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Reognition of Blurred Piees of Disrete PlanesL. Provot1 and L. Buzer2 and I. Debled-Rennesson1

1 LORIA NanyCampus Sienti�que - BP 23954506 Vand÷uvre-lès-Nany Cedex, FRANCE{provot,debled}�loria.fr
2 Laboratory CNRS-UMLV-ESIEE, UMR 8049ESIEE, 2, boulevard Blaise PasalCité DESCARTES, BP 9993162 Noisy le Grand CEDEX, FRANCEbuzerl�esiee.frAbstrat. We introdue a new disrete primitive, the blurred piee of adisrete plane, whih relies on the arithmeti de�nition of disrete planes.It generalizes suh planes, admitting that some points are missing andthen permits to adapt to noisy disrete data. Two reognition algorithmsof suh primitives are proposed: the �rst one is a geometrial algorithmand minimizes the Eulidean distane and the seond one relies on linearprogramming and minimizes the vertial distane.1 IntrodutionThe reognition of disrete primitives as digital straight lines and digital planesis a deeply studied problem in digital geometry (see a review in the book [1℄).This problem onsists in determining if a set of disrete points orresponds toa known disrete primitive and, in suh ase, in identifying its harateristis.Three main lasses of algorithms an be de�ned:� Strutural algorithms: based on geometri (onvex hull, hords) or om-binatorial (size of the steps) properties of disrete primitives. Indeed, thestrutural regularity of these primitives an lead to e�ient algorithms.� Arithmeti algorithms: based on the de�nition of disrete primitives as Dio-phantine inequalities, these algorithms make pro�t of the well de�ned arith-metial struture of disrete primitives.� Dual spae algorithms: the reognition problem is translated in a dual spaewhere eah grid point is represented by a double linear onstraint. The reog-nition problem is then de�ned as a linear programming problem, optimizedusing partiular knowledge on the onstraints geometry.Reently, a new disrete primitive, the blurred segment [2, 3℄, was introduedto deal with the noise or artefats due to the aquisition tools or methods. Re-lying on an arithmeti de�nition of disrete lines [4℄, it generalizes suh lines,admitting that some points are missing. E�ient blurred segments reognition



algorithms were proposed [2, 3, 5℄ and they were used in appliations in imageanalysis [6℄. In the same framework, we introdue in the paper the new notion ofblurred piees of disrete planes, relying on the de�nition of arithmeti disreteplane [7℄ by onsidering a variable thikness.Two reognition algorithms of blurred piees of disrete planes are proposed. The�rst one is based on a strutural approah: the omputation of the onvex hull ofthe given voxels is done while we searh for the two parallel planes that mark outthis onvex hull and that minimize the Eulidean distane between themselves.An inremental algorithm is given. The seond one is based on a dual spae ap-proah in the ontext of linear programming: the reognition problem is modelledby a system of linear onstraints de�ned by the initial set of points. The simplexalgorithm is then used to solve the problem by minimizing the vertial distanebetween two parallel planes ontaining all the points of the initial set. A geomet-rial interpretation of this method is also given. The odes of these algorithmsand examples are available on http://www.loria.fr/~debled/BlurredPlane.In setion 2, after realling de�nitions and basi properties of arithmeti dis-rete planes, we de�ne the related notion of blurred piees of disrete planes andoptimal bounding planes. Then, in setion 3, a geometrial method is proposedto solve the reognition problem by minimizing the Eulidean distane. The se-ond method, based on linear programming, is presented in setion 4 as well asa geometrial interpretation of the dual problem. The paper ends up with someonlusions and perspetives in setion 5.2 Blurred Piees of Disrete PlanesAn arithmeti disrete plane [7℄, named P(a, b, c, µ, ω), is a set of integerpoints (x, y, z) verifying µ ≤ ax+ by + cz < µ+ω where (a, b, c) ∈ Z
3 is the nor-mal vetor. µ ∈ Z is named the translation onstant and ω ∈ Z the arithmetialthikness.The two real planes, de�ned by the following equations: ax + by + cz = µ and

ax + by + cz = µ + ω − 1, are alled the leaning planes of P(a, b, c, µ, ω). Allthe points of P are loated between the leaning planes of P .We hereafter propose a generalization of the notion of disrete plane relyingon the arithmetial de�nition and admitting that some points are missing. Con-sider a norm N on R
3. We de�ne the notion of bounding plane, relative to N ,as follows:De�nition 1. Let E be a set of points in Z

3. We say that the disrete plane
P(a, b, c, µ, ω) is a bounding plane of E if all the points of E belong to P. Weall width of P(a, b, c, µ, ω), the value ω−1

N(a,b,c) .



Interpretation of the Width:1. if N = ‖ · ‖2, the width ω−1
N(a,b,c) represents the Eulidean distane betweenthe two leaning planes of the bounding plane P(a, b, c, µ, ω). Indeed, let P1 :

ax+ by + cz = µ and P2 : ax+ by + cz = µ+ω− 1 be the two leaning planesof P . As P1 and P2 are parallel, the distane between P1 and P2 is equal to
|µ+ω−1−µ|√

a2+b2+c2
, i.e. ω−1

‖(a,b,c)‖2
sine ω > 0.2. if N = ‖ · ‖∞, the width ω−1

N(a,b,c) represents the distane aording to themain diretion of the vetor (a, b, c). Indeed and without loss of generalitywe an assume that max(|a|, |b|, |c|) = |c|, whih means the main diretionis the Oz axis. Let M1(x1, y1, z1) ∈ P1 and M2(x2, y2, z2) ∈ P2 suh that
x1 = x2 and y1 = y2. The distane between P1 and P2 is equal to |z1− z2| =
|c(z1−z2)|

|c| = |a(x1−y2)+b(y1−y2)+c(z1−z2)|
|c| = |µ−(µ+ω−1)|

|c| beause M1 ∈ P1 and
M2 ∈ P2, i.e. ω−1

‖(a,b,c)‖∞

sine ω > 0.
(a) (b)
() (d)Fig. 1. A width-3 blurred piee of disrete plane (a and b), its optimal bounding planes() for Eulidean norm: P2(4, 8, 19,−80, 49) and the width of P2 = 2.28 (d) for in�nitynorm: P∞(31, 65, 157,−680, 397) and the width of P∞ = 2.52. The leaning planes andorresponding leaning points of P2 and P∞ are respetively drawn on (a,) and (b,d).De�nition 2. Let E be a point set in Z

3. A bounding plane of E is said optimalif its width is minimal.This leads us to the de�nition of a blurred piee of disrete plane (Fig. 1).



De�nition 3. A point set E in Z
3 is a width-ν blurred piee of disreteplane if and only if the width of its optimal bounding plane is less or equal to ν.In the following setions we propose two algorithms whih solve the reogni-tion problem of blurred piees of disrete planes. For a given set of points E in

Z
3 and a width ν these algorithms deide whether E is a width-ν blurred piee ofdisrete plane. In addition, they give the harateristis of an optimal boundingplane of E for whih the width is minimal. We also show how these algorithmsan be made inremental.3 Geometrial Method for the Reognition of BlurredPiees of Disrete PlanesThe �rst approah allows to solve the problem in terms of the norm ‖ · ‖2. Itrelies on the omputation of the width of a point set in 3-spae [8, 9℄.De�nition 4. Let E be a set of points in R

3 and P a real plane. We say that
P is a plane of support of E if all the points of E are loated in one of thetwo half-spaes delimited by P and suh that P ∩ E 6= ∅.De�nition 5. The width of E is the smallest (Eulidean) distane between twoparallel planes of support of E alled width planes.The link with our problem is the following: if E is a set of points in Z

3 thenthe width planes oinide with the leaning planes of an optimal bounding planeof E and the width of E is equal to the width of this optimal bounding plane.For that reason, omputing the width and deduing the width planes allow toreognize blurred piees of disrete planes.3.1 Width ComputationWe are looking for two parallel planes P1 : αx + βy + γz + δ1 = 0 and P2 :

αx + βy + γz + δ2 = 0 whih minimize the distane |δ2−δ1|√
α2+β2+γ2

between P1 and
P2 and suh that, for all points p(px, py, pz) ∈ E, we have px +βpy +γpz +δ1 ≤ 0and px + βpy + γpz + δ2 ≥ 0. For this purpose we an see that the width of Eis the same as the width of its onvex hull CH(E) [8℄. It is due to the fat that
CH(E) is the intersetion of all the half-spaes ontaining all the points of E.We an then simplify the problem by introduing antipodal pairs. Consider theonvex hull of a set of points E in 3-spae. Two of its edges form an antipodaledge-edge (E-E) pair when two parallel planes of support of E ontain theseedges. Similarly, we de�ne vertex-vertex (V-V), fae-fae (F-F), vertex-fae (V-F), vertex-edge (V-E) and edge-fae (E-F) pairs .In [8℄, M.E. Houle and G.T. Toussaint show that, to ompute the width of
E, it is su�ient to fous only on parallel planes whih ontain an E-E pair ora V-F pair. Therefore, we will enumerate all the E-E and V-F pairs of CH(E)and keep the ones whose distane is minimal.



In [9℄, B. Gärtner and T. Herrmann propose a diret approah relying on thegeometry and ombinatorial properties of the onvex hull. The method is inspiredfrom the rotating alipers [10℄ but generalized to the three-dimensional spae.They start with an arbitrary fae f of CH(E) and determine its antipodal verties
V = {v1, . . . , vk} by exploring all the verties of CH(E). Thus, they obtain aninitial V-F pair and the two parallel planes P1 and P2 supporting V and frespetively. Next, they rotate the two planes about an inident edge e of f until
P2 supports the other faet f ′ inident to e. During this rotation the parallelismand the supporting property of the two planes are preserved and all E-E pairsbelonging to e as well as the antipodal verties of f ′ are reported.The important part is as follows: given a V-E pair (w, e) and two parallel planes
P1 and P2 supporting w and e respetively, two events of interest might happenduring the rotation of P2 about e:1. P2 supports a new fae f ′ inident to e, a new V-F pair (w, f ′) is found.2. P1 supports an additional vertex v, a new E-E pair ((wv), a) is found.Thus, a rotation about an edge e of CH(E) allows to get all E-E pairs belongingto e and all V-F belonging to the two inident faes of e. Hene, by rotating aboutall the edges of CH(E) we get all the possible E-E and V-F pairs of CH(E). Atleast one of them belongs to the width planes and the distane between theseplanes is the width W of E.As W represents the width of an optimal bounding plane of E, if W ≤ ν then
E is a width-ν blurred piee of disrete plane.Furthermore, we an obtain the harateristis of this optimal bounding plane.As the width planes oinide with the leaning planes of the bounding plane
P(a, b, c, µ, ω) of E, we have a = α, b = β and c = γ. Relying on the widthinterpretation in Setion 2, we get ω = |δ2− δ1|+1. Lastly, owing to the leaningplanes equations, µ = min(−δ1,−δ2).3.2 Inremental AlgorithmHere we propose an inremental version, in order to get an algorithm whih givesthe harateristis of an optimal bounding plane of E eah time we add a newpoint. A naive method onsists in reomputing the width of E eah time we adda point. Nevertheless some observations allow to improve this proess.On the one hand, only one point di�ers from one step to another. Thus, wean advantageously replae the omputation of the onvex hull of all the pointsof E by an inremental omputation ([11℄ pp 235�246). Let us brie�y reall theproedure. At a general step i of the algorithm, a onvex hull Ci is given and weadd a new point M . If it lies inside Ci or on its boundary, then there is nothingto be done. Otherwise we look for all the visible3 faes of Ci, standing from3 Consider a plane Pf ontaining a fae f of the onvex hull. By onvexity, this onvexhull is ompletely ontained in one of the losed half-spaes de�ned by Pf . The fae

f is visible from a point if that point is loated in the open half-spae on the otherside of Pf



horizon

M(a) M

M

C i
C i+1(b)Fig. 2. (a) The horizon from M ; (b) Adding a point to the onvex hull.

M . This set of faes is enlosed by a urve alled horizon (Fig. 2(a)). All thevisible faes are removed from Ci and replaed by new ones reated by joiningeah vertex of the horizon to the point M (Fig. 2(b)). Some of them ould beoplanar with non-visible faes so they have to be merged together. The resultingpolytope is the new onvex hull Ci+1.On the other hand, we an observe that, at eah step of the algorithm, weknow the harateristis of an optimal bounding plane P(a, b, c, µ, ω) of E . So,if we add a point M(xM , yM , zM ), we an ompute the remainder value of Mrelative to P : rP (M) = axM +byM +czM−µ. Aording to a property of disreteplanes, if rM ∈ [0, ω− 1] then M ∈ P , so it is useless to reompute the width of
E sine it does not hange.Algorithm 1: Inremental ReognitionData: E ∈ Z

3, the onvex hull C of E , the harateristis a, b, c, µ and ω of theoptimal bounding plane of EInput: A point M ∈ Z
3Result: The updated data after the addition of Mbegin1

E ←− E ∪M2 Update C using the inremental proess3
rM ←− axM + byM + czM − µ4 if rM /∈ [0, ω − 1] then5
〈α, β, γ, δ1, δ2〉 ←− ComputeWidthPlanes(C)6
a←− α7
b←− β8
c←− γ9
µ←− min(−δ1,−δ2)10
ω ←− |δ2 − δ1|+ 111 end12 This leads to the inremental proedure desribed in Algorithm 1. The fun-tion ComputeWidthtPlanes(C) at line 6 omputes the width planes of C a-ording to the method desribed in Setion 3.1. The returned tuple ontains the



oe�ients of these planes.Complexity: In [9℄, Gärtner and Herrmann showed that the omplexity ofomputing the funtion ComputeWidthPlanes(C) is O(n2), where n is the num-ber of points in E . As the other instrutions of Algorithm 1 run in onstant time,we obtain a omplexity of O(n2) for our inremental proedure. We need to usethis inremental proedure eah time we add a point to E . Thus, we obtain an
O(n3) worst ase omplexity for a set E of n points. Nevertheless, in pratie,the reognition proess seems rather linear.4 Linear Programming MethodThe seond method relies on linear programming and permits to solve the prob-lem by onsidering the norm ‖·‖∞. We reall in the following setion the generalformulation of a linear programming problem and the simplex algorithm. Theproblem of reognition of blurred piees of disrete planes is then modelled inthat way in Setion 4.2.4.1 The Simplex AlgorithmFormulation. We try to identify a minimum point x∗ ∈ R

d of a funtion
f(x) : R

d → R where x = (x1, . . . , xd). Moreover, x∗ must satisfy a set of nonstraints G = (gi(x) ≤ bi)1≤i≤n. LP is the speialization of mathematialprogramming to the ase where both, the objetive funtion f and the problemonstraints G are linear. Let A(n× d) denote a matrix of n rows and d olumns.Let c(d), b(n) and x(d) denote three olumn vetors of size d and n. Thus, wean write our LP problem in suh a way: Min ct.x subjet to A · x ≤ b and
x ≥ 0. We all the standard form the equivalent rewriting: Min c′t.x′ subjet to
A′ · x′ = b and x′ ≥ 0 where A′ = [A|Identity(n× n)], c′ = [c|Zero(n)]. The ninserted variables in the standard form are alled the slak variables.The simplex algorithm. This method, developed by George Dantzig 1947,provides a powerful omputational tool (see [12℄ for details). It operates on theformulation of the standard form. We have n + d variables and n equalities inthe system Ax = b, we an extrat a nonsingular matrix B of rank n relative tothis system of equations.The basis orresponds to the indies of the olumns extrated from A to reate B.In the simplex method, the nonbasi variables, denoted by xN = (xi)1≤i≤n+d,i/∈basisare fored to be zero. The basi variables xB = (xi)i∈basis are thus equal to B−1b.A solution x assoiated with a basis B is alled feasible when it veri�es xB ≥ 0.The simplex algorithm starts from a feasible solution. At eah iteration, theprogram omputes a new basis in suh a way that the new basi solution isfeasible and that the objetive funtion has dereased or remains unhanged. Tobuild the new basis, one nonbasi variable is relassi�ed as basi and vie versa.



Whih variable an we hoose ? Let N denote the olumns of A whose indiesare not in the basis. From Ax = b, we have: [B|N ].[xB , xN ] = b. As B is a non-singular matrix, we obtain: xB = B−1.(b−N.xN ). The objetive funtion an berewritten as: f(x) = ct.x = cB
t.xB + cN

t.xN = (cN
t − cB

tB−1N)xN + ct
BB−1b.This rewriting is not depending on the variables xB . Thus, as the variablesare positive, if there exists no negative value in the redued ost vetor rct =

cN
t − cB

tB−1N , we have found the minimum x∗.If there exists a negative value, then we an derease the urrent value of theobjetive funtion by inreasing the orresponding variable xl of xN . As xl isno more zero, at the next iteration, it will be relassi�ed as a basi variable.By inreasing xl, the values of the basi variables hange. If they all inrease,the problem is unbounded, it means that the minimum value for the objetivefuntion is −∞. In the other ase, where some basi variables derease when xlinreases, the �rst basi variable xk that reahes zero will stop the inrease of
xl. Thus, xk leaves the basis.To determine the index k, let onsider the equalities xB = B−1.(b−N.xN ). Only
xl is now nonzero among xN , so we have xB = B−1.b− B−1Alxl. Let b and Pdenote B−1b and B−1Al. Values in b are positive, so only the indies assoiatedwith a positive value in P are of interest. The previous ondition b − P.xl ≥ 0implies that for all i in the basis with Pi > 0, we have: xl ≤ bi/Pi. It followsthat k = index of mini,Pi>0{bi/Pi}.funtion Min-Simplex(A,b,,basis)Repeat1- Extrat B, cB from A // relative to the urrent basis2- b = B−1b3- rc′ = ct − (cB

tB−1).A // equivalent version of rc4- If (rc′ ≥ 0) return b // optimum found (≤ for a Max)5- Choose l suh that rc′l < 0 // xl enters the basis (> 0 for a Max)6- P = B−1Al7- If P ≤ 0 return unbounded8- k = mini,Pi>0{bi/Pi} // (same thing for a Max)9- basis← basis\{k} ∪ {l}Duality theorem. Assoiated with eah Primal LP problem is a ompanionproblem alled the Dual. The main theorem of LP proves that the Primal prob-lem is infeasible i� the Dual problem is unbounded and vie versa. Moreover,one problem has an optimum i� the other problem has an optimum. The two op-timum values are equal. Moreover, if cB and B are the matries assoiated withthe optimum in the Dual, then the optimum in the Primal is equal to ct
BB−1.Primal: (i) Min ct.x ←→ Dual: Max bt.λSubjet to: (ii) A.x ≥ b ←→ Subjet to: λ ≥ 0(iii) A.x = b ←→ λ ∈ R(iv) x ≥ 0 ←→ At.λ ≤ c(v) x ∈ R ←→ At.λ = c



4.2 Modelling the Reognition ProblemIn this way, we ompute the minimum vertial distane between two parallelplanes whose slopes relative to the x-axis and the y-axis are between ±π/2.Indeed, let us reall the given problem, we are looking for the harateristis
a, b, c, µ, ω of an optimal disrete plane bounding P for a set of n points byminimizing the vertial distane between its two leaning planes. By onsidering
α = −a

c , β = − b
c , h = µ

c and e = ω−1
c , the problem may be reformulatedas follows: for a given set of n points (xi, yi, zi), we want to �nd two planes

P : z(x, y) = α.x + β.y + h and P ′ : z′(x, y) = α.x + β.y + h + e suh thatall the points are loated between P and P ′ and suh that e is minimal. Weobtain one ouple of inequalities for eah entered point: α.xi +β.yi +h ≤ zi and
α.xi + β.yi + h + e ≥ zi.Primal Dual standard formMin e Max [-z1 . . .-zn | z1 . . . zn | -1 -1 -1 -1 0 ].λ







-α.xi − β.yi − h ≥ -zi

α.xi + β.yi + h + e ≥ zi

i = 1, . . . , n
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|α| ≤ 1, |β| ≤ 1
α, β, h ∈ R, e ≥ 0 λ ≥ 0We gather the two di�erent types of inequalities on eah side of the matrix.Working in the Primal problem with the standard form fores to manage a largesparse matrix of size (2n+4)× (2n+8). The Dual allows to bypass this problemwith a 4× (2n +5) matrix ((i), (ii) and (v) in 4.1). We an easily hek that thebasis {λ1, λ2n+1, λ2n+3, λ2n+5} where B−1b = [0 0 0 1]t ≥ 0 is always a feasiblebasis for the Dual problem.Geometrial Interpretation of the Dual Problem.The basis of the Dual problem is assoiated with four inequalities in the Primalproblem. So when λi is in the basis, the ith inequality in the Primal problemorresponds to an equality. For example, when λi, 1 ≤ i ≤ n is in the basis, the

ith inequality implies α.xi + β.yi + h = zi, this means that the point pi belongsto the lower plane P . When n < i ≤ 2n, the point pi−n belongs to the upperplane P ′. In the same way, the variables λ2n+1, . . . , λ2n+5 are assoiated withthe ases: α = 1, α = −1, β = 1, β = −1 or e = 0.The vetor ct
BB−1 in the Dual transforms the urrent basis into the primalvariables. This follows from the previous remark. Let K denote the matrix or-responding to the equalities retained in the Primal problem. The urrent systemveri�es: K · [ α β h e ]t = bPrimal

B . Thus, we have: [ α β h e ] = (K−1 ·bPrimal
B )t =

(bPrimal
B )t · (Kt)−1 = ct

B Dual · B−1
DualRedued ost optimality ondition. The simplex algorithm maximizes afuntion in the Dual. So, it stops when it �nds an rc vetor with negative values



(line 4). We easily verify that: rct = ct − (cB
tB−1).A = [ (-zi + [α.xi + β.yi +

h])1≤i≤n | (zi− [α.xi +β.yi +h+e])1≤i≤n | -1+α | -1-α | -1+β | -1-β | -e ]. As allthese values are negative, this implies that the inequalities of the Primal are allveri�ed. The Dual program stops when it �nds two parallel planes that inludeall the points and that have valid slopes.The objetive funtion in the Dual is quite obsure. Nevertheless relative tothe theorem of Duality, the dual objetive funtion must represent the samething than the Primal funtion. In fat, we have f(λ) = ct
BDual(B

−1bDual) =
(ct

BDualB
−1)bDual = [ α β h e ]× cPrimal = e.The ore of the algorithm. Eah iteration is assoiated with a feasible basis.We only onsider in the following the two most important ases with all the ba-si variables λi suh that 1 ≤ i ≤ 2n. Other subases an be proessed withoutdi�ulty. The on�guration 1 ≤ i, j, k, l ≤ n for the indies of the basi variablesis not possible beause the orresponding matrix B would be singular.Con�guration 1: 1 ≤ i, j, k ≤ n < l ≤ 2n. In this ase, the three points

pi(xi, yi), pj(xj , yj), pk(xk, yk) de�ne the lower plane P and the parallel plane
P ′ is supported by pl−n. The matrix B is equal to [ -xi -yi -1 0 | -xj -yj -1 0 | -
xk -yk -1 0 | xl−n yl−n 1 1 ]. Wlog, we an assume that the point pl−n orrespondsto the origin, this allows to simplify the writing of the matrix B to [ -xi -yi -1 0 | -
xj -yj -1 0 | -xk -yk -1 0 | 0 0 1 1 ]. Let Ni denote the two-dimensional vetor
(xi, yi). The vetor B−1b is equal to: [

Nk∧Nj

det(B) ; Ni∧Nk

det(B) ;
Nj∧Ni

det(B) ; 1]. As the matrix
B is nonsingular and det(B) = −det([ xi yi 1 | xj yj 1 | xk yk 1]) the threepoints pi, pj , pk must not be olinear. Suppose that the three points NiNjNk liein lokwise order, so det(B) ≥ 0. As B−1b ≥ 0, Nk ∧Nj , Ni ∧Nk and Nj ∧Niare positive. Suh a situation an appear only when the point pl−n lies insidethe triangle NiNjNk relative to the projetion into the Oxy plane.Con�guration 2: 1 ≤ i, j ≤ n < k, l ≤ 2n. The planes P (resp. P ′) is sup-ported by the segment pipj (resp. pk−npl−n). As they are parallel, this oupleof planes is unique. Consider that the point pl−n is entered on the origin, wehave B−1b = [Nk ∧ Nj/∆; Ni ∧ Nk/∆; ...; ...] with ∆ = (Ni − Nj) ∧ Nk. ∆ isnonzero i� the segment pipj and the segment pk−npl−n are not olinear in the
Oxy plane. It follows that Nk ∧Nj and Nk ∧Ni have not the same sign. Thus,the segment pipj rosses the line (pk−npl−n). When we enter the origin on pi,we symmetrially obtain the same result. Thus, this ase is assoiated with twosegments pipj and pk−npl−n that interset eah other relative to a projetioninto the Oxy plane.Con�guration 3: it is equivalent to the �rst on�guration.Variables interhanging. We traverse all the set of points. For eah point,we onsider its vertial distane from P when it lies under P or from P ′ when itlies above P ′. If no points are found, our problem is solved. Otherwise, we seletthe point that is the vertially farthest point from P and P ′. The assoiatedvariable λu enters the basis. In the Con�guration 1, we have three equalitiesof the type: α.x+β.y +h = z. When we selet a variable λu of the same type, itmeans with 1 ≤ u ≤ n, we an not withdraw pl−n, otherwise we would obtain a
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pl−nFig. 3. Di�erent on�gurations relative to the basis and the entering variable.basis with four equalities of the same type and this on�guration is not possible.Thus the new basis will remain in on�guration 1. So, the new point pu replaesthe sole point among pi, pj and pk that will preserve the onstraint: pu−n liesinside the new triangle relative to the Oxy plane. As pu−n is under the plane
P de�ned by pipjpk, the urrent thikness e has also inreased (see Fig. 3.1a).In the other ase where n < u ≤ 2n, two possibilities an appear. When pu−nlies inside the triangle, it simply replaes its equivalent point pl and e inreases.When pu−n lies outside, we annot ahieve a on�guration of type 1, thus wemove to a on�guration of type 2. For this, the segment that supports P ′ is also
pu−npl−n. The other segment orresponds to the sole edge of the triangle thatrosses this segment relative to the Oxy plane. pu−n lies at a vertial distanegreater than the one de�ned by the triangle and pl−n. Moreover, this distaneis equal to the distane between the two retained segments, so the new on�g-uration inreases the value of e (see Fig. 3.1b). In the Con�guration 2, whena variable λu, 1 ≤ u ≤ n is seleted, we have two possibilities. To remain inthe same on�guration, pu must replae a point in suh a way that the two newsegments ross eah other relative to the Oxy plane (see Fig. 3.2a). When thisis not attainable, one of the two points pk−n or pl−n inevitably belongs to thetriangle pipjpu and we then shift to a on�guration of type 1 (see Fig. 3.2b).Other interhangings an be dedued from the ones exposed in this setion.Convergene and omplexity. As the Primal is feasible (hoose a large valuefor e), the Dual is never unbounded and we an suppress the proessing of thispartiular ase. As we selet a point outside of two parallel planes, we know thatthe vertial distane (the objetive funtion) stritly inreases at eah iteration.Thus, unlike in the general ase, the simplex algorithm applied to this reogni-tion problem an not yle. Moreover, we have at most C4

2n+5 = O(n4) possiblefeasible basis. Thus, we obtain an O(k4) time omplexity where k represents thenumber of the verties of the onvex hull of the given points. In pratie, thisquantity is relatively small ompared to the number of points.The inremental version. When a new point is inserted, it may lie between
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