b show the histograms of C(x,y) respectively inside the reference region 15 

and for the whole image. The shape of the histogram of the reference region is roughly 16 

Gaussian and seems to discriminate efficiently from the rest of the image (low values on 17 

the left of the histogram). This justifies the choice of the threshold (Equation 3). 18 

 19 

[FIGURE 9] 20 

[FIGURE 10] 21 

 22 

We observe on Figure 10b that vine regions with the same row orientation as the 23 

reference region are detected, along with spurious zones showing strong directionality. 24 
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The selection of the connected component containing the reference region leads to the 1 

expected segmentation result (Figure 10c). A final morphological closing with a 16×16 2 

sized structural element provides the smoother result presented in Figure 10d. 3 

 4 

This result does not show any missing area. The borders are smooth except where there 5 

are missing plants on borders. Inside the parcel, the missing plants are overcome by the 6 

hole-filling step. The area of weak vigor in the lower left corner of the plot has been 7 

properly detected. 8 

 9 

Discussion 10 

 11 

Besides the previous example, the segmentation algorithm has been tested on a 12 

collection of images chosen for their diversity. These images have variable inter-row 13 

distances and grass covers. Some show perspective distortions and some have a strong 14 

variability in the vegetation thickness and side perturbations such as lanes or roads. 15 

Figure 11 shows a number of results obtained on vine parcels of various kinds. In these 16 

images, it can be seen that the vine plot is correctly delineated and is segregated from 17 

the remainder of the image. The algorithm overrides difficulties due to both the holes in 18 

the vegetation (missing plants) and to large low-vigor areas inside the parcel, provided 19 

that these areas do not extend to the length of the parcel. 20 

 21 

[FIGURE 11] 22 

 23 
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Also, it should be noted that the algorithm copes with different kinds of vegetation 1 

layout or aspect: the presence of bare soil or of grass alternately between vine rows and 2 

the variety of row spacing do not affect the segmentation process. This is certainly due 3 

to the versatility of the textural feature IRON and to the fact that only weak assumptions 4 

are made concerning the nature of the texture: it is just assumed to be anisotropic i.e. 5 

homogeneous in the direction of the rows. No additional assumption is made on the 6 

shape, the color or the periodicity of the rows and inter-rows. 7 

  8 

Nevertheless, errors in the segmentation occasionally occur in the following cases. 9 

1. When vine vigor is very low, e.g. in large diseased areas and with young plants 10 

or at the beginning of the season, the underlying vegetation texture does not 11 

correspond at all with the assumed directional model. In such cases, the textural 12 

attribute C(x,y) does not respond correctly and, after thresholding, some zones 13 

on the border of the parcel may remain separate from others (Figure 12 top). 14 

2. Some lanes along vineyards can be detected as vine rows. This phenomenon 15 

occurs when grape-harvesting machines or over-the-row tractors are used. The 16 

wheels of such machines dig ruts the same distance apart as the inter row 17 

distance. Thus, for lanes running along the vineyard, the ruts will have the same 18 

spatial period and orientation as the vine rows. Moreover, grass growing 19 

between the ruts is mistaken for vine rows and lanes are segmented with the 20 

parcel. In the worst cases, for instance Figure 12 (middle), neighboring parcels 21 

may also be connected to the parcel under consideration. 22 



 16

3. The presence of high energy directional patterns, close to the vine parcel, may 1 

have an influence on the segmentation. For instance, in Figure 12 (bottom), the 2 

white stripes on the roads affect the segmentation result.  3 

 4 

[FIGURE 12] 5 

 6 

Compared to other non-supervised or supervised segmentation approaches (e.g. 7 

Da Costa, 2004), computational time is significantly reduced. While previous 8 

algorithms took at least 1 minute to perform, the approach proposed in this manuscript 9 

allows computational times of less than 10 seconds (see Table 1). Algorithms are 10 

implemented in C language, on a Microsoft Windows platform. They have been tested 11 

on an Intel Pentium M 2.0 GHz with 1 GB of RAM. 12 

 13 

Table 1. Computational times on image A (shown on Figure 1), on an Intel Pentium M 14 

2.0 GHz with 1 GB of RAM. 15 

 Image A (size 1829 × 1605) 
Orientation computation  2 s 
Rotations (direct and inverse)  3 s 
Computation of IRON and C(x,y)  2 s 
Thresholding and post-processing  < 1 s 
Total  < 8 s 
  16 

Such performance makes the integration of this algorithm into a complete analysis chain 17 

possible, from image acquisition to the production of management maps. It would 18 

constitute a preliminary step before vine row detection (Bobillet, 2003), vegetative 19 

index computation (Da Costa, 2006) and even integration into a Geographic Information 20 

System.  21 
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This preliminary step can be proposed as optional. In problematic cases, the end-user 1 

may override it by performing the segmentation task manually (for instance, by clicking 2 

vertices around the parcel) or by correcting the result afterwards, allowing minimal 3 

effort. However, as the proposed algorithm is fast and efficient, it may be used to 4 

facilitate the delineation of a vine parcel when the geometry of the latter is complex 5 

(e.g. Figure 1) or when a large number of images must be processed.  6 

Future Work 7 

 8 

Besides the issue of quantitative evaluation, future efforts will be directed at the 9 

optimization of the segmentation chain. An exhaustive study should be carried out on 10 

the influence of the network size, of the textural attribute and of the segmentation 11 

thresholds. We will also address the choice of spectral combinations (e.g. NDVI) to 12 

discriminate between vine and grass and to remove any bias associated with variations 13 

in ambient light conditions. The final step will be the integration of the segmentation 14 

module into the overall image analysis process and its connection to a Geographic 15 

Information System. 16 

Conclusion 17 

 18 

We have proposed an algorithm to automate the delineation of remotely-sensed vine 19 

parcels. Our approach relies on a textural description of vine parcels and leads to the 20 

computation of a texture attribute. Thresholding this attribute appears to discriminate 21 

efficiently between vine and non-vine pixels. 22 

This first feasibility study thus gives encouraging results. The process leads to smooth 23 

borders and complete parcels without missing vine plants for a large majority of 24 



 18

configurations. Considering these encouraging results, the quantitative evaluation of the 1 

delineation compared with Differential GPS tracking or manual delineation has to be 2 

carried on. 3 

 4 

 5 

 6 

Acknowledgments 7 

 8 

This work was carried out under the aegis of the ISVV (Institut des Sciences de la 9 

Vigne et du Vin) and of the CIVB (Centre Interprofessionnel des Vins de Bordeaux), 10 

with the financial support of the FEDER Interreg IIIB. We are grateful to the vine 11 

growers at Château Palmer, Château Grand Baril, Château La Tour Martillac and 12 

Château Luchey-Halde, for providing image data. Finally, we wish to thank the 13 

“Œnologie-Ampélologie” laboratory, INRA, for its technical support and Lee Valente 14 

for language correction. 15 

 16 

References 17 
 18 
Bobillet, W., Da Costa, J.P., Germain, C., Lavialle, O., Grenier, G. 2003. Row detection 19 

in high resolution remote sensing images of vine fields, In: Proceedings of the 4th 20 
European Conference on Precision Agriculture, Eds. J.V. Stafford & A. Werner, 21 
Wageningen Academic Publishers, The Netherlands, pp 81-87. 22 

Brice, C.R., Fennema, C.L. 1970. Scene Analysis Using Regions. Artificial Intelligence, 23 
1 (3/4), 205-226. 24 

Chang, Y., Li, X. 1994. Adaptive image region growing. IEEE Transactions on Image 25 
Processing, 3, 868-872. 26 

Dabas, M., Tabbagh, J., Boisgontier, D., 2001. Multi-depth continuous electrical 27 
profiling (MuCep) for characterization of in-field variability. In: Grenier, G., 28 
Blackmore, S. (Eds), Proceedings of the 3rd European Conference on Precision 29 
Agriculture, Montpellier, France, pp. 361-366. 30 

Da Costa, J.P., Germain, C., Lavialle, O., Grenier, G. 2004. Segmentation of high 31 
resolution remote sensing images: application to the automatic delineation of vine 32 



 19

fields. In: Proceedings of AgEng’2004, Leuven, Belgium, paper no 409, Book of 1 
Abstracts, pp. 324-325. 2 

Da Costa, J.P., Germain, C. Lavialle, O., Homayouni, S., Grenier, G. 2006. Vine field 3 
monitoring using high resolution remote sensing images: segmentation and 4 
characterization of rows of vines. In: Proceedings of the VIth International Terroir 5 
Congress, Ed. ENITA de Bordeaux, France, pp. 243-249. 6 

Geman, S., Geman, D. 1984. Stochastic Relaxation, Gibbs Distributions, and the 7 
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and 8 
Machine Intelligence, 6 (6), 721-741. 9 

Germain Ch., Da Costa J.P., Lavialle O., Baylou P., 2003. Multiscale estimation of 10 
vector field anisotropy. Application to texture characterization. Signal Processing, 11 
83, 1487-1503. 12 

Hall, A., Lamb, DW., Holzapfel, B., Louis, J., 2002. Optical remote sensing 13 
applications in viticulture – a review. Australian Journal of Grape and Wine 14 
Research 8, 36-47. 15 

Hall, A., Louis, J., Lamb, D.W., 2003. Characterizing and mapping vineyard canopy 16 
using high spatial resolution aerial multispectral images. Computers & 17 
Geosciences, 29(7): 813-822. 18 

Le Pouliquen, F., Da Costa, J.P., Germain C., Baylou, P. 2005. A new adaptive 19 
framework for unbiased orientation estimation in textured images. Pattern 20 
Recognition,  38 (11): 2032-2046. 21 

Marguerit, E., Costa Ferreira, A., Azaïs, C., Roby, J.P., Goutouly, J.P., Germain, C., 22 
Homayouni, S., Van Leeuwen, C. 2006. High resolution remote sensing for 23 
mapping intra-block vine vigour heterogeneity. In: Proceedings of the VIth 24 
International Terroir Congress, Ed. ENITA de Bordeaux, France, pp. 286–291. 25 

Michelet, F., Germain, C., Baylou, P., Da Costa, J.P. 2004. Local Multiple Orientation 26 
Estimation: Isotropic and Recursive Oriented Network. In: Proceedings of the 17th 27 
International Conference on Pattern Recognition. Eds. Kittler, J., Petrou, M., 28 
Nixon, M. IEEE, UK, 2004, vol. 1, pp. 712-715. 29 

Pearson R.L. and Miller L.D. 1972, Remote mapping of standing crops biomass for 30 
estimation of the productivity of the short grass prairie. In: Proceedings of the 8th 31 
International Symposium on Remote Sensing of the Environment, ERIM, Ann 32 
Arbor, MI, USA. pp.1357-1381. 33 

Rabatel G., Debain C. and Deshayes M. 2005. Vine parcel detection in aerial images 34 
combining textural and structural approaches. In: Proceedings of 5th European 35 
Conference on Precision Agriculture, Ed. J. V. Stafford, Wageningen Academic 36 
Publishers, The Netherlands, pp. 923-932. 37 

Rouse, J. W., Jr., Haas, R., H., Deering, D. W., Schell, J. A., and Harlan, J. C. 1974. 38 
Monitoring the vernal advancement and retrogradation (green wave effect) of 39 
natural vegetation; NASA/GSFC Type III Final Report, Greenbelt, MD, USA, p. 40 
371. 41 

Serra, J., 1982. Image analysis and mathematical morphology. Academic Press, 42 
London. 43 

Spann, M., Wilson, R. 1985. A Quad-Tree Approach to Image Segmentation which 44 
Combines Statistical and Spatial Information. Pattern Recognition, 18 (3/4), 257-45 
269. 46 

Tisseyre, B., Ardouin, N., Sevila, F. 1999, Precision viticulture: precise location and 47 
vigour mapping aspects, In: Proceedings of the 2nd European Conference on 48 



 20

Precision Agriculture, Ed. J.V. Stafford, Sheffield Academic Press, Sheffield, UK, 1 
pp. 319-330. 2 

Tisseyre, B., Taylor, J., Ojeda, H. 2006. New technologies to characterize spatial 3 
variability in viticulture, In: Proceedings of the VIth International Terroir 4 
Congress, Ed. ENITA de Bordeaux, France, pp. 204-217. 5 

Unser, M., Thénevaz, P., Yaroslavsky, L. 1995. Convolution-Based Interpolation for 6 
Fast, High-Quality Rotation of Images. IEEE Transactions on Image Processing, 4 7 
(10), 1371-1382. 8 



 21

 

 

Figure 1. Typical high resolution remote sensed image of a vineyard. The resolution is 
0.15m per pixel, the image size is 1825×1609 pixels i.e. approximately 274 m x 241 m. 

 

 

 

Figure 2. Symmetric and asymmetric networks at the pixel (x,y) (L=3, p=5). 

 

 

 

Figure 3. Sketch of a parcel with orientation θ. 

 

θ 
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Figure 4. Obtaining four heterogeneity features based on asymetric networks:  
(a) computation of Hθ by a rotation of -θ ; (b) computation of Hθ+π  by a rotation of -θ -
π ; (c) computation of Hθ+π/2 by a rotation of -θ -π /2; (d) computation of Hθ+3π/2 by a 
rotation of -θ -3π /2. 
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 5. Heterogeneity features at the parcel borders. (a) Sample image. (d) The border 
of the parcel is outlined in color. (b) Feature Hθ. (c) Feature Hθ+π. (e) Feature Hθ+π/2. (f) 
Feature Hθ+3π/2. All features are computed on an asymmetric 15×15 network. The 
resolution is 0.15m per pixel.  
 

 
(a) (b) (c) 

Figure 6. Heterogeneity features at the parcel borders. (a) Sample image showing a 
parcel border and a tree. (b) Feature ( )min ( , ), ( , )H x y H x yθ θ π+ . (c) feature 

( )/ 2 3 / 2max ( , ), ( , )H x y H x yθ π θ π+ + . All features are computed on an asymmetric 15×15 
network. The resolution is 0.15m per pixel. 
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(a) (b) 

  
(c) (d) 

Figure 7. (a) and (c) Sample images. (b) and (d) Response of attribute ( , )C x y  computed 
on an asymmetric 15×15 network. The resolution is 0.15m per pixel. 
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(a) (b) 

  

(c) (d) 

Figure 8. First segmentation steps: (a) Selection of the reference area; (b) rotated image; 
(c) attribute C(x,y) (15×15 network); (d) attribute C(x,y) after inverse rotation. The 
resolution is 0.15m per pixel. 
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Figure 9. Normalized histograms of attribute C(x,y) (15×15 network). Left: for the 
reference region. Right: for the whole image. The scales on the x-axes are identical. m 
and M are respectively the minimum and maximum values of C(x,y) over the whole  
attribute image (Figure 8d). 



 27

 

  
(a) (b) 

  
(c) (d) 

Figure 10. Last segmentation steps: (a) thresholding C(x,y) (15×15 network, β = 2); (b) 
filling the holes inside the segmented regions; (c) extraction of the connected 
component surrounding the reference area; (d) smoothing using a 16×16 morphological 
closing. The successive segmentation masks are superimposed on the initial image. The 
resolution is 0.15m per pixel. 
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Figure 11. Examples of vine images and corresponding segmentation results. The 
results are obtained with a 15×15 IRON network and a final 16×16 morphological 
closing. The resolution is 0.15m per pixel. 
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Figure 12. Examples of vine images and corresponding segmentation results showing 
some limitations of the approach. The results were obtained with a 15×15 IRON 
network and a final 16×16 morphological closing. The resolution is 0.15m per pixel. 
 


