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Abstract. We introduce a new discrete primitive, the blurred piece of a
discrete plane, which relies on the arithmetic definition of discrete planes.
It generalizes such planes, admitting that some points are missing and
then permits to adapt to noisy discrete data. Two recognition algorithms
of such primitives are proposed: the first one is a geometrical algorithm
and minimizes the Euclidean distance and the second one relies on linear
programming and minimizes the vertical distance.

1 Introduction

The recognition of discrete primitives as digital straight lines and digital planes
is a deeply studied problem in digital geometry (see a review in the book [1]).
This problem consists in determining if a set of discrete points corresponds to
a known discrete primitive and, in such case, in identifying its characteristics.
Three main classes of algorithms can be defined:

— Structural algorithms: based on geometric (convex hull, chords) or com-
binatorial (size of the steps) properties of discrete primitives. Indeed, the
structural regularity of these primitives can lead to efficient algorithms.

— Arithmetic algorithms: based on the definition of discrete primitives as Dio-
phantine inequalities, these algorithms make profit of the well defined arith-
metical structure of discrete primitives.

— Dual space algorithms: the recognition problem is translated in a dual space
where each grid point is represented by a double linear constraint. The recog-
nition problem is then defined as a linear programming problem, optimized
using particular knowledge on the constraints geometry.

Recently, a new discrete primitive, the blurred segment [2,3], was introduced
to deal with the noise or artefacts due to the acquisition tools or methods. Re-
lying on an arithmetic definition of discrete lines [4], it generalizes such lines,
admitting that some points are missing. Efficient blurred segments recognition



algorithms were proposed [2, 3,5] and they were used in applications in image
analysis [6]. In the same framework, we introduce in the paper the new notion of
blurred pieces of discrete planes, relying on the definition of arithmetic discrete
plane [7] by considering a variable thickness.

Two recognition algorithms of blurred pieces of discrete planes are proposed. The
first one is based on a structural approach: the computation of the convex hull of
the given voxels is done while we search for the two parallel planes that mark out
this convex hull and that minimize the Euclidean distance between themselves.
An incremental algorithm is given. The second one is based on a dual space ap-
proach in the context of linear programming: the recognition problem is modelled
by a system of linear constraints defined by the initial set of points. The simplex
algorithm is then used to solve the problem by minimizing the vertical distance
between two parallel planes containing all the points of the initial set. A geomet-
rical interpretation of this method is also given. The codes of these algorithms
and examples are available on http://www.loria.fr/ debled/BlurredPlane.

In section 2, after recalling definitions and basic properties of arithmetic dis-
crete planes, we define the related notion of blurred pieces of discrete planes and
optimal bounding planes. Then, in section 3, a geometrical method is proposed
to solve the recognition problem by minimizing the Euclidean distance. The sec-
ond method, based on linear programming, is presented in section 4 as well as
a geometrical interpretation of the dual problem. The paper ends up with some
conclusions and perspectives in section 5.

2 Blurred Pieces of Discrete Planes

An arithmetic discrete plane [7], named P(a,b,c, u,w), is a set of integer
points (z,y, z) verifying u < ax + by + cz < u+w where (a,b,c) € Z? is the nor-
mal vector. p € Z is named the translation constant and w € Z the arithmetical
thickness.

The two real planes, defined by the following equations: ax + by + ¢z = p and
ax + by + cz = p+w — 1, are called the leaning planes of P(a,b,c, u,w). All
the points of P are located between the leaning planes of P.

We hereafter propose a generalization of the notion of discrete plane relying
on the arithmetical definition and admitting that some points are missing. Con-
sider a norm N on R3. We define the notion of bounding plane, relative to N
as follows:

Definition 1. Let £ be a set of points in Z3. We say that the discrete plane
Pla,b,c, u,w) is a bounding plane of £ if all the points of £ belong to P. We

call width of P(a,b,c, p1,w), the value 2=




Interpretation of the Width:

1. if N = || - |2, the width N“{;bl represents the Euclidean distance between
ab.c)

the two leaning planes of the bounding plane P(a, b, ¢, i, w). Indeed, let P :
ar+by+cz=pand Py : ax+by+cz = p+w— 1 be the two leaning planes
of P. As P; and P» are parallel, the distance between P; and P> is equal to

lptw—1—p| . w—1 ;
VarrEre € Tapals Sitce w > 0.
2. if N = |+ ||co, the width Nfa_blc) represents the distance according to the

main direction of the vector (a,b,c). Indeed and without loss of generality
we can assume that max(|al,|b|,|c|) = |c|, which means the main direction
is the Oz axis. Let My(z1,y1,21) € P1 and My(z2,y2,22) € P> such that
21 = 29 and y; = yo. The distance between P; and Ps is equal to |21 — 29| =

|C(21|—|Zz)| _ \(l(ml—y2)+b(y‘1—‘y2)+0(21—22)\ _ \N—(ﬂl-l-lw—l)\ because M, € P, and
(& c (&

. w—1 .
My € Py, ie. TasoT= Since w > 0.

Fig. 1. A width-3 blurred piece of discrete plane (a and b), its optimal bounding planes
(c) for Euclidean norm: P2(4, 8,19, —80,49) and the width of P> = 2.28 (d) for infinity
norm: Pus(31, 65,157, —680,397) and the width of Pos = 2.52. The leaning planes and
corresponding leaning points of P2 and P« are respectively drawn on (a,c) and (b,d).

Definition 2. Let & be a point set in Z3. A bounding plane of £ is said optimal
if its width is minimal.

This leads us to the definition of a blurred piece of discrete plane (Fig. 1).



Definition 3. A point set £ in Z3 is a width-v blurred piece of discrete
plane if and only if the width of its optimal bounding plane is less or equal to v.

In the following sections we propose two algorithms which solve the recogni-
tion problem of blurred pieces of discrete planes. For a given set, of points £ in
72 and a width v these algorithms decide whether £ is a width-» blurred piece of
discrete plane. In addition, they give the characteristics of an optimal bounding
plane of £ for which the width is minimal. We also show how these algorithms
can be made incremental.

3 Geometrical Method for the Recognition of Blurred
Pieces of Discrete Planes

The first approach allows to solve the problem in terms of the norm || - ||2. It
relies on the computation of the width of a point set in 3-space [8,9].

Definition 4. Let E be a set of points in R and P a real plane. We say that
P is a plane of support of E if all the points of E are located in one of the
two half-spaces delimited by P and such that PN E # ).

Definition 5. The width of E is the smallest (Euclidean) distance between two
parallel planes of support of E called width planes.

The link with our problem is the following: if F is a set of points in Z? then
the width planes coincide with the leaning planes of an optimal bounding plane
of E and the width of F is equal to the width of this optimal bounding plane.
For that reason, computing the width and deducing the width planes allow to
recognize blurred pieces of discrete planes.

3.1 Width Computation

We are looking for two parallel planes P; : az + By + vz + 61 = 0 and P» :

. P . d2—01|
ax + [y + vz + d2 = 0 which minimize the distance 7\/!7 between P; and
43242

P, and such that, for all points p(ps, py, p-) € E, we have p, + Bp, +vp.+01 <0
and p, + Bp, + vp. + d2 > 0. For this purpose we can see that the width of £
is the same as the width of its convex hull CH(E) [8]. It is due to the fact that
CH(E) is the intersection of all the half-spaces containing all the points of E.
We can then simplify the problem by introducing antipodal pairs. Consider the
convex hull of a set of points E in 3-space. Two of its edges form an antipodal
edge-edge (E-E) pair when two parallel planes of support of E contain these
edges. Similarly, we define vertex-vertex (V-V), face-face (F-F), vertex-
face (V-F), vertex-edge (V-E) and edge-face (E-F) pairs.

In [8], M.E. Houle and G.T. Toussaint show that, to compute the width of
FE, it is sufficient to focus only on parallel planes which contain an E-E pair or
a V-F pair. Therefore, we will enumerate all the E-E and V-F pairs of CH(E)
and keep the ones whose distance is minimal.



In [9], B. Gértner and T. Herrmann propose a direct approach relying on the
geometry and combinatorial properties of the convex hull. The method is inspired
from the rotating calipers [10] but generalized to the three-dimensional space.
They start with an arbitrary face f of CH(E) and determine its antipodal vertices
V = {v1,...,v} by exploring all the vertices of CH(E). Thus, they obtain an
initial V-F pair and the two parallel planes P; and P, supporting V and f
respectively. Next, they rotate the two planes about an incident edge e of f until
P, supports the other facet f’ incident to e. During this rotation the parallelism
and the supporting property of the two planes are preserved and all E-E pairs
belonging to e as well as the antipodal vertices of f’ are reported.

The important part is as follows: given a V-E pair (w, ¢) and two parallel planes
P, and P, supporting w and e respectively, two events of interest might happen
during the rotation of P, about e:

1. P, supports a new face f’ incident to e, a new V-F pair (w, f) is found.
2. P, supports an additional vertex v, a new E-E pair ((wv),a) is found.

Thus, a rotation about an edge e of CH(E) allows to get all E-E pairs belonging
to e and all V-F belonging to the two incident faces of e. Hence, by rotating about
all the edges of CH(FE) we get all the possible E-E and V-F pairs of CH(FE). At
least one of them belongs to the width planes and the distance between these
planes is the width W of E.

As W represents the width of an optimal bounding plane of E, if WW < v then
FE is a width-v blurred piece of discrete plane.

Furthermore, we can obtain the characteristics of this optimal bounding plane.
As the width planes coincide with the leaning planes of the bounding plane
P(a,b,c, u,w) of E, we have a = o, b = 8 and ¢ = ~. Relying on the width
interpretation in Section 2, we get w = |02 — d1| + 1. Lastly, owing to the leaning
planes equations, p = min(—0d1, —ds).

3.2 Incremental Algorithm

Here we propose an incremental version, in order to get an algorithm which gives
the characteristics of an optimal bounding plane of E each time we add a new
point. A naive method consists in recomputing the width of E each time we add
a point. Nevertheless some observations allow to improve this process.

On the one hand, only one point differs from one step to another. Thus, we
can advantageously replace the computation of the convex hull of all the points
of E by an incremental computation ([11] pp 235 246). Let us briefly recall the
procedure. At a general step 7 of the algorithm, a convex hull C; is given and we
add a new point M. If it lies inside C; or on its boundary, then there is nothing
to be done. Otherwise we look for all the visible? faces of C;, standing from

# Consider a plane P; containing a face f of the convex hull. By convexity, this convex
hull is completely contained in one of the closed half-spaces defined by Py. The face
f is wisible from a point if that point is located in the open half-space on the other
side of Py



Fig. 2. (a) The horizon from M; (b) Adding a point to the convex hull.

M. This set of faces is enclosed by a curve called horizon (Fig. 2(a)). All the
visible faces are removed from C; and replaced by new ones created by joining
each vertex of the horizon to the point M (Fig. 2(b)). Some of them could be
coplanar with non-visible faces so they have to be merged together. The resulting
polytope is the new convex hull C; ;.

On the other hand, we can observe that, at each step of the algorithm, we
know the characteristics of an optimal bounding plane P(a,b, ¢, u,w) of €. So,
if we add a point M (xar, Y, 20 ), we can compute the remainder value of M
relative to P: rp(M) = axps +byns +cza — - According to a property of discrete
planes, if rp; € [0,w — 1] then M € P, so it is useless to recompute the width of
& since it does not change.

Algorithm 1: Incremental Recognition

Data: £ € Z3, the convex hull C of &, the characteristics a,b, ¢, 4 and w of the
optimal bounding plane of £

Input: A point M € Z3

Result: The updated data after the addition of M

1 begin
2 E—EUM
3 Update C' using the incremental process
4 rv —— axy + byn + ez — p
5 if rasr ¢ [0,w — 1] then
6 (a, B,7,01,02) «— ComputeWidthPlanes (C)
7 a+— «
8 b—p
9 c— 7
10 u — min(—d1, —d2)
11 w<—|52—51|+1
12 end

This leads to the incremental procedure described in Algorithm 1. The func-
tion ComputeWidthtPlanes(C') at line 6 computes the width planes of C' ac-
cording to the method described in Section 3.1. The returned tuple contains the



coefficients of these planes.

Complexity: In [9], Girtner and Herrmann showed that the complexity of
computing the function ComputeWidthPlanes (C) is O(n?), where n is the num-
ber of points in £. As the other instructions of Algorithm 1 run in constant time,
we obtain a complexity of O(n?) for our incremental procedure. We need to use
this incremental procedure each time we add a point to £. Thus, we obtain an
O(n?) worst case complexity for a set £ of n points. Nevertheless, in practice,
the recognition process seems rather linear.

4 Linear Programming Method

The second method relies on linear programming and permits to solve the prob-
lem by considering the norm || ||oc. We recall in the following section the general
formulation of a linear programming problem and the simplex algorithm. The
problem of recognition of blurred pieces of discrete planes is then modelled in
that way in Section 4.2.

4.1 The Simplex Algorithm

Formulation. We try to identify a minimum point 2* € R¢ of a function
f(z) : R" — R where z = (z1,...,24). Moreover, x* must satisfy a set of n
constraints G = (gi(x) < b;)1<i<n. LP is the specialization of mathematical
programming to the case where both, the objective function f and the problem
constraints G are linear. Let A(n x d) denote a matrix of n rows and d columns.
Let ¢(d), b(n) and z(d) denote three column vectors of size d and n. Thus, we
can write our LP problem in such a way: Min c!.z subject to A -z < b and
x > 0. We call the standard form the equivalent rewriting: Min ¢’t.2’ subject to
A" -2’ =band 2’ > 0 where A’ = [A|ldentity(n x n)|, ¢ = [c|Zero(n)]. The n
inserted variables in the standard form are called the slack variables.

The simplex algorithm. This method, developed by George Dantzig 1947,
provides a powerful computational tool (see [12] for details). It operates on the
formulation of the standard form. We have n + d variables and n equalities in
the system Az = b, we can extract a nonsingular matrix B of rank n relative to
this system of equations.

The basis corresponds to the indices of the columns extracted from A to create B.
In the simplex method, the nonbasic variables, denoted by xn = (7)1<i<n+d,i¢basis
are forced to be zero. The basic variables xp = (x;)icpasis are thus equal to B~1b.
A solution z associated with a basis B is called feasible when it verifies zg > 0.

The simplex algorithm starts from a feasible solution. At each iteration, the
program computes a new basis in such a way that the new basic solution is
feasible and that the objective function has decreased or remains unchanged. To
build the new basis, one nonbasic variable is reclassified as basic and vice versa.



Which variable can we choose ? Let N denote the columns of A whose indices
are not in the basis. From Ax = b, we have: [B|N].[xp,2y] = b. As B is a non-
singular matrix, we obtain: xz = B~1.(b— N.xx ). The objective function can be
rewritten as: f(z) = ct.x = cgliap +entiay = (et —ep'B7'N)zy + s B~ 1.
This rewriting is not depending on the variables xp. Thus, as the variables
are positive, if there exists no negative value in the reduced cost vector rct =
eyt — e BTN, we have found the minimum z*.

If there exists a negative value, then we can decrease the current value of the
objective function by increasing the corresponding variable x; of xy. As x; is
no more zero, at the next iteration, it will be reclassified as a basic variable.
By increasing x;, the values of the basic variables change. If they all increase,
the problem is unbounded, it means that the minimum value for the objective
function is —oo. In the other case, where some basic variables decrease when x;
increases, the first basic variable x; that reaches zero will stop the increase of
x;. Thus, x leaves the basis.

To determine the index &, let consider the equalities zp = B~1.(b— N.zy). Only
x; is now nonzero among xy, so we have zp = B~'.b — B~ 1 4;x;. Let b and P
denote B~'b and B~ A;. Values in b are positive, so only the indices associated
with a positive value in P are of interest. The previous condition b—Px; >0
implies that for all 7 in the basis with P; > 0, we have: z; < b_l/Pl It follows
that k = index of mini,Pi>(){b_i/Pi}.

function Min-Simplex(A,b,c,basis)

Repeat
1- Extract B,cp from A // relative to the current basis
2- b=B""b
3- rd =c' — (cg'B71).A // equivalent version of rc
4- If (rc’ > 0) return b // optimum found (< for a Max)
5- Choose [ such that r¢; <0 // x; enters the basis (> 0 for a Max)
6- P = B_lAl
7- If P <0 return unbounded
8- k = min; p,~0{bi/P;} // (same thing for a Max)

9- basis < basis\{k} U {l}

Duality theorem. Associated with each Primal LP problem is a companion
problem called the Dual. The main theorem of LP proves that the Primal prob-
lem is infeasible iff the Dual problem is unbounded and vice versa. Moreover,
one problem has an optimum iff the other problem has an optimum. The two op-
timum values are equal. Moreover, if cg and B are the matrices associated with
the optimum in the Dual, then the optimum in the Primal is equal to ctBB’l.

(i) Min ¢t.#  +— Dual: Max bt )\
(i) Ax >b  «— Subject to: A>0

(i) Aw=b A€eR
(
(

Primal:
Subject to:

iv)x >0 — At <c
vizeR — At =c



4.2 Modelling the Recognition Problem

In this way, we compute the minimum vertical distance between two parallel
planes whose slopes relative to the z-axis and the y-axis are between +m/2.
Indeed, let us recall the given problem, we are looking for the characteristics
a,b,c, u,w of an optimal discrete plane bounding P for a set of n points by
minimizing the vertical distance between its two leaning planes. By considering
a=-2 3= —g, h = £ and e = WT’l, the problem may be reformulated
as follows: for a given set of n points (z;,y;,2;), we want to find two planes
P:z(z,y) = ax+ By+hand P : 2(x,y) = ax + .y + h + e such that
all the points are located between P and P’ and such that e is minimal. We
obtain one couple of inequalities for each entered point: a.x; + B.y; + h < z; and

oz + By +h+e> z.

Primal Dual standard form
Min e Max [-z1...2p | 21...2, | -1-1-1-10].A
- — ﬂyz —h> -z _gl _gn' lel 5” _01 (1) (i (1) 8 A1
) , ] Y1 woo ~Yn Y1 - Yn - o
Z,O‘_'xi+ﬂ'37/;+h+ezzl 111 00000] |, [T
Ty 0..0 1..100001 an+s
la| <1, B <1

a,B,heR, e>0 A>0

= O O O

We gather the two different types of inequalities on each side of the matrix.
Working in the Primal problem with the standard form forces to manage a large
sparse matrix of size (2n +4) x (2n+8). The Dual allows to bypass this problem
with a 4 x (2n 4+ 5) matrix ((i), (ii) and (v) in 4.1). We can easily check that the
basis {\1, A2n+1, A2n+3, A2nts} where B~1h = 1[0 0 0 1]* > 0 is always a feasible
basis for the Dual problem.

Geometrical Interpretation of the Dual Problem.

The basis of the Dual problem is associated with four inequalities in the Primal
problem. So when ); is in the basis, the i*" inequality in the Primal problem
corresponds to an equality. For example, when \;, 1 < ¢ < n is in the basis, the
it" inequality implies a.z; + B.y; + h = z;, this means that the point p; belongs
to the lower plane P. When n < ¢ < 2n, the point p;_,, belongs to the upper
plane P’. In the same way, the variables Agj11, ..., A\an+s are associated with
the cases: a =1, a=—-1,0=1,=—1ore=0.

The vector c¢i;B~! in the Dual transforms the current basis into the primal
variables. This follows from the previous remark. Let K denote the matrix cor-
responding to the equalities retained in the Primal problem. The current system
verifies: K[« 3 h e ]t = b5l Thus, we have: [a S he] = (Kt pErimal)t =
(bgrimal)t ' (Kt)_l = ctB Dual * BBlluzl

Reduced cost optimality condition. The simplex algorithm maximizes a
function in the Dual. So, it stops when it finds an r¢ vector with negative values



(line 4). We easily verify that: rct = ¢t — (cg!B™1). A = [ (-z; + [ccw; + Byi +
h])lgign | (Zi— [a.xi+ﬂ.yi+h+6])1§i§n | -1+« | -l-a | -1+ | -1-3 | -e ] As all
these values are negative, this implies that the inequalities of the Primal are all
verified. The Dual program stops when it finds two parallel planes that include
all the points and that have valid slopes.

The objective function in the Dual is quite obscure. Nevertheless relative to
the theorem of Duality, the dual objective function must represent the same
thing than the Primal function. In fact, we have f(A\) = ¢l pou(B ™ 0pua) =
(5 puar B Dbouat = [ @ B he] X cprima = €.

The core of the algorithm. Each iteration is associated with a feasible basis.
We only consider in the following the two most important cases with all the ba-
sic variables \; such that 1 < i < 2n. Other subcases can be processed without
difficulty. The configuration 1 < i, 7, k, [ < n for the indices of the basic variables
is not possible because the corresponding matrix B would be singular.
Configuration 1: 1 < 4,5,k < n < [l < 2n. In this case, the three points
pi(zi, vi), 0 (%, i), pe(Tk, yx) define the lower plane P and the parallel plane
P’ is supported by p;—,. The matrix B is equal to [ -z; -y; -1 0 | -z; -y; -1 0 | -
g -yk -1 0| j—p y1—n 1 1]. Wlog, we can assume that the point p;_,, corresponds
to the origin, this allows to simplify the writing of the matrix B to [ -z; -y; -1 0 | -
xj-y; -1 0| -z -y, -1 0] 001 1]. Let N; denote the two-dimensional vector

NAN; . NiANy . NjAN: ;
LB (B Ao (B 1]. As the matrix

B is nonsingular and det(B) = —det([ x; y; 1 | ; y; 1 | zx yx 1]) the three
points p;, pj, pr, must not be colinear. Suppose that the three points N;/N; N, lie
in clockwise order, so det(B) > 0. As B~1b > 0, Ny A N;j,N; A Ni, and N; A N;
are positive. Such a situation can appear only when the point p;_, lies inside
the triangle N;N; N}, relative to the projection into the O, plane.
Configuration 2: 1 < 4,5 < n < k,I < 2n. The planes P (resp. P’) is sup-
ported by the segment p;p; (resp. px—npi—n). As they are parallel, this couple
of planes is unique. Consider that the point p;_,, is centered on the origin, we
have B~ = [Ny A N;/A; N; A Ni/A;..;...] with A = (N; — Nj) A Ni. A'is
nonzero iff the segment p;p; and the segment p;_,p;—, are not colinear in the
Ozy plane. It follows that N A N; and Nj A N; have not the same sign. Thus,
the segment p;p; crosses the line (py—npi—n). When we center the origin on p;,
we symmetrically obtain the same result. Thus, this case is associated with two
segments p;p; and pr_,pi—n that intersect each other relative to a projection
into the Oxy plane.

Configuration 3: it is equivalent to the first configuration.

(w;,9:). The vector B~1b is equal to: |

Variables interchanging. We traverse all the set of points. For each point,
we consider its vertical distance from P when it lies under P or from P’ when it
lies above P’. If no points are found, our problem is solved. Otherwise, we select
the point that is the vertically farthest point from P and P’. The associated
variable A, enters the basis. In the Configuration 1, we have three equalities
of the type: a.x + B.y + h = z. When we select a variable )\, of the same type, it
means with 1 < u < n, we can not withdraw p;_,,, otherwise we would obtain a



conf.la| p; ) ‘ Ozxy conf. Za‘

Pi—n

Fig. 3. Different configurations relative to the basis and the entering variable.

basis with four equalities of the same type and this configuration is not possible.
Thus the new basis will remain in configuration 1. So, the new point p, replaces
the sole point among p;,p; and py that will preserve the constraint: p,_, lies
inside the new triangle relative to the Oxy plane. As p,_, is under the plane
P defined by p;p;pi, the current thickness e has also increased (see Fig. 3.1a).
In the other case where n < u < 2n, two possibilities can appear. When p,,_,,
lies inside the triangle, it simply replaces its equivalent point p; and e increases.
When p,_, lies outside, we cannot achieve a configuration of type 1, thus we
move to a configuration of type 2. For this, the segment that supports P’ is also
Pu—nPi—n- The other segment corresponds to the sole edge of the triangle that
crosses this segment relative to the Oxy plane. p,_,, lies at a vertical distance
greater than the one defined by the triangle and p;_,,. Moreover, this distance
is equal to the distance between the two retained segments, so the new config-
uration increases the value of e (see Fig. 3.1b). In the Configuration 2, when
a variable A\, 1 < u < n is selected, we have two possibilities. To remain in
the same configuration, p, must replace a point in such a way that the two new
segments cross each other relative to the Oxy plane (see Fig. 3.2a). When this
is not attainable, one of the two points px_, or p;_, inevitably belongs to the
triangle p;p;p, and we then shift to a configuration of type 1 (see Fig. 3.2b).
Other interchangings can be deduced from the ones exposed in this section.

Convergence and complexity. As the Primal is feasible (choose a large value
for e), the Dual is never unbounded and we can suppress the processing of this
particular case. As we select a point outside of two parallel planes, we know that
the vertical distance (the objective function) strictly increases at each iteration.
Thus, unlike in the general case, the simplex algorithm applied to this recogni-
tion problem can not cycle. Moreover, we have at most C§n+5 = O(n*) possible
feasible basis. Thus, we obtain an O(k*) time complexity where k represents the
number of the vertices of the convex hull of the given points. In practice, this
quantity is relatively small compared to the number of points.

The incremental version. When a new point is inserted, it may lie between



the two planes P and P’. In this case, the previous solution remains optimal and
nothing has to be done. Otherwise, two columns are added to the matrix A in
the Dual. Next, using the last processed feasible basis, we launch a new sequence
of iterations until the new optimum solution is found.

5 Conclusion

We proposed in this paper a new definition of discrete primitives: the blurred
pieces of discrete planes. These discrete primitives allow to deal with the noise
present, in discrete data by varying a parameter. Two recognition algorithms are
given. The first one is a geometric algorithm, based on the convex hull of the
considered set of points and its result is the optimal bounding plane for which the
Euclidean distance is minimal. The second one is based on the simplex algorithm
and its output corresponds to the optimal bounding plane for which the vertical
distance is minimal. The codes of these two algorithms and examples of use
are available on http://www.loria.fr/~debled/BlurredPlane. A work about
the comparison between these two methods is in progress. Moreover we intend
to use these algorithms in the framework of the boundary segmentation of 3D
noisy discrete objects. Our aim is to obtain an algorithm of polyhedrization of
3D noisy discrete objects by controlling the approximations done.
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