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ABSTRACT

To   resolve   the   Electromagnetic   compatibility   (EMC)   at   the 
system level we need to compute physical phenomenon and to 
connect  various  patterns   existing   at   various   scales.   With   this 
intention we need a technique able to link schematics coming 
from   various   jobs:   electronic,   harnesses   and   structures.   This 
paper  presents  a   technique  based  on   the   topological   tensorial 
analysis of network developed by Gabriel KRON to compute all 
the interactions encountered in EMC on large systems.

1. Introduction
The EMC control  of  a  large  system is  closely  linked  to  the  EMC 

behavior  of  its  components.  These  components  are  located  on  the 
printed circuit board (PCB) and are typically less than one centimeter 
long. On the board, tracks (~5cm) are connected to wires (1m). These 
wires exchange energy through the fields with their environment: the 
system  structure  (some  meters  long).  This  structure  radiates  or 
receives fields coming from the environment (kilometers). 

Each system layer has its own physic. For the components, we use 
the Poisson’s diffusion equation in the time domain. For PCB, we use 
line (telegraph’s) modeling, PEEC techniques [1].  For the equipment, 
we  can  use  cavity  patterns,  moment  method  software  [2].  For 
harnesses, there are special techniques using guided waves formalism 
(Branin’s pattern for example) [3]. The stationary part of the currents 
carried by the wires radiates frequency fields inside the system cavity. 
These fields can leave the system through openings [4]. Contrary to this 
process, the external fields create fields inside the system’s structure. 
These fields give energy to the wires. This energy is conducted to the 
equipment, and through the PCB tracks, to the components. We see that 

1

mailto:olivier.maurice@mpsa.com
mailto:olivier.maurice@mpsa.com
mailto:olivier.maurice@mpsa.com


the  EMC at  the  system level  requires  a  multiscale,  multiphysic  and 
multidomain method [5][6][7]. 

2. Graph and topology
A complex electronic system is made of several simple elementary 

circuits. Each circuit is called a primitive circuit. All these circuits have 
interactions  through  lines  (conducted  interactions),  near  field  or  far 
field  radiations.  The  system  can  be  seen  as  a  complex  graph  with 
charges  located  on  nodes  and  currents  on  edges.  A group of  edges 
makes a mesh. And a group of meshes makes a network. We present 
here  the  various  space  properties  (including  movements)  and 
dimensions before introducing how these various levels of description 
can be grouped to represent a large system EMC problem.

2.1 Nodes and edges spaces

A system made of N edges is represented by a N dimensional space. 
Each edge is  a  component  of  the contravariant  vector  I (flow).  The 
instantaneous power of the whole system is the intrinsic scalar S. This 
scalar  defines  the  covariant  vector  of  the  electromotive  forces  and 
voltage differences (efforts)  e.  Using the mute index writing [8],  we 
have:

ek I k
=S                                                     (1)

A particular metric Z acting like an operator transforms the currents 
in  voltages.  This  metric  (a  non Riemann's  one)  can be a  non linear 
operator (for example in the case of diodes, semi-conductors). We have 
in general in the edge space:

                                                                       

 (2)

V being the vector of the nodes pair voltage difference. This relation 
is  a  generalized  Kirchhoff’s  law  in  the  edge  space.  The  diagonal 
elements of Z are the edge impedance (we use the notion of impedance 
even  in  the  time  domain,  as  Z is  an  operator.  For  example  for  an 
inductance we have: Z11=Ld/dt(.) ). When there is a coupling process 
between edges, we create a string. This string suited with the extra 
diagonal  elements  of  the  twice  covariant  tensor  Z.  This  tensor  is 
formally defined as a tensorial  product of two voltage vectors in the 
edge dual space (noticed with a star):

                 (3)
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The nodes pair voltages are linked to the local scalar potential in the 
nodes space by the gradient relation translated in a topological graph:

                     (4)

B is the classical incident matrix usually employed in graph theory. 
By the capacitor metric this relation makes the link between the nodes 
space and the edge one. We have:

     (5)

These relations are an opportunity for us to detail much further what 
will be a strong advantage of the tensorial analysis: the capability to 
make theoretical studies on the network electromagnetic behavior. The 
tensor C is a part of the general metric Z representing the potential 
energy of the network. It admits an inverse through the identity matrix 
. We can write:

       (6)

Using  (4),  (5)  and  (6)  and  saying  that  C and  B are  not  time 
dependent, we have:

(7)

Between the capacitor at the nodes (connected between the nodes 
and a virtual node link with the zero potential at the infinity) and the 
capacitor of the edges we have:

                    (8)

So:

           (9)

This is the charge conservation law. The diagonal elements of Z are 
electronic components, dielectrics or resistors, while the extra-diagonal 
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elements are cross-talked between edges through radiated fields. This 
interaction go through what we call a string: an electromotive force is 
created on an edge, coming from a current of another edge. But this 
interaction doesn’t go from one node to another. This is not a classical 
edge. The matrix  B can be seen as a connectivity matrix between the 
nodes and the edges spaces. These matrices allow going through the 
various spaces whatever their dimensions are. When the space bases 
are equal in dimensions, the connectivity matrix are square ones. But 
Kron has shown that these matrices allow making connections between 
spaces of different dimensions without loosing any information coming 
from one space to another (this is very important: don’t think that the 
mesh space in the Kron’s definition can be compared to the classical 
mesh circuit description). That’s what we will show now by studying the 
mesh space level. 

2.2 The mesh space 

When one writes the Maxwell’s equation of a closed loop of current 
density  through  various  medium  (dielectric  and  resistive  ones)  one 
obtains the equation [9][10]:

  (10)

The closed circulation of the electric field is equal to the work of the 
losses in the resistive medium (, , S) plus the work in the dielectric 
medium (,  ,  S)  minus  the  electromotive  force  E0 that  creates  the 
current. This closed electric circulation is equal to the magnetic flow 
through the loop,  or  to the self  inductance  L multiplied by the time 
derivative of the current. The Maxwell’s equations in their integral form 
demonstrate that the magnetic induction and energy are located in a 
closed  loop  of  edge:  i.e.  a  mesh.  The  fact  that  the  magnetic  field 
appears in the mesh space is coherent with its two dimensions intrinsic 
property [11]. To solve a problem and take into account both electric 
and  magnetic  fields  phenomenon,  one  must  transform  the  edges 
impedances and all other objects in the mesh space. The base of the 
mesh space is the mesh currents. In the graph shown in figure 1 we 
illustrate a two meshes network with two nodes and three edges. 
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As the inductances are linked with the mesh space, we represent the 
inductance symbol at the center of the mesh.

Between the meshes current and the edge ones we can construct a 
group of relations. Being in the referential  of one edge, for example 
edge 1, associated with edge current i1,  we can write that the current i1 

passes through the edge 1 in the edge space, and the current J1 passes 
through the edge 1 in the mesh space. The current  i2 passes through 
the edge 2 in the edge space, and the currents J1 minus the current J2 

passes through the edge 2 in  the mesh space.  Finally,  calling  L the 
connectivity between the edge and the mesh space (see example §3.2):

i k
= Lm

k J m                                              (11)

This matrix L is not a square one because the mesh space is at least 
one dimension less than the edge one. The laws of transformation for e 
and Z are:

          (12)

After this transformation, as the only interactions taken into account 
in  the edge space are the resistive  and dielectric  ones (plus  all  the 
electronic non linear components and the self inductance of the edges) 
we must add to the new tensor Z the self inductances of the loops and 
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Fig. 1. An example of network with three edges and two 
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the  mutual  inductances  between  loops.  This  is  done  by  adding  a 
magnetic tensor M:

  

                  (13)

 is the metric tensor including all the magnetic field interactions at 
the network level. The mesh space is the space where the problems are 
finally solved. The metric in the mesh space includes the Lagrange’s 
operator of  energy,  we will  show that later.  There is  a last  property 
particular to the mesh space: as each mesh is a closed loop of edges, 
the nodes pair voltage in this space is null. For this space Kirchhoff’s 
law is  reduced  to:  em=Z

mn
 J n  .  This  equation  can be  resolved  in  the 

frequency or in the time domain (through finite difference time domain 
method).

2.3 The moment space

As we have seen in the case of the nodes to edge and edge to mesh 
spaces, connectivity allows changing of scale value by going through 
one space dimension to another. When we want to compute the far field 
interaction  between  networks  we  have  to  change  of  scale.  In  our 
technique, the near electrostatic field is represented by a capacitance 
edge. I propose as a definition  that two networks are in only far field 
interaction if  they have no edge between any of  their  nodes and no 
mutual  inductance  between  any  of  their  meshes.   Under  these 
conditions, we need a new space of description to represent all the far 
field  energy  emitted  by  an  active  network.  Each  mesh  creates  a 
magnetic moment defined by [12]:

                            (14)

Each moment creates a far magnetic field defined by:

                           (15)

Projected in a local 3D space, each moment has its own coordinates:

                           (16)
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Here we have a connectivity to the fundamental  geometric space. 
This allows us to define the global moment of the network:

                       (17)

This vector gives all  the information to compute the far  magnetic 
field emitted by the network. Classical relations of antennas between 
electric  and  magnetic  field,  propagation  delay  and  so  on  give  the 
context to end the computation. What is less evident is to transform the 
network  information  to  the  mesh  one,  as  we  want  to  resolve  the 
problems in the mesh space. The moment of a first network creates in a 
second network an electromotive force E which depends on the mutual 
inductance with:

                      (18)

Using the previous relations we can write:

             (19)

With (14) we finally obtain:

                   (20)

From  the  network  space,  the  interactions  are  taken  into 
account using (20) and adding to the tensor M the elements 
coming from these interactions defined through .

2.4 Movements

When one of the two networks is in movement in comparison with 
the other one, inductions come both from the time variation of the field, 
and also from the changing direction of the reference attached to one 
network.  One  considers  a  first  base  vectors  e attached  to  a  first 
network and 3D local space, and a second one u attached to a second 
network and 3D local space. Between them a matrix to go from one 
base to the other exists:
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   (21)

The electromotive force E induced on an edge N of a second network 
is created by the current of a first edge n of the first network. E is given 
by:

    (22)

 The vector dC depends on the second base. A is defined in the first 
base. We can replace the vector by their coordinates and write:

         (23)

With (21) we obtain:

       (24)

Finally, knowing the fundamental 3D metric gyx=ey.ex:

 (25)

The last term in this integral is the classical e.m.f. derived from the 
time variation of the vector potential. The first two terms are included 
in  the  Christoffel’s  symbols  when  one  referential  follows  curvilinear 
trajectory. This is the case in the electrical machine where the rotor is a 
moving network in comparison with the stator. The Kron’s machine [13] 
uses this development which is the more general that can be imagined. 
Finally  when  there  is  a  movement  between  the  networks,  one 
transformation must be applied added to the others seen before:
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(26)

Where  is the Christoffel’s coefficient matrix extracted from (25).

2.5 Fundamental topological relation

Between the edge B, nodes N and mesh M space, for R sub network 
we have the fundamental topological relation:

M=B−NR                                          (27)

    This relation must be verified at any time we compute a problem 
using our technique. 

2.6 Graphs and equations

An EMC problem is first represented by the engineer who’s responsible 
for resolving the problem. This representation is made using a graph. 
This graph can include classical electronic symbol (R, L, C, transistors, 
etc.)  with special  lines  to represent  the field radiation.  Between the 
graph and the Z tensor organization there is a direct link in the edge 
space [10]. For the mesh space the difficulty comes from the fact that 
there is  not  only  one mesh base.  But  an engineer  does not  have in 
general  difficulties  to  choose  the  best  configuration of  meshes on  a 
graph, because he knows the physic of the phenomenon he wants to 
compute. For example, if we consider the schematic figure 2 attached 
to a simple capacitor: it includes dielectric losses (conductance g) and 
the capacitor C itself (eventually a self inductance too).
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The first proposal on the left is not the good one. There is no physical 
flux between g and C in the capacitor. They are separated only by the 
equivalent electrical schematic of the capacitor, but in fact dielectric 
and  losses  properties  are  detailed  ones  of  the  same  crystal.  So  the 
second choice is the good one, where two meshes (in order to respect 
the  relation  27)  start  from  the  generator  and  go  to  the  capacitor 
through  the  dielectric  and  resistor  edges.  The  same  idea  must  be 
considered when there is a non linearity in the circuit.  A first solution 
consists in making equality between the edge current and the mesh one 
at the non linearity level. To reach that, the only condition is to have 
only  one  mesh  current  flowing  through  this  edge.  The  non  linear 
function is kept and we have only to replace the edge current by the 
mesh one to resolve the problem. Once the graph is found, the tensorial 
equation linked to this graph is automatically obtained. And so, after 
resolving these equations using SCILAB [14] for example, all the mesh 
currents  are  resolved  and as  a  consequence,  the  edge  currents  and 
voltage are resolved too. Many publications showing concrete examples 
were made, these publications are listed in the next paragraph.

The  equations  are  constructed  from  a  graph  which  translates  the 
engineer’s  mind.  Following  the  Feynman’s  idea  and  diagrams  for 
quantum electrodynamics, the symbolic graph is the input work of this 
technique. As an example let us imagine a microcontroller source of a 
radiated field. This field is proportional to the circuit consumption and 
to its activity. The field creates an emf in an antenna of an embedded 
receiver. A graph of the problem is presented figure 3.

The  simple  view  of  this  graph  implies  an  edge  space  of  four 
dimensions, one string between two meshes (a moment interaction), no 
charge description at  the nodes level.  So,  two connectivities  will  be 
used, one to go form the edge space to the mesh one, and another one 
to go from the meshes to the moments. We see how a simple graph is 
immediately translated into tensors organizations. And this graph is in a 
first step a translation of the engineers understanding of the problem. 
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The  technique  is  sufficiently  intelligent  to  give  to  the  engineers  a 
method to translate their expertise. 

3. Concrete Applications

3.1 Published examples

The first application was made obviously by Gabriel KRON himself, 
mainly for  the simulation of  electrical  machinery [15].  But Kron had 
viewed all the possibilities of the method. In the numerical computation 
of differential equations [16], one can say that Kron was at the origin of 
modern numerical  method for  electromagnetism (TLM, etc.).  He had 
shown the multiphysic aspect of the tensorial analysis also [17]. In EMC 
the technique can be used for problem at the component level [18][19]. 
The technique allows taking into account macro models developed from 
experimentations  coupled  with  analytical  models  extracted  from 
microelectronics.  Non  linear  models  for  power  electronic  were 
developed too. These models give fast and accurate simulation in the 
time domain to predict the emission of power cells for power supply or 
electrical  machines  [20].  But  the  formalism  gives  also  an  efficient 
context to make theoretical studies on electromagnetism and EMC [21]. 
Using  the  capability  of  the  method  to  reuse  functions  coming  from 
simulation and experiments, it allows developing complex and hybrid 
models using previous works made with more classical approaches [22]. 
And of course, the technique gives many opportunities to compute EMC 
problem at the system level [23][24][25][26][27][28]. 

3.2 A simple example

Just to enlighten the readers, we detail a simple example. We consider 
two loops. The graph of the problem is given in figure 4. 
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Fig. 4. A simple problem



The first action consists always in drawing a graph. This graph must be 
an  image  of  the  engineer’s  thinking.  The  second  action  is  to  give 
numbers to the edges and to choose mesh numbers and circulation. It is 
possible now to define the edge to mesh connectivity:

(28)

Here we don’t have any coupling process between edges. So, the Z 
tensor has this organization:

            (29)

As can be seen the tensor does not have any extra-diagonal element 
because no interaction exists between edges.  The source vector is  a 
covariant one with the following organization:

                 (30)

The next action consists in applying the edge to mesh transformation 
making relation (12). We find here:

       (31)

To  this  new  tensor  Z’ we  must  add  the  inductance  one  which 
includes the interaction we have here through strings (the interaction is 
symmetric) between the two meshes. This tensor M is equal to:

              (32)

s is the Laplace operator. The equations of the problem are given by:

               (33)
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With:

   (34)

Developing (33) gives:

       (35)

Computing the inverse of  gives the solution of the problem, i.e. all 
the mesh currents. Now if we want to extract from these results the 
voltage across Z4 we write:

                  (36)

Z44=Z4. Here we see that no information is lost at all from the edge 
space. 

4. From the mesh space to the Lagrange’s operators
In any system it is possible to write the potential energy created by 

each pair of charges. We have:

         (37)

These energies are stored across each capacitor of the system. qij is a 
charge on an edge supplied by two currents i and j. By definition:

                        (38)

By replacement of qij in (37) we obtain:

(39)
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From this expression we can construct the U matrix operator of the 
potential energy (here for 4 elements):

 (40)

The same development can be made for the kinetic energy T (LijIiIj 

terms)  [29].  The  operators  obtained  like  U are  the  Lagrange’s 
operators, but they are strictly equals to the Z tensor capacitance and 
inductance parts when it’s written in the mesh space. The self modes of 
the system are given by the equation:

         (41)

The  are the pulsation of the modes.

5. A theoretical study
Another advantage of having an equation that represents the system 

behavior is the possibility to make all kinds of studies that can be made 
on the base of an equation: experience plans, studies of behaviors, etc. I 
give  here  an  example  [30]  of  theoretical  study  that  these  equations 
allow to do. 

The total power developed on all the system is given by the relation:

                    (42)

Vk can be replaced by its expression and the edge currents by their 
expression in the mesh currents. One obtains:

        (43)

The meshes currents are created by disturbances sources with:
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   (44)

So:

(45)

One can make in factor the connectivity, the sources and the inverse 
of the metric:

  (46)

The  quadruple  product  eLYE  is  the  power  delivered  from  the 
sources to the edges: Pb. Finally:

 (47)

The  triple  product  YLZ has  the  dimension  of  a  transfer  function 
which transports the energy from the external layer to the component. 
Writing:

Sk


= Y L


k Z
kk

                                   (48)

One obtains:

             (49)

The added energy that is an image of the EMC risk to disturb the 
system is the term:

        (50)

This equation is fundamental for the system EMC. It implies that if 
the sources E are higher, the risk is higher. If the transfer function S is 
higher, the risk is higher too. And the lower the susceptibility level e of 
the component,  the higher the risk  R of  disturbances.  This  equation 
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demonstrates that to reduce the risk of disturbances of the system, it’s 
better to (in the order): reduce the source, then if it is not possible, to 
reduce  S, and finally to increase  e. The study of equation (50) shows 
how the system stability changes when these parameters change.

8. To connect primitive networks
We reach here the ultimate process of our technique: the method to 
connect  various  patterns  coming  from various  tools  to  compute  the 
complete graph of a system. The connections can start from the nodes 
space  to  end  at  the  moment  one.  One  shows  here  the  conducted 
connection of four primitive networks. The simplest primitive network 
that we can imagine is a simple edge with two nodes. One considers 
four primitive networks shown figure 5. 

Each primitive network is characterized by its own current Ik that 
can be activated using an emf applied on the primitive network (see 
first primitive network figure 5). 

When the primitive networks are connected, the new network has its 
own edge currents. The transformation matrix is defined by writing the 
relations between the primitive network currents and the new network 
currents. Here we have:

                                                                                                         (51)
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Fig. 5. Connection of primitive networks

{
i 1

= i ' 1

i 2
= i ' 1

i 3
= i ' 2

i 4
= i ' 3



From these relations we obtain a transformation matrix:

                        (52)

Computing the next equation:

                        (53)

Where Zab is the tensor made with the four primitive networks (each 
diagonal  element  is  one  primitive  network  impedance),  and  Zcd the 
impedance tensor  of  the network constituted.  This  is  an  example of 
direct connection involving conduction interaction. Another possibility 
to connect various networks (it always means various patterns modeling 
various elements of a system) is to create magnetic coupling between 
meshes of two different networks. In this case, the interaction creates 
extra-diagonal elements in the M tensor. The same approach to connect 
various networks using the moment vectors of these networks can be 
used. In this case, equation (20) is used to create the special “mutual” 
interaction added in the tensor M of the global system constructed. 

9. Future works

Immunity  at  the  component  level  still  has  to  be  improved  and 
clarified.  Connectivity  between  the  fields  and  its  boundary 
conditions  (currents,  voltages)  can  be  explored  in  a  better  way. 
These  two thematics  are part  of  two thesis  in  progress.  Another 
research orientation for future works will concern coupling between 
physics, mechanics and thermal effects.

10. Conclusion
I have tried to show the entire possibilities offered by the tensorial 

analysis  of  network  applied  to  the  large  system  EMC  problems.  In 
comparison  with  the  original  Kron’s  method,  I  propose  to  add  the 
moment space which allows reducing the problem where there is many 
networks  present.  The  definition  of  Z as  a  generalized  non  linear 
operator  allows  merging  time  and  frequency  domain  in  the  same 
problem using Zii applied to a current like a convolution product of an 
impulse response (obtained using a Fourier transform of the frequency 
transfer function computed with a moment method for example) with an 
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unknown current element that has to be solved [10]. It is possible to 
extend  the  tensorial  equations  for  a  multiphysic  problem,  coupling 
mechanics, electronics and fluid physics [17]. The link with statistical 
models needed for the component susceptibility was shown too [10] in 
order to complete the chain from the structures to the components. The 
method has proven its efficiency by the past for electrical machines and 
electro  mechanics  problems.  It  can  give  the  same efficiency  for  the 
exhaustive problem of EMC on large systems.  
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