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1 INTRODUCTION

Interest in stiffened plate constructions has been widespread recently in aerospace,

marine and engineering structures : their vibratory response can be greatly modified

by small weight added to the hull. Several methods have been presented for the

dynamic analysis of such structures. Analytical methods easily account for the fluid-

loading coupling but they are restrained either to a great number of equally spaced

stiffeners [1] or to ribs with an infinite mechanical impedance [2]. Semi-analytical [3, 4]

and finite element [5] modellings are mostly based on a weak (energetic) formulation of

the in vacuo problem. First, the analysis has been simplified by applying the so-called

orthotropic equivalent plate theory [6] only valid when the mechanical wavelengths

are greater than the stiffeners spacing ; a more accurate and robust method is the

discrete model in which the system is divided into subelements : the stiffeners are

therefore considered as beams exerting efforts on the plate [7].

The structural analysis used in this paper follows this way. Moreover, the vibro-

acoustic response of the system fluid/structure is approximated under the assumption

that the fluid-loading is a small perturbation with respect to the in vacuo problem

since the surrounding fluid is a gas. A more thorough investigation of perturbation

methods for predicting the sound radiated by a vibrating plate in a light fluid has

been examined in two recent references [8, 9]. This paper applies this approximation

to the case of a baffled plate stiffened by ribs.
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2 THEORETICAL ANALYSIS

Let us consider the thin elastic plate shown in Figure 1, occupying the domain Σ

of the z = 0 plane and stiffened by two eccentric T-section ribs parallel to the y-axis.

The rectangular baffled plate, with thickness h, is clamped along its boundary ∂Σ

with normal unit vector ~n. It separates two half-spaces containing a perfect gas with

density µ0.

2.1 The rib-stiffened plate model

The thin beam approximation assumed for stiffeners with a ratio thickness/length

of 2%, as used in the experiment, is a very crude approximation. However, as shown

in Table 1, it can be seen that this approximation remains valid up to the fourth

natural frequency of the beam (721 Hz) with an error less than 2 %. Above this

frequency, it has been noted that this approximation provides erroneous results and

so, the study is limited to the low-frequency domain.

Because the stiffeners are attached on one side of the plate, the flexural and

membrane action of the plate are a priori coupled. However, as shown by Petyt [10],

the in-plane contribution has little effect on the firsts natural frequencies of a stiffened

plate. Thus, for the low-frequency range considered in this paper (up to about 30

natural modes), neglecting the in-plane deformations is a reasonable approximation.

2.2 Governing equations for the response of a baffled plate stif-

fened by two ribs

Let P0(M) be the sound pressure generated by an acoustic source distribution

(e−iωt) in the z < 0 half-space and w(M), the plate deflection, positive in the z > 0
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direction. Let Gω be the Green’s function which satisfies the Helmholtz equation in

the fluid medium with a Neumann boundary condition on z = 0.

Using the Green’s representation of the acoustic pressure [8], the initial boundary

value problem is replaced by an integro-differential equation which governs the plate

displacement :

(

D∆2 − µω2
)

w(M) + 2ω2µ0

∫

Σ

w(M ′)Gω(M,M ′)dσ(M ′) =

(

P0 −
2

∑

j=1

Fj

)

(M), M ∈ Σ

Fj(M) =
(

EjI
x
j

d4

dy4
− ρjAjω

2
)

wRj
(y) δxj

(x), j = 1, 2 , M ∈ Σ

wRj
(y) = w(xj, y), j = 1, 2 , y ∈ [−ly, ly]

w(M) = ∂~nw(M) = 0, M ∈ ∂Σ

D is the bending rigidity of the plate and µ its mass per unit area. Fj is the normal

force exerted on the jth stiffener by the plate along the junction line. Ej and ρjAj are

the Young’s modulus and the mass per unit length of each stiffener. Ix
j is the second

moment of area of each rib cross-section about axis in the middle surface of the plate.

2.3 The perturbation method applied to the modal analysis of the

fluid-loaded structure

The plate displacement w is expanded into a series of eigenmodes Wn of the fluid-

loaded structure. The eigenmodes and their corresponding eigenvalues Λn are sought

as series of the small parameter ε (= 2µ0/µ) :

Wn = W 0

n + εW 1

n + · · · , Λn = Λ0

n + εΛ1

n + · · ·
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These expansions are then introduced into the eigenmodes series representation of

the plate displacement [8]. Hence, w is approximated at the first order by :

w(M) ⋍

N
∑

n=1

{

W 0

n(M)

Λn − µω2

[< S,W 0∗
n >

Nn

+ ε

Q
∑

q=1,q 6=n

1

Λn − Λq

( Λn

Λn − µω2

−
Λq

Λq − µω2

)βω(W 0

q ,W 0∗
n ) < S,W 0∗

q >

NnNq

]

}

(1)

where Nn is the norm associated to the orthogonality relationship between the in

vacuo eigenmodes W 0

n of the stiffened plate. These latter are computed as series of

functions of Legendre polynomials satisfying regularity conditions as well as boundary

conditions on ∂Σ. The bilinear forms in (1) are defined by :

< u, v >=

∫

Σ

u(M)v∗(M)dM, βω(u, v) =

∫

Σ

∫

Σ

u(M)Gω(M,M ′)v∗(M ′)dMdM ′

A specific integration algorithm is used to give rapidly an accurate estimation of the

coupling term βω which is the most time consuming. The number N and Q of the

eigenmodes that are accounted for is determined by the number of those which are

necessary for an accurate representation of the excitation P0.

3 COMPARISONS BETWEEN NUMERICAL PREDICTIONS AND

EXPERIMENTAL RESULTS

In order to validate this approach, an experiment has been achieved in the twin

anechoic rooms of the Laboratoire de Mécanique et d’Acoustique. A large anechoic

room is connected to a smaller semi-anechoic room by an aperture in which the plate

is clamped. The wall between the two rooms is an almost perfectly rigid plane on

the semi-anechoic side and covered with glass-wool wedges on the anechoic side (the

baffle is almost perfectly absorbant). As shown in Figure 2, the acoustic sound source

is located in the semi-anechoic room.
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While the experimental conditions are somewhat different from the theoretical

model, which assumes a perfectly rigid baffle on both sides of the plate, it can easily

be seen that the transmitted sound field very close to the plate is not too much

influenced by the reflecting properties of the baffle. Moreover, the uncertainties on the

mechanical properties of both the plate and the stiffeners, the non perfect clamping

of the plate or the non perfect fixing of the stiffeners, bolted on the plate, induce

more significant errors.

The experimental plate is made of stainless steel with dimension 1 m by 1.54 m.

Its thickness has been measured at more than twenty points and a mean value of

1.9 mm has been obtained. The mean value of the mass per unit area could then

be deduced and is given by µ = 15.6 kg/m2. The rigidity of the plate has been

obtained experimentally by the following procedure. A flat circular plate (10 cm

radius) has been realised in the same material. The first eigenfrequencies of the

free plate have been measured and the rigidity adjusted to get the best fit with the

experimental ones. This leads to D = 122 N×m ; the Poisson coefficient is given

by ν = 0.33. The mechanical characteristics of the stiffeners, made of aluminium,

have been estimated in the same way. A 1 meter length stiffener built in the same

material has been clamped at one end while the other end rests free. The comparison

between the first measured and computed eigenfrequencies leads to a fitted Young’s

modulus E = 67.6 GPa (see Table 1). The density of the stiffeners material is given

by ρ = 2600 kg/m3.

In the Table 2, a comparison between the experimental and measured eigenfre-

quencies of the fluid-loaded clamped stiffened plate is presented. As it can be seen

the results agree within a few percents. It is to be noticed that for a stiffened plate,
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there is a better agreement between the experiment and the theory than for a plate

without stiffeners : the stiffeners smooth the inhomogeneity of the plate (made of

industrial material).

A transfer function between two microphones (see Figure 2) has been measured

and computed in terms of the excitation frequency. The results are presented on

the Figures 3 and 4. For the prediction, a structural damping has been accounted

for by considering an imaginary part for the Young’s modulus of the materials. The

usual values can be found in [11]. Though some discrepancies can be noticed for the

peak levels between the experimental and the predicted data in the Figure 3, the

results presented here enable a validation of the method since the mean third octave

analysis, which is of great practical interest, yields to differences lower than 3 dB

(see Figure 4).

4 CONCLUDING REMARKS

The results herein presented show that the light fluid approximation provides a

suitable tool for acoustic design purposes with rib-stiffened plates surrounded by a

gas in the low frequency domain : this is because the in vacuo eigenmodes of the

structure are rather close to the fluid-loaded structure ones. However, it is necessary

to account, even in a first approximation, for the acoustic fluid-loading in order to

describe both the radiation damping and the added-mass effects. Indeed, we have

checked that the radiation damping of the first ten eigenmodes is prevailing with

respect to the structural damping and therefore cannot be neglected. Furthermore,

neglecting the added-mass effect would enable, to a less extent, an overestimation for

the real part of the first eigenfrequencies.
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For the studied configuration, the perturbation method is numerically efficient

since low computational times are required to describe the light fluid-loading effects

with a sufficient accuracy. Moreover, the vibro-acoustic problem can also be solved

with the same numerical cost up to higher frequencies by a Boundary Integral Equa-

tion method for the displacement fields.
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Eigenfrequencies (real part) of the stiffeners (Hz)

Measured Computed Relative error

21.5 21.4 0.5%

134.2 134.3 0.1%

373 376 0.8%

721 736 2%

1168 1216 4%

1711 1816 6%

2331 2597 10%

3012 3374 11%

Table 1: Comparison between the measured and computed eigenfrequencies of the

stiffeners.
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Eigenfrequencies (real part) of the rib-stiffened plate (Hz)

Measured Computed Measured Computed

13, 7 14, 1 90 90.1

26 27, 4 99 100.2

34 35, 2 107 109.3

46 45, 7 113 116.2

47 47, 5 118 121.1

57 56, 2 129 127.5

63 62, 3 134 131.7

72 75, 2 146 143.6

78 78, 2 148 148.4

81 81, 1 150 154.5

87 88, 3 158 156.6

Table 2: Comparison between the measured and computed eigenfrequencies of the

rib-stiffened plate.
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Figure 1 : A plate stiffened by two T-ribs.

Figure 2 : Experimental set-up for sound transmission measurements.

Figure 3 : Comparison between the measured transfer function and its light fluid

approximation : steel plate occupying Σ = −0.77 m < y < 0.77 m, −0.50 m < x <

0.50 m in the plane z = 0, doubly stiffened with aluminium ribs placed along y-axis at

x = ±0.17 m, z = 0 ; source at y = 0, x = −0.4 m, z = −3 m ; microphones at

y = −0.26 m, x = −0.17 m, z = −0.25 m and y = −0.26 m, x = −0.17 m, z = 0.25 m.

Figure 4 : Comparison between the measured mean (third octaves) transfer function

and its light fluid approximation with the same configuration as above.
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