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Abstract. IRON is a low level operator dedicated to the estimation of single 
and multiple local orientations in images. Previous works have shown that 
IRON is more accurate and more selective than Gabor and Steerable filters, for 
textures corrupted with Gaussian noise. In this paper, we propose two new fea-
tures. The first one is dedicated to the estimation of orientation in images dam-
aged by impulsive noise. The second one applies when images are corrupted 
with an amplitude modulation, such as an inhomogeneous lighting. 
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1. Introduction 

For three decades, many works have concerned orientation estimation in images. Ap-
plications of orientation estimation concern, for example, texture characterization 
[4][8], anisotropic diffusion [11][13] or image segmentation [2]. 

Orientations have specific characteristics which have to be taken into account in 
the estimation process. First, orientation doesn’t always exist. In case of uniform grey 
level images or isotropic textures, no orientation can be estimated. Besides, when ori-
entation exists, it depends on the scale of analysis. Considering that, generally, statis-
tical techniques can be used to derive large scale orientation from local orientation 
[1][7][2], we will focus on local orientation estimation. 

Differential approaches [5][8] are conventional for local orientation estimation. 
They are based on the local computation of first or second order derivatives of all the 
points of the image. Nevertheless these methods fail if more than one single orienta-
tion appear at a given location. In such a case, the response of derivative operators re-
sults from a non-linear mixture of the true local orientations. 

Other popular methods for orientation estimation are based on a set of oriented fil-
ters. Among them, we can quote Gabor filters [2] [3] and Steerable filters [6] [10]. 
Operator IRON (Isotropic and Recursive Orientation Network) is another example of 
an oriented operator [9]. It consists in an oriented network of parallel lines along 
which we compute a homogeneity feature. The output of this feature indicates the 
confidence in the tested orientation. For such methods, accuracy and selectivity both 
depend on the number of filters and on the size of their computing support. Exercised 



on synthetic and real images, IRON provides more accuracy, noise robustness and se-
lectivity than Gabor or Steerable filters [9]. 

 

Fig. 1. Texture corrupted with amplitude modulation (profile function and grey level image). 
Isolevel lines orientation (solid lines), and original orientation (dashed line) 

These methods are generally well suited for multiple local orientation estimation. 
Nevertheless, in some specific circumstances, they are unable to provide accurate and 
robust estimations. More particularly, we have found that when amplitude modulation 
occurs, orientation estimation becomes biased. Figure 1 shows a texture for which the 
sinusoidal profile is modulated with an affine function. This is the kind of images re-
sulting, for example, from an inhomogeneous lighting. In this case, amplitude modu-
lation affects the direction of isolevel curves which are not anymore equal to the per-
ception of the orientation from the uncorrupted image. Therefore, all the classical 
orientation operators will provide us with an erroneous estimation. 

When impulse noise occurs, classical operators also fail to estimate orientations 
properly. Figure 2a shows a directional texture corrupted with salt and pepper noise. 
Figure 2b shows the local orientation estimation in this picture, using Gabor filters. 
The size of the computing support is equivalent the size of the arrows. Indeed, the salt 
and pepper noise affects significantly the orientation estimation. Other estimators 
such as the Steerable Filters or Gradient masks would provide even worse estimations 
at the same scale. 

In this paper, we propose two new homogeneity features for IRON, in order to deal 
with each of these problems. The first one relies on the Robust Homogeneity Function 
(RHF) instead of variance estimation, and will be effective in case of impulse noise. 

 

Fig. 2. Texture corrupted with salt and pepper noise and Gabor orientation estimation 

The second one, based on the identification of local affine modulation parameters, 
solves the case of amplitude modulation. 

In the second part of this paper, we shortly describe IRON, already introduced in 
[9]. In the third part, we propose two new homogeneity features. The first one is dedi-



cated to images corrupted by impulse noise, and the second one to amplitude modu-
lated directional textures. In the fourth part, we present and discuss some results. 

2. The IRON Orientation Estimator 

2.1. General Presentation 

IRON was introduced in [9]. It is an oriented operator working in the spatial domain. 
Its principle is to compute a homogeneity feature along a network of parallel lines ori-
ented θ . This feature depends on the grey levels of the pixels found on these lines. 

Each network is made of L lines and each line consists in p points. The distance be-
tween each line and the distance between two consecutive points on a line are equal to 
the pitch of the pixel grid. 

The network can be either symmetric or asymmetric. In the first case, the lines lie 
on both sides of the central point. The resulting orientation is estimated modulo π . In 
the second case, the lines lie only on one side of the central point thus providing with 
an orientation modulo 2π . 

 

Fig. 3. IRON symmetric network of 3 lines and 5 points per line. 

Since the network points do not always line up on the pixel grid, the grey level 
values of the network points (Fig. 3) are computed using a bi-dimensional interpola-
tion.  

In [9], we have proposed an implementation based on the rotation of the image in-
stead of the rotation of the network itself. This implementation reduces the computa-
tional cost of the interpolation stage. 

2.2 Network Tuning 

The parameters L and p act upon both the size and the shape of the network.  
The shape of the network affects its selectivity and also its noise robustness. The 

size of the network depends on the scale of analysis. Increasing the number of lines 
allows increasing noise robustness. However, in the same time the selectivity of our 
operator decreases. 



Another important aspect of IRON is the choice of the homogeneity feature. We 
have already proposed in [9] the following homogeneity feature H. 
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θ,, jiv  is the interpolated grey level on the ith point from the jth line of the network 

oriented θ  (Fig. 3). 0ε  is a constant close to 0. It avoids the denominator to be null. 
In the general case of an image corrupted with a Gaussian noise, the most appro-

priate function relies on variance estimation.  
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For both features, the recursive implementation described in [9] is possible, thus 
reducing considerably its computational cost. 

In case of more complex textures, for instance, when amplitude modulation or im-
pulse noise occurs, other features can be defined in order to be more suited to the lo-
cal configuration. 

3. New Features for IRON 

3.1 Robust Homogeneity Function 

The classical homogeneity feature for IRON is based on variance estimation, and then 
it is more appropriate in case of a Gaussian noise. We propose here a new feature spe-
cifically designed to tackle impulse noise.  

This new feature relies on a robust estimation of the homogeneity, using two medi-
ans instead of the two means in (2). It consists in computing along each line of the 
network "the median of the deviation from the median grey level". 

For a network of L lines and p points per line, with orientation θ , we obtain the 
Robust Homogeneity Function RHF: 
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where M(.) stands for the median operator and θ,, jiv  for the grey level of a point of 
the network. 

Since the value of the RHF feature does not depend on the extreme values of the 
grey levels found on the network, it will be robust to a noise strongly corrupting a 
small number of pixels. 



3.2 Affine Model Identification 

We propose now a second feature for IRON. Its aim is to provide with unbiased ori-
entation estimations when amplitude modulation affects the directional texture. Let 
consider a horizontal directional texture, corresponding to the following intensity 
model: 

( ) ( ) ( )ˆ , .f i j h j g i=  (4) 

where h(j) is a the profile function, and g(i) the modulation function.  
In order to estimate the orientation θ̂  with IRON, we design a feature which mini-

mizes the quadratic difference ε  between the intensity ( )jif ,  and the model: 
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( )V θ  is the neighborhood used to compute IRON in the direction θ . L, the num-
ber of lines and p, and the number of points per line define the dimensions of this 
neighborhood. 

Let us consider that the modulation is slow compared with the variation of the pro-
file function h. Therefore, this modulation can be assumed to be locally linear and g(i) 
can be approximated by an affine function: ( ) iig .1 α+= . 

The quadratic difference then becomes: 
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The minimum value for ε  is obtained when its derivatives, regarding h and α , are 
null. 
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From these equations we obtain: 
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and 
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Let us define K1, K2, K3: 
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Introducing the following terms in (10), we finally obtain: 
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Solving this equation allows us to determine the affine modulation function g and 
profile function f for each of the tested orientations. The minimum value of ( )θε  in-
dicates the orientation for which the model fits the best with the image.  

As this framework has been designed using an affine modulation model, it will ap-
ply perfectly for a texture affected by an illumination gradient (Fig. 1). We will see in 
the result section that it is also effective in case of a non affine modulation, while this 
modulation is slow regarding the amplitude variations of the profile function. 

4. Results and Discussion 

4.1 Impulse Noise 

In order to compare the efficiency of various orientation estimators, we use syn-
thetic textures corrupted by a salt and pepper noise. However, any kind of impulse 
noise could be considered as well. The profile function of the synthetic texture is a 
sine with period 6 pixels and θ =20° (Fig. 2). For each operator we compute the Mean 
Angular Deviation (MAD) in order to depict the effect on the noise on the orientation 
estimation. 
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where N is the size of the sample (i.e. the number of pixels (x,y) considered), Θ̂ stands 
for the estimated orientation and ( )212121 ,min),( θθπθθθθ −−−=Δ , [ [0,θ π∈ . 

We compute IRON symmetric with the RHF feature and compare the results with 
Gabor (quadrature) filters [2] [3] and Steerable (E4) filters [6] [10]. We test the fol-
lowing sizes for the computing support 11x11 and 21x21. All other parameters for 
Gabor and Steerable Filters are tuned in order to get the best estimations. In each case, 



180 orientations are tested (angular step=1°) for 100 noise realizations, giving the fol-
lowing results. 

Table 1. Angular error MAD for synthetic textures (sine profile function with period 6 pixels 
and θ =20°), corrupted with impulse noise 

MAD  
(degrees) 

Computing  
Support Size 

Noisy Pixels:  
5% 

Noisy Pixels: 
20% 

IRON 11x11 0.6° 4.0° 
(RHF) 21x21 0.0° 0.7° 
Gabor 11x11 16.0° 24.0° 

 21x21 0.6° 1.6° 
Steerable 11x11 3.4° 0.9° 

(E4) 21x21 14.2° 2.7° 
 

Using the feature RHF with IRON gives the best estimations whatever the support 
size or the ratio of noisy pixels. Experiments with other textures, noises or computing 
support size confirm these results.  

Figure 4 shows the results obtained with a real fingerprint image corrupted with 
impulse noise. The noisy pixel ratio is 20%. For all filters, computing support size is 
15x15. This size is a fair compromise in order to obtain smooth orientation maps and 
to detect minutiae. All other parameters for Gabor and Steerable Filters are tuned in 
order to get the best estimations. 180 orientations are tested (angular step=1°). 

 

Fig. 4. a: Fingerprint image corrupted with 20% impulse noise; b: Orientation map without 
noise (IRON Variance); c: Color palette; d: Orientation map using IRON RHF;  
e: Orientation map using Gabor filters; f: Orientation map using Steerable E4 filters. 



Figure 4b is the reference orientation map, computed applying IRON with its 
original variance feature [9] to the uncorrupted version of Figure 4a. The map is 
smooth everywhere except around minutiae. 

Figure 4d shows that the results obtained with IRON RFH on the corrupted image 
are very close to the reference map even if some errors appear.  

On the opposite, Figure 4e and 4f show that Gabor and the Steerable filters are 
strongly affected by the impulse noise. Theses maps are very irregular and estimation 
error close to 90° are frequent. 

4.2 Amplitude Modulation 

For this experiment, we exercise IRON with affine model identification for three 
kinds of synthetic textures. The profile function of theses textures is a sine with period 
10 pixels with various orientations. The first texture, called Tex1, is corrupted using 
an affine modulation with the same orientation as the texture in Fig. 1. Tex2 is cor-
rupted using the same affine modulation but with a different orientation. Tex3 is cor-
rupted using a non affine modulation: ( ) ( )modmod .sin. Ti2A1ig π+=  with 50mod =T  
pixels and 5.0mod =A  (Fig 4a). 

Table 2 shows the MAD values obtained with IRON, Gabor (quadrature) and Steer-
able Filters E4. 

Table 2. Angular error MAD in case of amplitude modulation 

MAD 
(degrees) 

IRON  
(Affine) 

Steerable  
(E4) Gabor 

Tex1 0.0° 1.03° 0.28° 

Tex2 0.0° 1.01° 0.22° 

Tex3 0.0° 1.08° 7.23° 

 

Fig. 5. a: Texture (Tex3) (non affine amplitude modulation);   b: Gabor Filters;    
c: Steerable Filters (E4);     d: IRON Affine;     e: Orientation palette 

Unlike Gabor and Steerable filters, our new feature appears to be insensitive to 
amplitude modulation, even in case of a non affine modulation (Fig. 5d).  

Figure 6 shows the results obtained with an ancient engraving image corrupted 
with non affine amplitude modulation. The period of the modulation is 30 pixels, and 



its orientation is 30°. For all filters, computing support size is set to 15x15. All other 
parameters for Gabor and Steerable Filters are tuned in order to get the best estima-
tions. 180 orientations are tested (angular step=1°). 

Figure 6b is the reference orientation map. It is computed applying the classical 
IRON variance feature [9] to the uncorrupted version of figure 6a. Figure 6d depicts 
the results obtained with IRON Affine. As expected, the amplitude modulation does 
not significantly affect the corrupted image.  

On an another hand, Figure 6e and 6f show that Gabor and the Steerable filters are 
strongly influenced by the modulation, even for the thin vertical lines. 

 

Fig. 6. a: Engraving image corrupted with amplitude modulation;  b: Orientation map without 
noise (IRON Variance); c: Color palette; d: Orientation map using IRON Affine;  
e: Orientation map using Gabor filters;  f: Orientation map using Steerable E4 filters. 

5. Conclusion 

IRON is a general framework for single and multiple local orientation estimation. 
Previous works have shown that IRON is more accurate and selective than classical 
operators, for textures corrupted with Gaussian noise.  

In this paper, we have introduced two new homogeneity features which allow us to 
adapt IRON when impulsive noise or amplitude modulation occurs. Exercised on both 
synthetic and real images, these new features show their efficiency to overcome such 
perturbations. 

Therefore, knowing a priori the kind of perturbation which corrupts the image al-
lows us to choose the appropriate feature and thus enhance the adaptability of the 
IRON network for single and multiple local orientation estimation. 
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