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Field delineation is an essential preliminary step for the design of management maps for grape production. In this paper, we propose a new algorithm for the segmentation of vine fields based on high-resolution remote sensed images. This algorithm takes into account the textural properties of vine images. It leads to the computation of a textural attribute on which a simple thresholding operation then allows us to discriminate between vine field and non-vine field pixels. The feasibility of the automatic delineation is illustrated on a range of vineyard images with various inter-row distances, grass covers, perspective distortions and side perturbations. In most cases it produces precise delineation of field borders while the parcel under consideration remains separate from the rest of the image.

Introduction

In the Bordeaux wine producing area of France, all parties involved in wine production (wine growers, wine grower unions, regional/national authorities, researchers, etc.) are interested in knowing the vineyard better. They expect various rising technologies [START_REF] Hall | Characterizing and mapping vineyard canopy using high spatial resolution aerial multispectral images[END_REF][START_REF] Tisseyre | Precision viticulture: precise location and vigour mapping aspects[END_REF][START_REF] Tisseyre | New technologies to characterize spatial variability in viticulture[END_REF] to provide them with detailed maps of vine parcels at low cost. Inner-field maps of the soil conductivity [START_REF] Dabas | Multi-depth continuous electrical profiling (MuCep) for characterization of in-field variability[END_REF], of the Nitrogen status, of the hydric stress, of disease infestation or of vegetative vigor [START_REF] Hall | Characterizing and mapping vineyard canopy using high spatial resolution aerial multispectral images[END_REF] can be a great help in the management of vineyards. Such maps enable the delineation of management zones inside the vine parcels for adapted supply of pesticides, fungicides and fertilizers. They can also be used to adapt the grass covering, to remove the surplus bunch of grapes ("green harvest") or even to assess the best number and location of sampling points for the prediction of the vintage quality.

Among the new rising technologies, remote sensed multi/hyper spectral imagery has shown a huge potential in precision viticulture (e.g. [START_REF] Hall | Optical remote sensing applications in viticulture -a review[END_REF][START_REF] Hall | Characterizing and mapping vineyard canopy using high spatial resolution aerial multispectral images[END_REF].

Very high resolution images (less than 0.5 m per pixel) even allow detailed description of vines at the scale of the plant (e.g. [START_REF] Marguerit | High resolution remote sensing for mapping intra-block vine vigour heterogeneity[END_REF]. The processing of such high resolution data takes advantage of specific image analysis tools. For instance, automatic detection of vine rows, addressed in previous works [START_REF] Bobillet | Row detection in high resolution remote sensing images of vine fields[END_REF][START_REF] Da Costa | Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines[END_REF], enables very accurate biomass measurements to be made. Those specific tools take into account the specific spatial layout of the vegetation inside the vine parcels which, by the way, have to be previously segmented from the remainder of the image. Although GPS (Global Positioning System) tracking is well adapted to give information about parcel boundaries, it is not so appropriate for a recurrent survey of management zones in large areas. A complete image-based framework from the aerial image acquisition to the design of in-field management maps, including the delineation of parcels would thus constitute an efficient, easy-to-use and flexible tool for end-users.

The present work is intended to be integrated in a multi-purpose image processing toolbox directed at the analysis of vineyard images. We focus on the preliminary step which consists of the automatic delineation of a specific parcel, i.e. on the segmentation of this parcel from its neighborhood (roads, buildings, trees and other fields). The chosen segmentation approach has to be self-consistent in the sense that it makes no use of external positioning data or GIS (Geographic Information System) facilities.

Furthermore, as a human operator can do the delineation on his own by manually pointing at a few vertices on the image, the automatic segmentation has to be computationally efficient.

Segmentation algorithms have been widely used in remote sensing. They are commonly classified into three groups: statistical approaches, "split and merge" algorithms and region-growing methods. Statistical approaches are based on a joint statistical modeling of the region shapes and of their contents. Among these approaches, Markovian models are frequently used due to their flexibility [START_REF] Geman | Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[END_REF]. The only drawback of such statistical approaches is the huge computation time needed to guarantee optimal segmentation. Sub-optimal algorithms exist but their reliability strongly depends on their initialization. The split and merge algorithms are also common segmentation methods. They are easy to implement but tend to favor rectangular regions. Moreover, they are very sensitive to the threshold values used to determine the homogeneity and the similarity of the regions [START_REF] Spann | A Quad-Tree Approach to Image Segmentation which Combines Statistical and Spatial Information[END_REF]. The third group of approaches consists of region-growing methods [START_REF] Brice | Scene Analysis Using Regions[END_REF][START_REF] Chang | Adaptive image region growing[END_REF]. This class of methods is well suited to the case of the delineation of a unique region in a picture. In previous works, Da Costa et al. (2004) have proposed a segmentation approach based on a textural description of vine rows with Gabor filters, associated with a region growing algorithm. The main drawback of the approach is once again its prohibitive computational time.

Recently, [START_REF] Rabatel | Vine parcel detection in aerial images combining textural and structural approaches[END_REF] have presented a multi-stage segmentation approach for unsupervised vine parcel detection. It combines a textural description of images using co-occurrence matrices, a pre-segmentation step using geodesic active contours, and a final classification of segmented areas based on Fourier descriptors.

The need for specific multi-stage approaches such as those described above can generally be explained by the lack of a suitable textural description. Indeed, if some textural feature discriminates efficiently between vine and non-vine pixels, a simple thresholding of the feature value should be sufficient for a good delineation of the region of interest.

In this paper, we will describe a new algorithm for the segmentation of vine fields based on their textural properties. It can easily be extended to any crop field image provided that the latter consists of a periodic layout of anisotropic patterns. Our algorithm is comprised of four main steps:

1. The first step is the automatic rotation of the image so that the vine rows comprising the parcel take the horizontal position. This step needs a light supervision of the end-user who previously selects a window inside the field he wants to process. The field orientation is then automatically computed in this window and is used for the image rotation.

2. Textural features are computed based on the IRON operator [START_REF] Michelet | Local Multiple Orientation Estimation: Isotropic and Recursive Oriented Network[END_REF]. These features account for the grey-level homogeneity of texture in the four natural directions (right, left, up and down). The four textural features are combined into a single attribute. In the results section, we evaluate qualitatively the use of our delineation stage using a set of various vineyard images. The influence of different parcel configurations (various inter-row distances, grass covers, perspective distortions, side perturbations …) on the delineation accuracy will be discussed.

Material and methods

Acquisition method and images

Our study was carried out on very high resolution remote sensed images. Pictures were taken from a plane at resolutions of about 0.15 m per pixel. The available data (Fig. 1) were either color or multi-spectral images. All pictures were taken over vineyards in the Bordeaux area during the 2002 growing season, from April to August.

The method described in this paper applies to grey scale images. Such images can be obtained from any mono-, multi-or hyper-spectral images by a linear or non linear combination of the spectral bands. Out of all possible combinations of spectral bands, the Normalized Difference Vegetation Index (NDVI) or the Ratio Vegetation Index (RVI), widely used in agricultural engineering, are meaningful measures of plant vigor [START_REF] Pearson | Remote mapping of standing crops biomass for estimation of the productivity of the short grass prairie[END_REF][START_REF] Rouse | Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation[END_REF]. The choice of the appropriate combination depends on the context and is not addressed here.

[FIGURE 1]

The delineation algorithm we propose relies on the calculation of a textural attribute that describes the parcel texture. The texture can be viewed as a periodical layout of anisotropic patterns, the vine rows. It is assumed that there exists a direction of anisotropy anywhere in the parcel and that this direction is roughly constant throughout the parcel. To avoid any problem linked to image distortion, care must be taken that the camera axis is vertical during data acquisition or that the images are geometrically rectified before processing.

The attribute combines four features based on the operator IRON [START_REF] Michelet | Local Multiple Orientation Estimation: Isotropic and Recursive Oriented Network[END_REF].

The IRON operator and the heterogeneity feature

The original IRON operator [START_REF] Michelet | Local Multiple Orientation Estimation: Isotropic and Recursive Oriented Network[END_REF] is defined for a given orientation θ (see Figure 2). It consists of a network of L lines (with orientation θ) and p points per line. The spacing between points is one pixel wide, as well as the spacing between lines.

The lines lay on both sides of the pixel of interest if a symmetric network is desired, or only on one side for an asymmetric one. The grey level intensities of the network points are obtained by 2-D interpolations.

Figure 2 shows the symmetric and asymmetric operators consisting of L = 3 lines with orientation θ = 20° and p = 5 points per line.

[FIGURE 2]

The textural feature to be processed must be selected to reveal the local orientation of the texture. The textures that we address in our application are homogeneous in the direction of vine rows and show a high variance perpendicular to the rows. H θ , defined below, is one example of features measuring grey level heterogeneity along the direction of the IRON network:
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θ ν ν where v i,j,θ is the interpolated grey level on the i th point from the j th line of the θ-oriented network (Fig. 2) ⋅ denotes the absolute value.

The feature value should be minimal in the direction of the texture and maximal perpendicularly to this direction.

To characterize the vine parcel texture, the heterogeneity feature is computed on four asymmetric networks in the directions θ, θ + π/2, θ + π and θ + 3π/2, where θ is the orientation of the parcel which is considered to be known. Using four asymmetric features instead of two symmetric features allows us to obtain a much more accurate segmentation on the border of the field. A suitable combination of these four features should be sufficient to discriminate between vine and non vine pixels.

Shape and size of the network

The length p and the width L of the network have to be chosen so that IRON is both selective and robust.

IRON is efficient if its selectivity to orientation is good. The heterogeneity feature must be low if the network is in the direction of the rows but must increase rapidly if the network deviates from this direction. The longer the lines are, the higher is the selectivity. At least, the lines must be long enough to be sensitive to transitions between rows and inter-rows. However, if the lines are too long, the operator is not local anymore. In other words, the features to be computed on the network do not refer to local texture characteristics, which is a critical issue especially on the parcel boundaries.

Concerning the width of the network, the length p of the lines being chosen, the number of lines L affects its noise robustness. Increasing p increases the noise robustness of the IRON operator.

In practice, using a balanced network (L = p) with a length p between one or two interrow distances leads to accurate segmentations.

Rotating the image

The processing of the heterogeneity features raises the problem of 2-D interpolation since the intensities of the network points have to be estimated from their neighborhood.

To reduce the computational cost related to interpolations, [START_REF] Michelet | Local Multiple Orientation Estimation: Isotropic and Recursive Oriented Network[END_REF] proposed rotating the image instead and using a horizontal network.

For that purpose, the global orientation θ of the field is first estimated using the orientations computed within a window selected by the end-user. Local orientations are computed on local extrema using the valleyness operator introduced by Le Pouliquen et al. (2005). Then the average orientation of the field is estimated by computing the argument of the Directional Mean Vector [START_REF] Ch | Multiscale estimation of vector field anisotropy. Application to texture characterization[END_REF].

Once the global orientation θ is computed, we rotate the image in four directions: -θ, -θ -π/2, -θ -π and -θ -3π/2, as illustrated in figure 3 and4. The rotation is implemented using a three pass algorithm [START_REF] Unser | Convolution-Based Interpolation for Fast, High-Quality Rotation of Images[END_REF]. This algorithm requires 1-D as opposed to 2-D interpolations. Moreover, as the network used for computations is horizontal, a recursive implementation becomes possible. Therefore the required computation time is considerably reduced.

It should be noted that this step requires supervision to select the initial window. We consider this task to be very easy and it is entrusted to the end-user.

Computing the four features and combining them into a single attribute

On each rotated image, the chosen heterogeneity feature is processed along the horizontal asymmetric network. This procedure results in four heterogeneity maps.

Rotating these maps using the opposite angles (θ, θ + π/2, θ + π and θ + 3π/2), gives us the four heterogeneity values for each pixel (x,y): the parcel, on the very border or when it is barely inside the field (see Figure 5). Taking the maximum of H θ+π/2 and H θ+3π/2 maintains a small margin at both the top and the bottom of the parcel. In Figure 5, H θ+π/2 and H θ+3π/2 discriminate the vine from the border area with much more efficiency than H θ and H θ+π . Thus, in this example, choosing MAX(H θ+π/2 , H θ+3π/2 ) would lead to a good segmentation of the parcel.
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[FIGURE 5]

However, the case shown in Figure 6 illustrates the necessity of taking H θ and H θ+π into account. On the one hand, H θ and H θ+π are low everywhere except on the tree which shows high variability whatever the direction. On the other hand, H θ+π/2 and H θ+3π/2

have high values both within the parcel and on the tree.

[FIGURE 6]

Considering these brief examples, combining the four features into a single attribute seems an obvious choice. The definition of the combination formula itself relies on the following assumptions:

-on the parcel itself, the image texture shows a high variability perpendicular to vine rows and a low variability along these rows;

-on paths, on roads and on other vegetation (e.g. grass or trees), texture is more isotropic; variability is the same whatever the direction.

Therefore we chose the following combination: .
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Figure 7 shows the results obtained on the above examples using feature ( , ) C x y . The parcel is discriminated from the path, the grass and the tree.

[FIGURE 7]

Thresholding attribute C(x,y)

As we will see in the next section, attribute C discriminates fairly well between vine and non-vine pixels. Using a threshold allows the classification of the pixels into the two categories. The threshold is chosen using the histogram of the C(x,y) values inside the reference region. A pixel (x,y) is considered as a vine pixel when: 

Smoothing the contours of the segmented area

Morphological operations are finally processed to obtain a fine delineation of the parcel.

-Extraction of the connected component. After thresholding attribute C(x,y), several areas belonging to various parcels may be classified into vine. Only the areas directly connected to the initial user-selected reference region are kept in the vine class.

-Hole-filling operation: holes (i.e. non vine areas surrounded by vine areas) are labeled as vine.

-Opening and closing [START_REF] Serra | Image analysis and mathematical morphology[END_REF] operations are performed to smooth the borders of the parcel.

Results

As a first example, we will detail the whole segmentation process on the parcel in Figure 1. The first step is the selection of a rectangular area (i.e. the reference region) inside the parcel. The choice of this area is not critical as long as it clearly shows the orientation of the vine rows and is quite representative of the whole parcel. The global orientation of the field is estimated inside the selected area.

After selection of the area, a square asymmetric network, with 15 lines and 15 points per line, is applied on the rotated image. The size of the network is related to the interrow and inter-plant distance (about 10 pixels). The shape of the network derives from an experimental study and allows us to obtain an appropriate detection of the border of the vine parcel. We compute the features H θ , H θ+π , H θ+π/2 and H θ+3π/2 and the attribute C. The resulting image is thresholded and then rotated back to its original orientation.

Finally, morphological operations are applied. Figures 8 to 10 illustrate the successive segmentation steps.

[FIGURE 8]

Figures 9a and9b show the histograms of C(x,y) respectively inside the reference region and for the whole image. The shape of the histogram of the reference region is roughly Gaussian and seems to discriminate efficiently from the rest of the image (low values on the left of the histogram). This justifies the choice of the threshold (Equation 3).

[FIGURE 9] [FIGURE 10]

We observe on Figure 10b that vine regions with the same row orientation as the reference region are detected, along with spurious zones showing strong directionality.

The selection of the connected component containing the reference region leads to the expected segmentation result (Figure 10c). A final morphological closing with a 16×16

sized structural element provides the smoother result presented in Figure 10d.

This result does not show any missing area. The borders are smooth except where there are missing plants on borders. Inside the parcel, the missing plants are overcome by the hole-filling step. The area of weak vigor in the lower left corner of the plot has been properly detected.

Discussion

Besides the previous example, the segmentation algorithm has been tested on a collection of images chosen for their diversity. These images have variable inter-row distances and grass covers. Some show perspective distortions and some have a strong variability in the vegetation thickness and side perturbations such as lanes or roads.

Figure 11 shows a number of results obtained on vine parcels of various kinds. In these images, it can be seen that the vine plot is correctly delineated and is segregated from the remainder of the image. The algorithm overrides difficulties due to both the holes in the vegetation (missing plants) and to large low-vigor areas inside the parcel, provided that these areas do not extend to the length of the parcel.

[FIGURE 11]

Also, it should be noted that the algorithm copes with different kinds of vegetation layout or aspect: the presence of bare soil or of grass alternately between vine rows and the variety of row spacing do not affect the segmentation process. This is certainly due to the versatility of the textural feature IRON and to the fact that only weak assumptions are made concerning the nature of the texture: it is just assumed to be anisotropic i.e.

homogeneous in the direction of the rows. No additional assumption is made on the shape, the color or the periodicity of the rows and inter-rows.

Nevertheless, errors in the segmentation occasionally occur in the following cases.

1. When vine vigor is very low, e.g. in large diseased areas and with young plants or at the beginning of the season, the underlying vegetation texture does not correspond at all with the assumed directional model. In such cases, the textural attribute C(x,y) does not respond correctly and, after thresholding, some zones on the border of the parcel may remain separate from others (Figure 12 top).

2. Some lanes along vineyards can be detected as vine rows. This phenomenon occurs when grape-harvesting machines or over-the-row tractors are used. The wheels of such machines dig ruts the same distance apart as the inter row distance. Thus, for lanes running along the vineyard, the ruts will have the same spatial period and orientation as the vine rows. Moreover, grass growing between the ruts is mistaken for vine rows and lanes are segmented with the parcel. In the worst cases, for instance Figure 12 (middle), neighboring parcels may also be connected to the parcel under consideration.

3. The presence of high energy directional patterns, close to the vine parcel, may have an influence on the segmentation. For instance, in Figure 12 (bottom), the white stripes on the roads affect the segmentation result.

[FIGURE 12]

Compared to other non-supervised or supervised segmentation approaches (e.g.

Da Costa, 2004), computational time is significantly reduced. While previous algorithms took at least 1 minute to perform, the approach proposed in this manuscript allows computational times of less than 10 seconds (see Table 1). Algorithms are implemented in C language, on a Microsoft Windows platform. They have been tested

on an Intel Pentium M 2.0 GHz with 1 GB of RAM.

Table 1. Computational times on image A (shown on Figure 1), on an Intel Pentium M 2.0 GHz with 1 GB of RAM.

Image A (size 1829 × 1605) Orientation computation 2 s Rotations (direct and inverse) 3 s Computation of IRON and C(x,y) 2 s Thresholding and post-processing < 1 s Total < 8 s Such performance makes the integration of this algorithm into a complete analysis chain possible, from image acquisition to the production of management maps. It would constitute a preliminary step before vine row detection [START_REF] Bobillet | Row detection in high resolution remote sensing images of vine fields[END_REF], vegetative index computation [START_REF] Da Costa | Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines[END_REF] and even integration into a Geographic Information System.

This preliminary step can be proposed as optional. In problematic cases, the end-user may override it by performing the segmentation task manually (for instance, by clicking vertices around the parcel) or by correcting the result afterwards, allowing minimal effort. However, as the proposed algorithm is fast and efficient, it may be used to facilitate the delineation of a vine parcel when the geometry of the latter is complex (e.g. Figure 1) or when a large number of images must be processed.

Future Work

Besides the issue of quantitative evaluation, future efforts will be directed at the optimization of the segmentation chain. An exhaustive study should be carried out on the influence of the network size, of the textural attribute and of the segmentation thresholds. We will also address the choice of spectral combinations (e.g. NDVI) to discriminate between vine and grass and to remove any bias associated with variations in ambient light conditions. The final step will be the integration of the segmentation module into the overall image analysis process and its connection to a Geographic Information System.

Conclusion

We have proposed an algorithm to automate the delineation of remotely-sensed vine parcels. Our approach relies on a textural description of vine parcels and leads to the computation of a texture attribute. Thresholding this attribute appears to discriminate efficiently between vine and non-vine pixels.

This first feasibility study thus gives encouraging results. The process leads to smooth borders and complete parcels without missing vine plants for a large majority of configurations. Considering these encouraging results, the quantitative evaluation of the delineation compared with Differential GPS tracking or manual delineation has to be carried on. 

  3. A thresholding of this attribute is performed which allows the segmentation of the field. 4. Final morphological operations (hole filling, connected component extraction and morphological closing) are processed to obtain a fine delineation of the vine parcel.

  The use of four asymmetric features instead of two symmetric ones allows us to obtain a more accurate segmentation at the border of the parcel. This is illustrated trough Figs. 5-7. The image samples show row-spacing of about 8-12 pixels. The heterogeneity features are computed on an asymmetric 15×15 network. As shown in Figures5e and 5f, H θ+π/2 and H θ+3π/2 behave differently on the very top of the parcel. Whereas the values of H θ+π/2 remain high a few pixels beyond the last row, H θ+3π/2 values fall down right at the row. This behaviour is reversed at the bottom of the parcel (not shown here).

  value and the standard deviation of attribute C inside the reference region, chosen by the end-user before segmentation. β is a parameter allowing the user to tune the thresholding stage. In practice, choosing β=2 allows retrieval of most of the parcel without taking the risk of keeping non-vine pixels. The vine pixels left apart by this thresholding stage are more safely retrieved by spatial smoothing as explained hereafter.

Figure 1 .

 1 Figure 1. Typical high resolution remote sensed image of a vineyard. The resolution is 0.15m per pixel, the image size is 1825×1609 pixels i.e. approximately 274 m x 241 m.

Figure 2 .

 2 Figure 2. Symmetric and asymmetric networks at the pixel (x,y) (L=3, p=5).

Figure 3 .Figure 4 .Figure 8 .

 348 Figure 3. Sketch of a parcel with orientation θ.

Figure 9 .

 9 Figure 9. Normalized histograms of attribute C(x,y) (15×15 network). Left: for the reference region. Right: for the whole image. The scales on the x-axes are identical. m and M are respectively the minimum and maximum values of C(x,y) over the whole attribute image (Figure 8d).

  Last segmentation steps: (a) thresholding C(x,y) (15×15 network, β = 2); (b) filling the holes inside the segmented regions; (c) extraction of the connected component surrounding the reference area; (d) smoothing using a 16×16 morphological closing. The successive segmentation masks are superimposed on the initial image. The resolution is 0.15m per pixel.

Figure 11 .

 11 Figure 11. Examples of vine images and corresponding segmentation results. The results are obtained with a 15×15 IRON network and a final 16×16 morphological closing. The resolution is 0.15m per pixel.

Figure 12 .

 12 Figure 12. Examples of vine images and corresponding segmentation results showing some limitations of the approach. The results were obtained with a 15×15 IRON network and a final 16×16 morphological closing. The resolution is 0.15m per pixel.

  

  The computational time for this step can be further reduced. Indeed, it is not necessary to compute both H θ and H θ+π (resp. H θ+π/2 and H θ+3π/2 ) since H θ+π (resp. H θ+3π/2 ) is a horizontally shifted version of H θ (resp. H θ+π/2 ). H θ and H θ+π (resp. H θ+π/2 and H θ+3π/2 ) are similar in magnitude except at the border of the parcel. The feature values differ when the pixel of interest (x,y) is slightly outside
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