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Re
ognition of Blurred Pie
es of Dis
rete PlanesL. Provot1 and L. Buzer2 and I. Debled-Rennesson1

1 LORIA Nan
yCampus S
ienti�que - BP 23954506 Vand÷uvre-lès-Nan
y Cedex, FRANCE{provot,debled}�loria.fr
2 Laboratory CNRS-UMLV-ESIEE, UMR 8049ESIEE, 2, boulevard Blaise Pas
alCité DESCARTES, BP 9993162 Noisy le Grand CEDEX, FRANCEbuzerl�esiee.frAbstra
t. We introdu
e a new dis
rete primitive, the blurred pie
e of adis
rete plane, whi
h relies on the arithmeti
 de�nition of dis
rete planes.It generalizes su
h planes, admitting that some points are missing andthen permits to adapt to noisy dis
rete data. Two re
ognition algorithmsof su
h primitives are proposed: the �rst one is a geometri
al algorithmand minimizes the Eu
lidean distan
e and the se
ond one relies on linearprogramming and minimizes the verti
al distan
e.1 Introdu
tionThe re
ognition of dis
rete primitives as digital straight lines and digital planesis a deeply studied problem in digital geometry (see a review in the book [1℄).This problem 
onsists in determining if a set of dis
rete points 
orresponds toa known dis
rete primitive and, in su
h 
ase, in identifying its 
hara
teristi
s.Three main 
lasses of algorithms 
an be de�ned:� Stru
tural algorithms: based on geometri
 (
onvex hull, 
hords) or 
om-binatorial (size of the steps) properties of dis
rete primitives. Indeed, thestru
tural regularity of these primitives 
an lead to e�
ient algorithms.� Arithmeti
 algorithms: based on the de�nition of dis
rete primitives as Dio-phantine inequalities, these algorithms make pro�t of the well de�ned arith-meti
al stru
ture of dis
rete primitives.� Dual spa
e algorithms: the re
ognition problem is translated in a dual spa
ewhere ea
h grid point is represented by a double linear 
onstraint. The re
og-nition problem is then de�ned as a linear programming problem, optimizedusing parti
ular knowledge on the 
onstraints geometry.Re
ently, a new dis
rete primitive, the blurred segment [2, 3℄, was introdu
edto deal with the noise or artefa
ts due to the a
quisition tools or methods. Re-lying on an arithmeti
 de�nition of dis
rete lines [4℄, it generalizes su
h lines,admitting that some points are missing. E�
ient blurred segments re
ognition



algorithms were proposed [2, 3, 5℄ and they were used in appli
ations in imageanalysis [6℄. In the same framework, we introdu
e in the paper the new notion ofblurred pie
es of dis
rete planes, relying on the de�nition of arithmeti
 dis
reteplane [7℄ by 
onsidering a variable thi
kness.Two re
ognition algorithms of blurred pie
es of dis
rete planes are proposed. The�rst one is based on a stru
tural approa
h: the 
omputation of the 
onvex hull ofthe given voxels is done while we sear
h for the two parallel planes that mark outthis 
onvex hull and that minimize the Eu
lidean distan
e between themselves.An in
remental algorithm is given. The se
ond one is based on a dual spa
e ap-proa
h in the 
ontext of linear programming: the re
ognition problem is modelledby a system of linear 
onstraints de�ned by the initial set of points. The simplexalgorithm is then used to solve the problem by minimizing the verti
al distan
ebetween two parallel planes 
ontaining all the points of the initial set. A geomet-ri
al interpretation of this method is also given. The 
odes of these algorithmsand examples are available on http://www.loria.fr/~debled/BlurredPlane.In se
tion 2, after re
alling de�nitions and basi
 properties of arithmeti
 dis-
rete planes, we de�ne the related notion of blurred pie
es of dis
rete planes andoptimal bounding planes. Then, in se
tion 3, a geometri
al method is proposedto solve the re
ognition problem by minimizing the Eu
lidean distan
e. The se
-ond method, based on linear programming, is presented in se
tion 4 as well asa geometri
al interpretation of the dual problem. The paper ends up with some
on
lusions and perspe
tives in se
tion 5.2 Blurred Pie
es of Dis
rete PlanesAn arithmeti
 dis
rete plane [7℄, named P(a, b, c, µ, ω), is a set of integerpoints (x, y, z) verifying µ ≤ ax+ by + cz < µ+ω where (a, b, c) ∈ Z
3 is the nor-mal ve
tor. µ ∈ Z is named the translation 
onstant and ω ∈ Z the arithmeti
althi
kness.The two real planes, de�ned by the following equations: ax + by + cz = µ and

ax + by + cz = µ + ω − 1, are 
alled the leaning planes of P(a, b, c, µ, ω). Allthe points of P are lo
ated between the leaning planes of P .We hereafter propose a generalization of the notion of dis
rete plane relyingon the arithmeti
al de�nition and admitting that some points are missing. Con-sider a norm N on R
3. We de�ne the notion of bounding plane, relative to N ,as follows:De�nition 1. Let E be a set of points in Z

3. We say that the dis
rete plane
P(a, b, c, µ, ω) is a bounding plane of E if all the points of E belong to P. We
all width of P(a, b, c, µ, ω), the value ω−1

N(a,b,c) .



Interpretation of the Width:1. if N = ‖ · ‖2, the width ω−1
N(a,b,c) represents the Eu
lidean distan
e betweenthe two leaning planes of the bounding plane P(a, b, c, µ, ω). Indeed, let P1 :

ax+ by + cz = µ and P2 : ax+ by + cz = µ+ω− 1 be the two leaning planesof P . As P1 and P2 are parallel, the distan
e between P1 and P2 is equal to
|µ+ω−1−µ|√

a2+b2+c2
, i.e. ω−1

‖(a,b,c)‖2
sin
e ω > 0.2. if N = ‖ · ‖∞, the width ω−1

N(a,b,c) represents the distan
e a

ording to themain dire
tion of the ve
tor (a, b, c). Indeed and without loss of generalitywe 
an assume that max(|a|, |b|, |c|) = |c|, whi
h means the main dire
tionis the Oz axis. Let M1(x1, y1, z1) ∈ P1 and M2(x2, y2, z2) ∈ P2 su
h that
x1 = x2 and y1 = y2. The distan
e between P1 and P2 is equal to |z1− z2| =
|c(z1−z2)|

|c| = |a(x1−y2)+b(y1−y2)+c(z1−z2)|
|c| = |µ−(µ+ω−1)|

|c| be
ause M1 ∈ P1 and
M2 ∈ P2, i.e. ω−1

‖(a,b,c)‖∞

sin
e ω > 0.
(a) (b)
(
) (d)Fig. 1. A width-3 blurred pie
e of dis
rete plane (a and b), its optimal bounding planes(
) for Eu
lidean norm: P2(4, 8, 19,−80, 49) and the width of P2 = 2.28 (d) for in�nitynorm: P∞(31, 65, 157,−680, 397) and the width of P∞ = 2.52. The leaning planes and
orresponding leaning points of P2 and P∞ are respe
tively drawn on (a,
) and (b,d).De�nition 2. Let E be a point set in Z

3. A bounding plane of E is said optimalif its width is minimal.This leads us to the de�nition of a blurred pie
e of dis
rete plane (Fig. 1).



De�nition 3. A point set E in Z
3 is a width-ν blurred pie
e of dis
reteplane if and only if the width of its optimal bounding plane is less or equal to ν.In the following se
tions we propose two algorithms whi
h solve the re
ogni-tion problem of blurred pie
es of dis
rete planes. For a given set of points E in

Z
3 and a width ν these algorithms de
ide whether E is a width-ν blurred pie
e ofdis
rete plane. In addition, they give the 
hara
teristi
s of an optimal boundingplane of E for whi
h the width is minimal. We also show how these algorithms
an be made in
remental.3 Geometri
al Method for the Re
ognition of BlurredPie
es of Dis
rete PlanesThe �rst approa
h allows to solve the problem in terms of the norm ‖ · ‖2. Itrelies on the 
omputation of the width of a point set in 3-spa
e [8, 9℄.De�nition 4. Let E be a set of points in R

3 and P a real plane. We say that
P is a plane of support of E if all the points of E are lo
ated in one of thetwo half-spa
es delimited by P and su
h that P ∩ E 6= ∅.De�nition 5. The width of E is the smallest (Eu
lidean) distan
e between twoparallel planes of support of E 
alled width planes.The link with our problem is the following: if E is a set of points in Z

3 thenthe width planes 
oin
ide with the leaning planes of an optimal bounding planeof E and the width of E is equal to the width of this optimal bounding plane.For that reason, 
omputing the width and dedu
ing the width planes allow tore
ognize blurred pie
es of dis
rete planes.3.1 Width ComputationWe are looking for two parallel planes P1 : αx + βy + γz + δ1 = 0 and P2 :

αx + βy + γz + δ2 = 0 whi
h minimize the distan
e |δ2−δ1|√
α2+β2+γ2

between P1 and
P2 and su
h that, for all points p(px, py, pz) ∈ E, we have px +βpy +γpz +δ1 ≤ 0and px + βpy + γpz + δ2 ≥ 0. For this purpose we 
an see that the width of Eis the same as the width of its 
onvex hull CH(E) [8℄. It is due to the fa
t that
CH(E) is the interse
tion of all the half-spa
es 
ontaining all the points of E.We 
an then simplify the problem by introdu
ing antipodal pairs. Consider the
onvex hull of a set of points E in 3-spa
e. Two of its edges form an antipodaledge-edge (E-E) pair when two parallel planes of support of E 
ontain theseedges. Similarly, we de�ne vertex-vertex (V-V), fa
e-fa
e (F-F), vertex-fa
e (V-F), vertex-edge (V-E) and edge-fa
e (E-F) pairs .In [8℄, M.E. Houle and G.T. Toussaint show that, to 
ompute the width of
E, it is su�
ient to fo
us only on parallel planes whi
h 
ontain an E-E pair ora V-F pair. Therefore, we will enumerate all the E-E and V-F pairs of CH(E)and keep the ones whose distan
e is minimal.



In [9℄, B. Gärtner and T. Herrmann propose a dire
t approa
h relying on thegeometry and 
ombinatorial properties of the 
onvex hull. The method is inspiredfrom the rotating 
alipers [10℄ but generalized to the three-dimensional spa
e.They start with an arbitrary fa
e f of CH(E) and determine its antipodal verti
es
V = {v1, . . . , vk} by exploring all the verti
es of CH(E). Thus, they obtain aninitial V-F pair and the two parallel planes P1 and P2 supporting V and frespe
tively. Next, they rotate the two planes about an in
ident edge e of f until
P2 supports the other fa
et f ′ in
ident to e. During this rotation the parallelismand the supporting property of the two planes are preserved and all E-E pairsbelonging to e as well as the antipodal verti
es of f ′ are reported.The important part is as follows: given a V-E pair (w, e) and two parallel planes
P1 and P2 supporting w and e respe
tively, two events of interest might happenduring the rotation of P2 about e:1. P2 supports a new fa
e f ′ in
ident to e, a new V-F pair (w, f ′) is found.2. P1 supports an additional vertex v, a new E-E pair ((wv), a) is found.Thus, a rotation about an edge e of CH(E) allows to get all E-E pairs belongingto e and all V-F belonging to the two in
ident fa
es of e. Hen
e, by rotating aboutall the edges of CH(E) we get all the possible E-E and V-F pairs of CH(E). Atleast one of them belongs to the width planes and the distan
e between theseplanes is the width W of E.As W represents the width of an optimal bounding plane of E, if W ≤ ν then
E is a width-ν blurred pie
e of dis
rete plane.Furthermore, we 
an obtain the 
hara
teristi
s of this optimal bounding plane.As the width planes 
oin
ide with the leaning planes of the bounding plane
P(a, b, c, µ, ω) of E, we have a = α, b = β and c = γ. Relying on the widthinterpretation in Se
tion 2, we get ω = |δ2− δ1|+1. Lastly, owing to the leaningplanes equations, µ = min(−δ1,−δ2).3.2 In
remental AlgorithmHere we propose an in
remental version, in order to get an algorithm whi
h givesthe 
hara
teristi
s of an optimal bounding plane of E ea
h time we add a newpoint. A naive method 
onsists in re
omputing the width of E ea
h time we adda point. Nevertheless some observations allow to improve this pro
ess.On the one hand, only one point di�ers from one step to another. Thus, we
an advantageously repla
e the 
omputation of the 
onvex hull of all the pointsof E by an in
remental 
omputation ([11℄ pp 235�246). Let us brie�y re
all thepro
edure. At a general step i of the algorithm, a 
onvex hull Ci is given and weadd a new point M . If it lies inside Ci or on its boundary, then there is nothingto be done. Otherwise we look for all the visible3 fa
es of Ci, standing from3 Consider a plane Pf 
ontaining a fa
e f of the 
onvex hull. By 
onvexity, this 
onvexhull is 
ompletely 
ontained in one of the 
losed half-spa
es de�ned by Pf . The fa
e

f is visible from a point if that point is lo
ated in the open half-spa
e on the otherside of Pf



horizon

M(a) M

M

C i
C i+1(b)Fig. 2. (a) The horizon from M ; (b) Adding a point to the 
onvex hull.

M . This set of fa
es is en
losed by a 
urve 
alled horizon (Fig. 2(a)). All thevisible fa
es are removed from Ci and repla
ed by new ones 
reated by joiningea
h vertex of the horizon to the point M (Fig. 2(b)). Some of them 
ould be
oplanar with non-visible fa
es so they have to be merged together. The resultingpolytope is the new 
onvex hull Ci+1.On the other hand, we 
an observe that, at ea
h step of the algorithm, weknow the 
hara
teristi
s of an optimal bounding plane P(a, b, c, µ, ω) of E . So,if we add a point M(xM , yM , zM ), we 
an 
ompute the remainder value of Mrelative to P : rP (M) = axM +byM +czM−µ. A

ording to a property of dis
reteplanes, if rM ∈ [0, ω− 1] then M ∈ P , so it is useless to re
ompute the width of
E sin
e it does not 
hange.Algorithm 1: In
remental Re
ognitionData: E ∈ Z

3, the 
onvex hull C of E , the 
hara
teristi
s a, b, c, µ and ω of theoptimal bounding plane of EInput: A point M ∈ Z
3Result: The updated data after the addition of Mbegin1

E ←− E ∪M2 Update C using the in
remental pro
ess3
rM ←− axM + byM + czM − µ4 if rM /∈ [0, ω − 1] then5
〈α, β, γ, δ1, δ2〉 ←− ComputeWidthPlanes(C)6
a←− α7
b←− β8
c←− γ9
µ←− min(−δ1,−δ2)10
ω ←− |δ2 − δ1|+ 111 end12 This leads to the in
remental pro
edure des
ribed in Algorithm 1. The fun
-tion ComputeWidthtPlanes(C) at line 6 
omputes the width planes of C a
-
ording to the method des
ribed in Se
tion 3.1. The returned tuple 
ontains the




oe�
ients of these planes.Complexity: In [9℄, Gärtner and Herrmann showed that the 
omplexity of
omputing the fun
tion ComputeWidthPlanes(C) is O(n2), where n is the num-ber of points in E . As the other instru
tions of Algorithm 1 run in 
onstant time,we obtain a 
omplexity of O(n2) for our in
remental pro
edure. We need to usethis in
remental pro
edure ea
h time we add a point to E . Thus, we obtain an
O(n3) worst 
ase 
omplexity for a set E of n points. Nevertheless, in pra
ti
e,the re
ognition pro
ess seems rather linear.4 Linear Programming MethodThe se
ond method relies on linear programming and permits to solve the prob-lem by 
onsidering the norm ‖·‖∞. We re
all in the following se
tion the generalformulation of a linear programming problem and the simplex algorithm. Theproblem of re
ognition of blurred pie
es of dis
rete planes is then modelled inthat way in Se
tion 4.2.4.1 The Simplex AlgorithmFormulation. We try to identify a minimum point x∗ ∈ R

d of a fun
tion
f(x) : R

d → R where x = (x1, . . . , xd). Moreover, x∗ must satisfy a set of n
onstraints G = (gi(x) ≤ bi)1≤i≤n. LP is the spe
ialization of mathemati
alprogramming to the 
ase where both, the obje
tive fun
tion f and the problem
onstraints G are linear. Let A(n× d) denote a matrix of n rows and d 
olumns.Let c(d), b(n) and x(d) denote three 
olumn ve
tors of size d and n. Thus, we
an write our LP problem in su
h a way: Min ct.x subje
t to A · x ≤ b and
x ≥ 0. We 
all the standard form the equivalent rewriting: Min c′t.x′ subje
t to
A′ · x′ = b and x′ ≥ 0 where A′ = [A|Identity(n× n)], c′ = [c|Zero(n)]. The ninserted variables in the standard form are 
alled the sla
k variables.The simplex algorithm. This method, developed by George Dantzig 1947,provides a powerful 
omputational tool (see [12℄ for details). It operates on theformulation of the standard form. We have n + d variables and n equalities inthe system Ax = b, we 
an extra
t a nonsingular matrix B of rank n relative tothis system of equations.The basis 
orresponds to the indi
es of the 
olumns extra
ted from A to 
reate B.In the simplex method, the nonbasi
 variables, denoted by xN = (xi)1≤i≤n+d,i/∈basisare for
ed to be zero. The basi
 variables xB = (xi)i∈basis are thus equal to B−1b.A solution x asso
iated with a basis B is 
alled feasible when it veri�es xB ≥ 0.The simplex algorithm starts from a feasible solution. At ea
h iteration, theprogram 
omputes a new basis in su
h a way that the new basi
 solution isfeasible and that the obje
tive fun
tion has de
reased or remains un
hanged. Tobuild the new basis, one nonbasi
 variable is re
lassi�ed as basi
 and vi
e versa.



Whi
h variable 
an we 
hoose ? Let N denote the 
olumns of A whose indi
esare not in the basis. From Ax = b, we have: [B|N ].[xB , xN ] = b. As B is a non-singular matrix, we obtain: xB = B−1.(b−N.xN ). The obje
tive fun
tion 
an berewritten as: f(x) = ct.x = cB
t.xB + cN

t.xN = (cN
t − cB

tB−1N)xN + ct
BB−1b.This rewriting is not depending on the variables xB . Thus, as the variablesare positive, if there exists no negative value in the redu
ed 
ost ve
tor rct =

cN
t − cB

tB−1N , we have found the minimum x∗.If there exists a negative value, then we 
an de
rease the 
urrent value of theobje
tive fun
tion by in
reasing the 
orresponding variable xl of xN . As xl isno more zero, at the next iteration, it will be re
lassi�ed as a basi
 variable.By in
reasing xl, the values of the basi
 variables 
hange. If they all in
rease,the problem is unbounded, it means that the minimum value for the obje
tivefun
tion is −∞. In the other 
ase, where some basi
 variables de
rease when xlin
reases, the �rst basi
 variable xk that rea
hes zero will stop the in
rease of
xl. Thus, xk leaves the basis.To determine the index k, let 
onsider the equalities xB = B−1.(b−N.xN ). Only
xl is now nonzero among xN , so we have xB = B−1.b− B−1Alxl. Let b and Pdenote B−1b and B−1Al. Values in b are positive, so only the indi
es asso
iatedwith a positive value in P are of interest. The previous 
ondition b − P.xl ≥ 0implies that for all i in the basis with Pi > 0, we have: xl ≤ bi/Pi. It followsthat k = index of mini,Pi>0{bi/Pi}.fun
tion Min-Simplex(A,b,
,basis)Repeat1- Extra
t B, cB from A // relative to the 
urrent basis2- b = B−1b3- rc′ = ct − (cB

tB−1).A // equivalent version of rc4- If (rc′ ≥ 0) return b // optimum found (≤ for a Max)5- Choose l su
h that rc′l < 0 // xl enters the basis (> 0 for a Max)6- P = B−1Al7- If P ≤ 0 return unbounded8- k = mini,Pi>0{bi/Pi} // (same thing for a Max)9- basis← basis\{k} ∪ {l}Duality theorem. Asso
iated with ea
h Primal LP problem is a 
ompanionproblem 
alled the Dual. The main theorem of LP proves that the Primal prob-lem is infeasible i� the Dual problem is unbounded and vi
e versa. Moreover,one problem has an optimum i� the other problem has an optimum. The two op-timum values are equal. Moreover, if cB and B are the matri
es asso
iated withthe optimum in the Dual, then the optimum in the Primal is equal to ct
BB−1.Primal: (i) Min ct.x ←→ Dual: Max bt.λSubje
t to: (ii) A.x ≥ b ←→ Subje
t to: λ ≥ 0(iii) A.x = b ←→ λ ∈ R(iv) x ≥ 0 ←→ At.λ ≤ c(v) x ∈ R ←→ At.λ = c



4.2 Modelling the Re
ognition ProblemIn this way, we 
ompute the minimum verti
al distan
e between two parallelplanes whose slopes relative to the x-axis and the y-axis are between ±π/2.Indeed, let us re
all the given problem, we are looking for the 
hara
teristi
s
a, b, c, µ, ω of an optimal dis
rete plane bounding P for a set of n points byminimizing the verti
al distan
e between its two leaning planes. By 
onsidering
α = −a

c , β = − b
c , h = µ

c and e = ω−1
c , the problem may be reformulatedas follows: for a given set of n points (xi, yi, zi), we want to �nd two planes

P : z(x, y) = α.x + β.y + h and P ′ : z′(x, y) = α.x + β.y + h + e su
h thatall the points are lo
ated between P and P ′ and su
h that e is minimal. Weobtain one 
ouple of inequalities for ea
h entered point: α.xi +β.yi +h ≤ zi and
α.xi + β.yi + h + e ≥ zi.Primal Dual standard formMin e Max [-z1 . . .-zn | z1 . . . zn | -1 -1 -1 -1 0 ].λ







-α.xi − β.yi − h ≥ -zi

α.xi + β.yi + h + e ≥ zi

i = 1, . . . , n









-x1 ... -xn x1 ... xn -1 1 0 0 0-y1 ... -yn y1 ... yn 0 0 -1 1 0-1 ... -1 1 ... 1 0 0 0 0 0
0 ... 0 1 ... 1 0 0 0 0 1













λ1

. . .
λ

2n+5



 =









0
0
0
1









|α| ≤ 1, |β| ≤ 1
α, β, h ∈ R, e ≥ 0 λ ≥ 0We gather the two di�erent types of inequalities on ea
h side of the matrix.Working in the Primal problem with the standard form for
es to manage a largesparse matrix of size (2n+4)× (2n+8). The Dual allows to bypass this problemwith a 4× (2n +5) matrix ((i), (ii) and (v) in 4.1). We 
an easily 
he
k that thebasis {λ1, λ2n+1, λ2n+3, λ2n+5} where B−1b = [0 0 0 1]t ≥ 0 is always a feasiblebasis for the Dual problem.Geometri
al Interpretation of the Dual Problem.The basis of the Dual problem is asso
iated with four inequalities in the Primalproblem. So when λi is in the basis, the ith inequality in the Primal problem
orresponds to an equality. For example, when λi, 1 ≤ i ≤ n is in the basis, the

ith inequality implies α.xi + β.yi + h = zi, this means that the point pi belongsto the lower plane P . When n < i ≤ 2n, the point pi−n belongs to the upperplane P ′. In the same way, the variables λ2n+1, . . . , λ2n+5 are asso
iated withthe 
ases: α = 1, α = −1, β = 1, β = −1 or e = 0.The ve
tor ct
BB−1 in the Dual transforms the 
urrent basis into the primalvariables. This follows from the previous remark. Let K denote the matrix 
or-responding to the equalities retained in the Primal problem. The 
urrent systemveri�es: K · [ α β h e ]t = bPrimal

B . Thus, we have: [ α β h e ] = (K−1 ·bPrimal
B )t =

(bPrimal
B )t · (Kt)−1 = ct

B Dual · B−1
DualRedu
ed 
ost optimality 
ondition. The simplex algorithm maximizes afun
tion in the Dual. So, it stops when it �nds an rc ve
tor with negative values



(line 4). We easily verify that: rct = ct − (cB
tB−1).A = [ (-zi + [α.xi + β.yi +

h])1≤i≤n | (zi− [α.xi +β.yi +h+e])1≤i≤n | -1+α | -1-α | -1+β | -1-β | -e ]. As allthese values are negative, this implies that the inequalities of the Primal are allveri�ed. The Dual program stops when it �nds two parallel planes that in
ludeall the points and that have valid slopes.The obje
tive fun
tion in the Dual is quite obs
ure. Nevertheless relative tothe theorem of Duality, the dual obje
tive fun
tion must represent the samething than the Primal fun
tion. In fa
t, we have f(λ) = ct
BDual(B

−1bDual) =
(ct

BDualB
−1)bDual = [ α β h e ]× cPrimal = e.The 
ore of the algorithm. Ea
h iteration is asso
iated with a feasible basis.We only 
onsider in the following the two most important 
ases with all the ba-si
 variables λi su
h that 1 ≤ i ≤ 2n. Other sub
ases 
an be pro
essed withoutdi�
ulty. The 
on�guration 1 ≤ i, j, k, l ≤ n for the indi
es of the basi
 variablesis not possible be
ause the 
orresponding matrix B would be singular.Con�guration 1: 1 ≤ i, j, k ≤ n < l ≤ 2n. In this 
ase, the three points

pi(xi, yi), pj(xj , yj), pk(xk, yk) de�ne the lower plane P and the parallel plane
P ′ is supported by pl−n. The matrix B is equal to [ -xi -yi -1 0 | -xj -yj -1 0 | -
xk -yk -1 0 | xl−n yl−n 1 1 ]. Wlog, we 
an assume that the point pl−n 
orrespondsto the origin, this allows to simplify the writing of the matrix B to [ -xi -yi -1 0 | -
xj -yj -1 0 | -xk -yk -1 0 | 0 0 1 1 ]. Let Ni denote the two-dimensional ve
tor
(xi, yi). The ve
tor B−1b is equal to: [

Nk∧Nj

det(B) ; Ni∧Nk

det(B) ;
Nj∧Ni

det(B) ; 1]. As the matrix
B is nonsingular and det(B) = −det([ xi yi 1 | xj yj 1 | xk yk 1]) the threepoints pi, pj , pk must not be 
olinear. Suppose that the three points NiNjNk liein 
lo
kwise order, so det(B) ≥ 0. As B−1b ≥ 0, Nk ∧Nj , Ni ∧Nk and Nj ∧Niare positive. Su
h a situation 
an appear only when the point pl−n lies insidethe triangle NiNjNk relative to the proje
tion into the Oxy plane.Con�guration 2: 1 ≤ i, j ≤ n < k, l ≤ 2n. The planes P (resp. P ′) is sup-ported by the segment pipj (resp. pk−npl−n). As they are parallel, this 
oupleof planes is unique. Consider that the point pl−n is 
entered on the origin, wehave B−1b = [Nk ∧ Nj/∆; Ni ∧ Nk/∆; ...; ...] with ∆ = (Ni − Nj) ∧ Nk. ∆ isnonzero i� the segment pipj and the segment pk−npl−n are not 
olinear in the
Oxy plane. It follows that Nk ∧Nj and Nk ∧Ni have not the same sign. Thus,the segment pipj 
rosses the line (pk−npl−n). When we 
enter the origin on pi,we symmetri
ally obtain the same result. Thus, this 
ase is asso
iated with twosegments pipj and pk−npl−n that interse
t ea
h other relative to a proje
tioninto the Oxy plane.Con�guration 3: it is equivalent to the �rst 
on�guration.Variables inter
hanging. We traverse all the set of points. For ea
h point,we 
onsider its verti
al distan
e from P when it lies under P or from P ′ when itlies above P ′. If no points are found, our problem is solved. Otherwise, we sele
tthe point that is the verti
ally farthest point from P and P ′. The asso
iatedvariable λu enters the basis. In the Con�guration 1, we have three equalitiesof the type: α.x+β.y +h = z. When we sele
t a variable λu of the same type, itmeans with 1 ≤ u ≤ n, we 
an not withdraw pl−n, otherwise we would obtain a
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on�gurations relative to the basis and the entering variable.basis with four equalities of the same type and this 
on�guration is not possible.Thus the new basis will remain in 
on�guration 1. So, the new point pu repla
esthe sole point among pi, pj and pk that will preserve the 
onstraint: pu−n liesinside the new triangle relative to the Oxy plane. As pu−n is under the plane
P de�ned by pipjpk, the 
urrent thi
kness e has also in
reased (see Fig. 3.1a).In the other 
ase where n < u ≤ 2n, two possibilities 
an appear. When pu−nlies inside the triangle, it simply repla
es its equivalent point pl and e in
reases.When pu−n lies outside, we 
annot a
hieve a 
on�guration of type 1, thus wemove to a 
on�guration of type 2. For this, the segment that supports P ′ is also
pu−npl−n. The other segment 
orresponds to the sole edge of the triangle that
rosses this segment relative to the Oxy plane. pu−n lies at a verti
al distan
egreater than the one de�ned by the triangle and pl−n. Moreover, this distan
eis equal to the distan
e between the two retained segments, so the new 
on�g-uration in
reases the value of e (see Fig. 3.1b). In the Con�guration 2, whena variable λu, 1 ≤ u ≤ n is sele
ted, we have two possibilities. To remain inthe same 
on�guration, pu must repla
e a point in su
h a way that the two newsegments 
ross ea
h other relative to the Oxy plane (see Fig. 3.2a). When thisis not attainable, one of the two points pk−n or pl−n inevitably belongs to thetriangle pipjpu and we then shift to a 
on�guration of type 1 (see Fig. 3.2b).Other inter
hangings 
an be dedu
ed from the ones exposed in this se
tion.Convergen
e and 
omplexity. As the Primal is feasible (
hoose a large valuefor e), the Dual is never unbounded and we 
an suppress the pro
essing of thisparti
ular 
ase. As we sele
t a point outside of two parallel planes, we know thatthe verti
al distan
e (the obje
tive fun
tion) stri
tly in
reases at ea
h iteration.Thus, unlike in the general 
ase, the simplex algorithm applied to this re
ogni-tion problem 
an not 
y
le. Moreover, we have at most C4

2n+5 = O(n4) possiblefeasible basis. Thus, we obtain an O(k4) time 
omplexity where k represents thenumber of the verti
es of the 
onvex hull of the given points. In pra
ti
e, thisquantity is relatively small 
ompared to the number of points.The in
remental version. When a new point is inserted, it may lie between



the two planes P and P ′. In this 
ase, the previous solution remains optimal andnothing has to be done. Otherwise, two 
olumns are added to the matrix A inthe Dual. Next, using the last pro
essed feasible basis, we laun
h a new sequen
eof iterations until the new optimum solution is found.5 Con
lusionWe proposed in this paper a new de�nition of dis
rete primitives: the blurredpie
es of dis
rete planes. These dis
rete primitives allow to deal with the noisepresent in dis
rete data by varying a parameter. Two re
ognition algorithms aregiven. The �rst one is a geometri
 algorithm, based on the 
onvex hull of the
onsidered set of points and its result is the optimal bounding plane for whi
h theEu
lidean distan
e is minimal. The se
ond one is based on the simplex algorithmand its output 
orresponds to the optimal bounding plane for whi
h the verti
aldistan
e is minimal. The 
odes of these two algorithms and examples of useare available on http://www.loria.fr/~debled/BlurredPlane. A work aboutthe 
omparison between these two methods is in progress. Moreover we intendto use these algorithms in the framework of the boundary segmentation of 3Dnoisy dis
rete obje
ts. Our aim is to obtain an algorithm of polyhedrization of3D noisy dis
rete obje
ts by 
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