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Paramutation is a heritable epigenetic modification induced in plants by a cross-talk between 

allelic loci. We report a similar modification of the Kit gene of the mouse in the progeny of 

heterozygotes with the null mutant KittmlAlf (LacZ insertion). In spite of a homozygous wild type 

genotype, their offspring maintain to a variable extent the white spots characteristic of Kit 

mutants. Efficiently inherited from both male and female parents, the modified phenotype 

results from a decrease in Kit mRNA with the accumulation of non-polyadenylated RNA 

molecules of abnormal sizes. Sustained transcriptional activity at the postmeiotic stages at which 

the gene is normally silent leads to the accumulation of RNA in spermatozoa. Microinjection 

into fertilized eggs either of total RNA from KittmlAlf heterozygotes or of Kit specific microRNAs 

induced a heritable white tail phenotype. Our results identify an unexpected mode of epigenetic 

inheritance associated with the zygotic transfer of RNA molecules. 
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Paramutation, first observed in maize1 and subsequently in a variety of plants2, is a heritable 

epigenetic change of the phenotype of a “paramutable” allele, initiated by interaction in heterozygotes 

with a “paramutagenic” form of the locus. Often referred to as an exception to the law of Mendel, 

which states that genetic factors segregate unchanged from heterozygotes, paramutation is meiotically 

stable and inherited in the absence of the inducing allele. To date, the closest observations in an 

animal species were changes in the DNA methylation profiles directed by the allelic locus in the 

mouse that we and others described as “transvection” or “paramutation-like“ effects3,4. We now report 

a modification in the phenotypic expression of the wild type allele of the Kit receptor gene in the 

progeny of heterozygotes with a null insertion mutant. The “paramutated (Kit*)”, genotypically wild 

type animals, maintain the white-spotted phenotype characteristic of Kit mutants in the absence of the 

mutant allele. The efficient paternal and maternal inheritance of the paramutated state raises the 

question of a possible molecular support of the epigenetic information.  

Non-Mendelian phenotype distribution  

The tm1Alf mutation (MGI:2449782, initially designated Kit W-LacZ) was engineered5 by inserting 

a 3 kb Neo-LacZ cassette downstream of the initiator ATG. A unique mRNA of the same size with the 

ß-galactosidase coding sequence is expressed under control of the Kit promoter and regulatory 

sequences. The mutation abrogates the synthesis of the Kit tyrosine kinase receptor, which plays a 

critical role in several developmental processes including germinal differentiation, hematopoiesis and 

melanogenesis. Accordingly, Kit tm1Alf homozygotes die shortly after birth and heterozygotes show a 

white tail tip and white feet (Fig. 1). We initially observed an abnormal segregation of phenotypes in 

the progeny of crosses between two heterozygous parents. Wild type genotypes were identified by the 

absence of both LacZ sequences determined by genomic PCR analysis and ß-galactosidase expression 

by in situ X-Gal staining (not shown), and further confirmed by Southern blot analysis (Fig. 1c). 

However, it was striking that most of these genetically Kit +/+ mice maintained the white patches 

characteristic of the parental heterozygotes (Fig. 1 and Table 1). The occurrence of this modified, 

“paramutated” form of the Kit + allele (Kit* phenotype) was not restricted to the progeny of 

heterozygote intercrossing, but also observed in Kit tm1Alf / + crosses with wild type partners, 
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independently of the gender combination (Table 1). It was not dependent on the genetic background of 

the mice since the same phenotypes were found with the original 129/Sv Kit tm1Alf / + heterozygotes 

and after at least 6 generations of back-crosses of the mutation onto the C57Bl/6 and B6D2 genetic 

backgrounds (Supplementary Table 1). The paramutated phenotype was inherited, with a variable 

phenotypic extent depending on the crosses (Supplementary Fig. 1). It was most strongly expressed in 

second generation crosses between Kit tm1Alf / + heterozygotes and still clearly recognizable in the 

progeny of Kit* parents in the absence of the tm1Alf allele (Kit* x Kit + / + and Kit* x Kit* crosses, 

Table 1 and Supplementary Fig. 1). It would then progressively disappear in the following 

generations. 

Another feature apparent from the data in Table 1 (see also Supplementary Fig. 1) is that in 

crosses between heterozygotes, the Kit tm1Alf / + genotype was generated with frequencies in the range 

of 50 to 60 per cent, instead of the Mendelian two thirds. A likely explanation is that a fraction of the 

paramutable alleles has been modified in Kit tm1Alf / + heterozygotes to the point of not being viable 

any more. The extent to which expression of the wild type allele is altered varies between individuals, 

as indicated by the variable extent of the white fur patches (see Supplementary Fig. 1), and either the 

lack or an extensively reduced level of receptor expression would not be compatible with normal 

development.  

To probe the molecular basis of the paramutated phenotype, DNA and histone methylation were 

investigated in a CpG-rich region (nt. -31 to +219) which corresponds to the minimal Kit promoter6. 

Cytosine methylation was examined by amplification and sequencing after bisulfite treatment7. 

Possible changes in chromatin structure were investigated by chromatin immunoprecipitation with 

antibodies directed against the lysine 4 and 9 dimethylated forms of histone H3, which are 

respectively associated with active and repressed chromatin8. No significant change in either cytosine 

or histone methylation was observed between wild type, heterozygous and paramutated animals (data 

not shown). However, we cannot exclude a critical role of differential DNA or histone methylation 

either in a specific cell type or in one of the more distant and not yet precisely mapped control regions 

which had been inferred from the analysis of Kit mutants9.  
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Reduced levels of polyadenylated RNA 

The White-Spotted phenotype of heterozygotes of a null mutant and a wild type allele results 

from the reduced level of receptor expression5. This was also the case of paramutated animals. Levels 

of polyadenylated Kit mRNA amounting to one-half of the wild type homozygote were determined 

both in Kit tm1Alf / + heterozygotes and in their paramutated (Kit*) progeny, despite the presence in the 

latter of two structurally normal wild type alleles (Fig. 2a). In addition to this marked decrease in 

mature mRNA, Kit RNAs of abnormal sizes accumulated, whose possible origin – abnormal arrest 

and/or initiation of primary transcription, abnormal post-transcriptional processing, secondary 

cleavage of mature RNAs – remains to be determined. Starting in heterozygotes, distinct profiles of 

abnormal fragments were seen in different tissues. As examplified in Fig. 2b, a prominent 0.37 kb 

RNA species was detected in brain RNA, identified (data not shown) as a spliced fragment of the 

mature Kit transcript including only exons 1 and 2. In the testis, Northern analysis detected a more 

dispersed smear of RNA molecules of multiple sizes. Since these abnormal short species were 

identified with a 5’ probe corresponding to the region disrupted by LacZ insertion, and, on the other 

hand did not hybridize with a LacZ probe, it is clear that they were derived from the genetically wild 

type allele responsible for the Kit* phenotype. They were clearly distinct from the transcript limited to 

the LacZ coding region expressed from the mutant allele (Fig. 2b). 

RNA in Kit tm1Alf / + sperm 

The next question that we addressed was the nature of the signal leading to the hereditary 

transfer of the paramutated state, first by a comparative analysis of spermatogenesis in the 

heterozygote and wild type testis. A significant difference was noted in Kit transcription levels, with 

higher levels determined by run-on assays in heterozygotes (Fig. 3a). Deregulation was most obvious 

at the late spermatogenic stages. In the wild type mouse, Kit transcription is essentially restricted to 

spermatogonia, with reduced levels in early meiotic cells10-13. The gene is virtually silent in the 

haploid phase, with the exception of a shorter RNA (tr-Kit) made from an internal promoter in the 

most 3’ region of the locus14. In contrast, in Kit tm1Alf / + germ cells, Northern blot analysis showed 

significant amounts of 5’ Kit RNA sequences in both round and elongated spermatids (Fig. 3b). This 
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altered pattern of expression included an increased activity of both the upstream Kit and the internal

tr-Kit promoters. It also affected the promoters on the two alleles, as high levels of ß-galactosidase

synthesis were evidenced in the haploid compartment of the tubules (Supplementary Fig. 2). These

changes, clearly characteristic of heterozygous state, at which paramutation is initiated, may be related

with meiotic mispairing. Such an effect would be contrasting with the equally unexplained decrease in

expression due to a perturbed synapsis described in a recent report 15.

Most likely as a consequence of its deregulated expression, Kit RNA was detected not only in

the spermatids of heterozygotes and paramutated mice, but even more unexpectedly in their mature

epididymal sperm (Fig. 4). Both semi-quantitative RT-PCR and quantitative real time PCR detected in

sperm extracts RNA sequences corresponding to the 5’ region of the gene. RT-PCR performed with

only 20 cycles detected the Kit RNA sequences (Fig. 4a), in addition to other transcripts (including

Gapdh, Prm1, Prm2) (data not shown). These RNAs were never detected in sperm of wild type

animals at such low cycle numbers.

The presence of RNA molecules has been reported in human sperm (reviewed in ref. 16). The finding

of increased amounts in heterozygotes was not expected and needed confirmation. Acridine-orange

staining showed two unexpected features in heterozygous and paramutated males (Fig. 4b).

Microscopic examination revealed the accumulation of yellow  stained material in the vicinity of their

nuclei, presumably corresponding to RNA17. FACS diagrams confirmed a significant degree of yellow

staining (vertical axis). On the other hand, a more variable intensity of the green stain (DNA,

horizontal axis) was indicative of a less compact chromatin structure.

RNA containing structures can be identified in the electron microscope by the EDTA regressive

staining technique, based on the chelation of uranyl ions by neutral EDTA18, 19. EDTA regressive

staining in an Epon section shows densely contrasted structures corresponding to ribonucleoprotein

constituents, while DNA containing structures appear greyish or bleached (see control spermatocyte

sections in Fig. 4c). Enzymatic treatment of the sections (not shown) verified that the EDTA
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regressive staining was abolished after RNase treatment and remained unchanged after extensive 

treatment of the sections with either DNase I or pronase. 

Spermatozoa in epididymis sections (Fig. 4c) showed characteristic staining patterns for 

Kit tm1Alf / + heterozygotes with heads more heterogeneous and more contrasted than those of B6D2 

males. The generally light staining of the wild type mouse sperm by the EDTA regressive technique, 

with only the rare occurrence of somewhat more contrasted sections (Fig. 4c), may reflect a 

physiological low level of RNA, as reported for human sperm16. It was clearly distinct from the 

homogeneous staining of sperm heads in heterozygotes, which taken together with RT-PCR results 

and with the deregulated expression of Kit at the late spermatogenic stages, was indicative of the 

presence of unusual amounts of RNA.  

RNA induction 

The presence of RNA in sperm cells led us to consider the possibility that transfer of RNA to the 

fertilized egg could be the signal leading to the paramutated phenotype. Although the molecular 

mechanisms involved would remain to be established, such a hypothesis would be consistent with 

recent examples of RNA molecules responsible for stable epigenetic changes (reviewed in ref. 20). A 

series of experiments were performed in which RNA prepared from either Kit+/+ homozygotes or 

Kit tm1Alf / + heterozygotes was microinjected into B6D2 one-cell embryos following the standard 

procedures of DNA microinjection21. No toxicity was noted and, in every litter born after Kit tm1Alf / + 

RNA injection, a fraction of the offspring close to 50% showed the white tail tip characteristic of the 

heterozygote (Fig. 5). The same result was registered after injection of somatic (brain) RNA and of 

RNA prepared from heterozygote sperm. We noted, however, the appearance of rare white-spotted 

mice in the control litters produced after microinjection of RNA prepared from wild type brain, as 

well as after injection of irrelevant (LacZ) RNA. We nevertheless concluded that this was a specific 

effect of the heterozygote RNA for two reasons. First, the frequencies in these controls were 

significantly lower than with heterozygote RNA, with smaller white areas. More significantly, the rare 

white tail phenotype of the controls were either very inefficiently or not at all transmitted to the 
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progeny in crosses with wild type partners, in clear contrast with the phenotype induced by Kit tm1Alf /+ 

RNA, which was efficiently transmitted (Fig. 5 and Supplementary Table 3).  

Taken together with the presence of RNA molecules of abnormal sizes in preparations from 

heterozygotes (Fig. 2), we hypothesized that the paramutated state was induced by a partial 

degradation product of Kit RNA. We then attempted to target RNA degradation by injecting either 

one of the two microRNAs, miR-221 and –222, which had been identified as potentially targeting Kit 

mRNA in a computational survey of mammalian microRNAs22. We then tested whether injection of 

these two miRNAs could have the same effect. This experiment proved that this is indeed the case 

with the white tail phenotype being induced at high frequency and efficiently inherited (Fig. 5b, 

Supplementary Table 2). Exposure to microRNAs of the early embryonic genome thus appears 

sufficient to induce a permanent and heritable epigenetic change in gene expression.  

Conclusion  

While it is tempting to think in term of causal relationships, the mechanisms leading to the 

inherited modification of the paramutated phenotype and to the similar phenotypes induced by 

exposure to the abnormal species of Kit RNA and to microRNAs remain to be precised. Further 

characterization of RNAs in heterozygotes, of their effects when injected into zygotes, as well as of 

the mechanistic aspects of the chromatin remodeling processes directed by microRNAs, will hopefully 

lead to a more complete and better defined picture.  

The initial event inducing paramutation is not known, even in the most thoroughly investigated 

plant systems2. Incomplete meiotic pairing of homologous chromosomes is considered as the 

determining event in the epigenetic changes known as co-suppression in plants and meiotic silencing 

in Neurospora23. Preliminary results on two other Kit mutants would be consistent with this view. We 

generated a distinct insertion mutant carrying a GFP-Neo cassette in the first intron of the gene and 

found that paramutated animals were generated in progenies under the same conditions and with the 

same  frequency as in Kit tm1Alf / + crosses. To the contrary, strictly Mendelian phenotypic and 
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genotypic segregations were consistently found in the offspring of the classical point mutant Kit W-v 24

(data not shown).

A number of epigenetic determinations are currently under study in various systems, and a role

of RNA has been suggested in several instances (reviewed in ref. 2), the induction of heritable

phenotypic changes by double stranded RNA was reported in Coenorhabditis elegans25 and a RNA

cache was suggested as a carrier of genetic information in Arabidopsis26. On the other hand, one of the

challenging aspects of the present results is the hereditary transmission of epigenetic states. Paternal

and maternal transmission was equally efficient. Analysis of the sperm cell, of a simpler structure than

the ovocyte, led us to conclude that it is not only a vector for the male haploid genome but also the

carrier of supplementary information in the form of RNA molecules. The EDTA regressive technique,

which allows the analysis of spermatozoa at the cellular level, and on the other hand, microinjection

into fertilized eggs of RNA and microRNAs should be useful tools to develop a functional analysis.

The mouse model might then provide a clue on the function of the RNA molecules that are observed

in human sperm16. The hypothesis that RNAs of paternal origin, including microRNAs, can play a role

in modulating gene expression in the embryo has been recently formulated (reviewed in ref. 16) and

paramutation in the Kit gene may provide a useful experimental model for further analysis.

Methods

Mice and genetic typing. Kit tm1Alf / + heterozygotes were initially received from Dr. J.J. Panthier

(Institut Pasteur, Paris). Three stocks were generated and maintained in parallel, one in the original

129/Sv genetic background, and two by crosses into C57BL/6 and into C57BL/6 x DBA/2 (B6D2), in

both cases for at least 6 generations. We determined genotypes by PCR assays specific for the Neo

and LacZ transgene and by Southern blot hybridization with a genomic probe. Investigations were

conducted in accordance with French and European regulations for the care and use of research

animals.

Southern blot analysis. Analysis was performed after cleavage with EcoRI and EcoRV enzymes as

described5.
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RNA analysis. Northern analysis was performed as previously described3. Polyadenylated RNA was

prepared from total RNA using the mRNA Isolation Kit (Roche Molecular Biochemicals) according to

manufacturer’s instructions. The 5’ probe for detection of Kit mRNA covered the distal part of exon 1

and exon 2, from nt 69 to 374 of the cDNA sequence (GenBank AY536430). The probe for the 3’ part

of the Kit transcript and the mRNA encoding the truncated tr-Kit14 extended from nt 2418 to 2776 (see

supplementary data for nucleotide sequences). Quantitation was performed by densitometric analysis

of autoradiograms at various exposure times. Kit RNA values were normalized to the level of GAPDH

mRNA. Quantitative PCR assays were performed with the ABI Prism apparatus (AB Applied

systems) with the Syber Green I kit (Eurogentec ref. RT-SN2x-03+). Sequences of oligonucleotide

primers are provided as Supplementary Material.

Transcriptional run-on assays. Assays of transcriptional activity by radiolabeling of RNA

transcripts with [α-32P]UTP in isolated nuclei27 were performed on testicular cell preparations from 10

week-old males. Five independent assays per animal were performed on two animals of each

genotype. A detailed procedure is provided as Supplementary Information linked to the online version

of the paper.

Acridine Orange staining and FACS analysis. Preparation of spermatozoa from the epididymis of

wild type, heterozygote and paramutated males were fixed in buffered 10% formaldehyde for 30 min,

rinsed with phosphate–buffered saline, treated with trypsin 0,2% and 0,01 % Triton-X100 for 30 min

at room temperature, washed and stained with Acridine Orange (Sigma A6014) for 15 min according

to published procedures17. Samples were analyzed on a CAS200 apparatus (Becton-Dickinson Cell

Analysis System, Elmhurst, Illinois).

Microinjection into fertilized eggs. RNA microinjection into B6D2 fertilized eggs (after normal

ovulation) was performed by the standard techniques of DNA injection21. 1-2 pl of a 10 µg/ml

solution of total RNA and of 0.1 µg/ml solutions of RNA oligonucleotides in Tris 5mM EDTA 0.1

mM were injected.
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In situ determination of ß-galactosidase activity. X-Gal determination of ß–galactosidase activity

was performed as previously described28.

Electron microscopy. Mouse testes and epididymis were fixed immediately after dissection in 1.6 %

glutaraldehyde in 0.1M phosphate buffer (1h, 4°C). They were rinsed with buffer and free aldehyde

groups were blocked with 50 mM NH4Cl in PBS for 30 min at 4°C. Specimens were dehydrated with

acetone and embedded in Epon. RNA-protein complexes were visualized by the EDTA regressive

technique18. Shortly, grids were stained 1 min with 4% aqueous solution of uranyl acetate (RT) and

treated 30 min in 0.2M EDTA solution pH 7.0. Grids were carefully rinsed with distilled water and

stained with 1 min with lead citrate. Under these conditions, only RNA molecules remained stained.

All grids were observed in a Philips CM12 electron microscope operating at 60 or 80 kV and equipped

with a 30 µm objective aperture. Recording films were taken and treated under similar working

conditions.
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Table 1. Segregation of coat phenotypes in the progeny of Kit tm1Alf / +parents 

Crosses
✝
  Progeny§ 

Male  Female Fur phenotype Lac Z  Number of mice Class 

   White-spotted + 30 Kit tm1Alf / + 

Kit tm1Alf / + x Kit tm1Alf / + White-spotted - 24 Kit * 

 (8)  Full color - 3 Kit 
+/ + 

   White-spotted + 16 Kit tm1Alf / + 

Kit tm1Alf / + x Kit +/ + White-spotted - 24 Kit * 

 (4)  Full color - 4 Kit 
+/ + 

   White-spotted + 22 Kit tm1Alf / + 

Kit +/ + x Kit tm1Alf / + White-spotted - 14 Kit * 

 (4)  Full color - 5 Kit 
+/ + 

Kit * x Kit 
+/ + White-spotted 

(partially)$ 
nd 26 Kit * 

 (6)  Full color nd 40 Kit 
+/ + 

Kit 
+/ + x Kit * White-spotted 

(partially)$ 
nd 23 Kit * 

 (5)  Full color nd 34 Kit 
+/ + 

✝
 B6D2 genetic background; number of litters analyzed shown in parenthesis.  

§ Phenotype: see Fig. 1b and Supplementary Fig. 1; genotyping: LacZ determination by genomic PCR 

amplification and expression by X-Gal assay on tail; nd: not determined. 

$ Reduced degree of white spotting (similar to Kit* x Kit* crosses, see Supplementary Fig. 1). 
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Legends to figures

Figure 1. The “White Spotted” phenotype of Kit tm1Alf / + heterozygotes and their paramutated

progeny. a. Genotype and phenotype of the heterozygote. EI: EcoRI, EV: EcoRV sites.

b. Heterozygote and paramutated (Kit*) littermates. C. Nine mice with white tail tips from 3

litters were further analyzed by Southern blot hybridization with a probe amplified from

nt -904 to +89 of the Kit locus5. DNA in lanes 2 to 6, 8 and 9 show the wild type genomic

structure (Kit* paramutated); lanes 1 and 7: Kit tm1Alf / + heterozygotes; lane 10: control B6D2

DNA.

Figure 2. Monoallelic levels of polyadenylated Kit RNA and abnormal patterns in total RNA.

a. Northern analysis of brain mRNA and densitometric measurements performed at

successive exposure times of the Kit mRNA band relative to Gapdh in the same lane.

Ordinate: arbitrary values shown as mean ± s.e.m., ★: significant (p<0.05). b. Northern

analysis of Kit tm1Alf / + total RNA compared to Kit + / + RNA shows a variety of additional

transcripts with different patterns in different organs. The 5’ Kit probe covers exons 1 and  2,

and the LacZ probe, the entire coding region.

Figure 3. Kit RNA is overexpressed in heterozygote germ cells. a. Increased transcription

rate. Incorporation of α[32P]UMP in permeabilized testicular cells and radioactivity

determination in hybrids with a Kit probe, relative to total incorporation (arbitrary units, see

Methods). b. Northern blot analysis with the 5’ Kit probe of RNA prepared from elutriation

fractions (90 per cent pure13, starting from pools of 10 males of each genotype): “Rs”: round

spermatids; “Es”: elongated spermatids; “Es+S”: a mixture of elongated spermatids and

spermatozoa. Hybridization with protamine (Prm1) probe (control) and with the 3’ Kit probe to

detect the truncated form tr-Kit14.

Figure 4. RNA in Kit tm1Alf /+ spermatozoa. a. DAPI staining, RT-PCR determination of Kit

RNA (1-3: wild type; 4-6: heterozygotes); quantitative real time PCR determination relative to

Gapdh RNA. b. Acridine-orange staining: fluorescence microscopy and FACS analysis of
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RNA (yellow, vertical axis) and DNA (green, horizontal axis); values in red and blue: cell

counts in the corresponding compartment. c. EDTA regressive staining. Top: Kit tm1Alf /+,

bottom: Kit + /+, left: epididymis (insert: higher magnification), right: control staining of

spermatocytes, showing the greyish appearance of nuclei (DNA) and the contrasted stain

(RNA) in cytoplasm. Bar: 1 µm.

Figure 5. A heritable mutant-like phenotype induced by RNA microinjection in one-cell

embryos. a. White-spotted progeny (per cent, total number shown in parenthesis) born after

microinjection of the indicated RNAs (sequences of oligonucleotide primers and miRNAs

listed as Supplementary data). Horizontal lines: average with s.e.m. of each group

(★ p<0.05). Open bars: low efficiency of transmission (≤ 3 per cent); closed bars: efficiencies

of transmission from 56 to 78 per cent (complete data listed  in Supplementary Table 2). b.

F1 progeny of a wild type female mated with a white-spotted male born after injection of

Kit tm1Alf/ + brain RNA.
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Supplementary Table 1. Paternal and maternal transmission of paramutated 
alleles in 129/Sv and C57BL/6 genetic backgrounds 

Crosses   Progeny § 

Male  Female 
Genetic 

background $ 

White spotted

(Kit tm1Alf / +)

Partially white 

spotted (Kit *) 

Full color 

(Kit + / +) 

129/Sv 20 12 4 
Kit tm1Alf / + x Kit +/ + 

C57BL/6 16 10 4 

129/Sv 21 11 5 
Kit +/ + x Kit tm1Alf / + 

C57BL/6 15 10 4 

  wild type and mutant partners of same genetic background in each cross 

§ cumulated values of 4 litters for each cross; genotypes (parenthesis) and phenotypes of 

progenies as determined in Table 1 

$ 129/Sv: the original Kit tm1Alf / +strain7; C57BL/6: at least 6 backcrosses of the mutant allele. 
 

 



Supplementary Table 2. Inheritance of the white-spotted phenotype 
induced by RNA microinjection 

Injected RNA 

Mating partners  

(wild type) 

White-spotted progeny 

 / total  

Transmission efficiency 

(per cent) 

female 25/32 78 Paramutated brain 

RNA male 26/34 76 

female 18/32 56 
miR221 

male 19/31 61 

female 20/36 56 
miR222 

male 18/32 56 

female 0/31 < 3 
LacZ 

male 1/33 3 

Wild type brain 

RNA § 
female 1/43 2 

  cumulated results of four to five litters 

§  only one white-spotted male was obtained in this category (see Fig. 5a) 
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Supplementary Figure 1. Inheritance of the white tail phenotype in crosses between 

Kit tm1Alf / + heterozygotes and paramutated homozygotes. Each photograph shows the tail 

colors in either one or, in the second row from top, two litters. Genotyping (PCR 

determination of Neo and LacZ sequences, expression of ß-galactosidase) compared to 

white tail phenotype distinguish wild type (“w”), paramutated (“*”) and heterozygotes (“h”).  

Supplementary Figure 2. Altered regulation of Kit transcription in the male germ cells of 

Kit tm1Alf / + heterozygotes. While in this line, ß-galactosidase expression is in general a 

faithful reporter of the Kit promoter activity5, X-Gal staining of 1 month-old male testis section 

shows high level of ß-galactosidase in round spermatids (arrow). Background estimated in a 

wild type section is limited to a faint staining in Leydig cells (arrowhead).  Bar, 20 µm. 

 



Supplementary Methods.  

Oligonucleotide primers and miR sequences. Oligodesoxyribonucleotides were provided by 

Eurogentech (France). Primers for RT-PCR amplification of Kit RNA (5’ probe) were 

GATCTGCTCTGCGTCCTG and TGGCAGGATCTCTAACAAAC (nt 69 to 374). The probe for the 

3’ part of the Kit transcript and the mRNA encoding the truncated tr-Kit14 was similarly amplified 

with primers ACAGTGTATTCACAGAGATTTG and GACGTCATGAAGACTTGCTG (nt 2418 to 

2776). The GAPDH probe was generated by reverse transcription and PCR amplification with 

primers, TGGCCTTCCGTGTTCCTAC and CCTGGTCCTCAGTGTAGCCCA and the probe for 

protamine (Prm1) with primers CCTTAGCAGGCTCCTG and GGCCAGATACCGATGC. 

Oligoribonucleotides with the sequences of miR221 and miR 222, AGCUACAUUGUCUGCU-

GGGUUU and AGCUACAUCUGGCUACUGGGUCUC, (http://microrna.sanger.ac.uk/targets/) were 

provided by Sigma-Proligo. 

Transcription run-on assay. After removal of albuginea, the cells from the seminiferous tubules 

were mechanically resuspended and washed twice with ice-cold PBS. The cell suspension was then 

clarified trough a 40µ filter to remove cellular aggregates. Suspensions from individual mice (1 x 108 

cells) were resuspended in 1 ml ice-cold lysis buffer (10 mM Tris-HCl pH 8.4, 1.5 mM MgCl2, 

0.14 M NaCl). Addition of 10 µl Nonidet P-40 on ice was sufficient to lyse more than 80% of the cells 

in 15 minutes. Nuclei were recovered by centrifugation at 1,300 x g at 5°C and washed twice in 

20 mM Tris-HCl pH 8.0 buffer, 10 mM MgCl2, 140 mM Kcl, 20% glycerol, 14 mM ß-

mercaptoethanol (washing buffer). Nuclei were counted and the suspension was split into 5 

independent samples and incubated for 20 minutes at 30°C in the presence of 50 µCi [α-32P]UTP per 

tube in labeling buffer (20mM Tris-HCl pH 8.0, 10 mM MgCl2, 140 mM KCl, 20% glycerol 14 mM 

ß-mercaptoethanol, 1 mM each of ATP, GTP and CTP, 10 mM phosphocreatine, 100 µg/ml 

phosphocreatine kinase). Nuclei were then recovered by low-speed centrifugation and washed twice. 



RNA was prepared by the Trizol procedure, ethanol precipitated, redissolved in 50 µl water, and total 

incorporated radioactivity was determined. Fixed amounts of labeled material were hybridized on 

excess of Kit DNA spotted onto nylon membranes under the same conditions as for Northern analysis. 




