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Abstract

Support vector machines and kernel methods have recemtigdjeonsiderable attention in chemoinformat-
ics. They offer generally good performance for problemaupiesvised classification or regression, and provide
a flexible and computationally efficient framework to inctuctlevant information and prior knowledge about
the data and problems to be handled. In particular, withddenethods molecules do not need to be represented
and stored explicitly as vectors or fingerprints, but onijotocomparedto each other through a comparison
function technically called &ernel While classical kernels can be used to compare vector oerfimmt rep-
resentations of molecules, completely new kernels wereldped in the recent years to directly compare the
2D or 3D structures of molecules, without the need for anieiplectorization step through the extraction of
molecular descriptors. While still in their infancy, thesggproaches have already demonstrated their relevance
on several toxicity prediction and structure-activityat@nship problems.

I ntroduction

Computational approaches play an increasingly importaatin modern drug discovery. In particular, accurate
predictive models accounting for the biological activitydadrug-likeliness of candidate molecules can help in
the identification of promising molecules and screeningvoious side-effects, leading to substantial savings
in terms of time and costs for the development of new drugxhSuedictive models aim at inferring a re-
lationship between the structure of a molecule and its giokd and chemical properties, including toxicity,
pharmacocinetics and activity against a target. The dewedmt of high-throughput technologies to assay such
properties for large numbers of candidate molecules, amdubsequent availability of increasing quantities of
molecules with characterized properties, has triggereditle of statistical and machine learning approaches to
automaticallylearn the structure-property relationship from these pools afrabterized molecules.

Decades of research in machine learning and statisticsgravéded a profusion of methods for that pur-
pose, ranging from classical least-square linear regnessiartificial neural networks or decision trees (Hastie
et aI.,). While each method has is specificities, strerand weaknesses, a common issue when one wants
to infer a structure-property relationship concerns thg malecules are represented. While small molecules
are often represented as 2D or 3D structures in chemistrglaachoinformatics, most statistical methods, in-
cluding linear models and nonlinear neural networks, mregeectors an input. Molecules must therefore be first
encapsulated as finite-dimensional vectors, using vanmlscular descriptors, before being presented as input
to these algorithms. The construction of molecular desmrgpis however a difficult task. Often a significant
chemical expertise coupled with heuristic feature sedecthethods is needed to chose, among the plethora of
possible molecular descriptors, the most relevant ones fooperty to be predicted. The number of molecular
descriptors must moreover be kept as small as possible itthiencomplexity of the inference task.



An alternative to this issue has emerged recently with theiaidof support vector machines (SVM) and
related kernel methods in machine learnifig (Vaphik, 1938108&opf and Smola] 20D2; Shawe-Taylor and
Cristianini,). SVM is an algorithm for pattern recadgpm and regression that provides a useful framework
to overcome the difficulty of data representations as veatblow dimensions, both from a theoretical and
a computational point of view. Theoretically, first, SVM aable to infer models in large or even infinite
dimensions from a finite number of observations. Indeed traplexity of the learning task is not directly
related to the dimension of the input vectors, but ratheroimes measure of complexity of the classification
rules which are precisely controlled by SVM through the ubeegularization [Vapn]k[ 1998). Practically,
second, a computational trick known as Regnel trickallows the estimation of models with a complexity that
does not depend on the dimension of the input, but only on timeber of training points. Hence training a
model with vectors of infinite dimension is no more computadilly demanding than training a model for small
fingerprints — as long as the so-callkernel function which corresponds to the inner product of the vectors,
can be computed efficiently. Combined together these ptiepagive SVM the ability to work with molecules
represented by vectors of large or even infinite dimensiadomputationally efficient framework, leveraging
the burden of feature selection and giving the modelers rgvodunities to imagine large sets of molecular
descriptors.

SVM often provide state-of-the-art performances on mamagsification and regression tasks, and enjoy
therefore an increasing popularity in various applicafietds, including bioinformatics and chemoinformatics
(Scholkopf et g.| 2004). For example, SVM have been adpbehe prediction of the activity of molecules on
a number of target classds (Burbidge ¢t[al., 2)01; Westdd B083;[Arimoto et dl.[ 2005; Briem and Gunther,
PO0%; . ¢ Ofekxicological properties (Kramer etlal., 2002;
Helma et ., 2005), drug-likelingss (& .{2003; Muller et all, 200p; Takaoka gt al.,

003), blood-brain barrier permeabiIiLy (Doniger gtjal02), enantioselectivity (Aires-de Sousa and Gasteiger,
%S), aqueous solubility (Lind and Maltspya, 2003), oeisotric point(Liu et gl.} 2004a), to name just a few.

While most recent successful applications of SVM in cherfmsmatics were obtained by just plugging clas-
sical molecular descriptors to the SVM, an increasing linwark seeks to investigate the unique opportunities
offered by SVM to go beyond classical fingerprints and mdegcdescriptors, thanks to the kernel trick. This
avenue was pioneered simultaneously and independentlablgikia et g1.{(20(03) arjd Gartner gt fl. (3003) who
proposed to represent the 2D structure of a molecule by amitayilimensional vector of linear fragment counts
and showed how SVM can handle this representation with theeké&rick. Later work quickly refined these 2D
kernels (Kashima et al., 2004; Mahé e} fl., 4J05; Ralaieokl.,| 2005) and proposed new infinite-dimensional
representations of 3D structurgs (Swamidass|dt al.] 2066\t .} 2006; Azencott et|dl., 2p07).

These first attempts to enlarge the flexibility of moleculasdiptor-based predictive models represent a
promising direction foin silico modelling of structure-property relationship, becausy tHustrate the unique
possibilities offered by SVM and more generally kernel noelthin this context. We review them in this paper
with the hope to offer a state-of-the-art description ofldtest development in this field, and an invitation for
the chemoinformatics community to further investigatesthpossibilities. For that purpose we first provide
a quick introduction to SVM and kernels in Sectifn 1, andsiifate the relevance of the kernel trick when
working with 2D structures of molecules with a simple exaenpt 2D kernel in Secti0|ﬁ| 2. This example is
further generalized and connected to recent work on 2D I@ineSection[B, and practical issues with these
kernels are discussed in Sectﬂ)n 4. 1n Secﬂon 5 we presetti@rapproach that focuses on the representation
of 3D structures of molecules, and discuss practical isfurethis approach in Sectidﬂ 6. We conclude by a
discussion and suggestions for future work in Secﬂon 7.

1 Support vector machines and kernels

SVM is a machine learning algorithm for pattern recognitaiginally developed in the early 1990's by V.
Vapnik and coworkerq (Boser etldl., 1992; Vapnik, 1998)haiigh various extensions to multiclass classifica-
tion, regression, outlier detection or feature constancéilso exist, we focus in this review on the simple pattern
recognition problem and refer the interested reader tamuariextbooks to know more about these extensions,
collectively known askernel method§Scholkopf and Smdld, 200P; Shawe-Taylor and CristiafifD4). A
pattern recognition problem occurs when one is given a fggtef objects that belong to two possible classes,
and mustiearn from this training set a rule to automaticalbyedictthe class of objects with unknown class.
This general and abstract formulation encompasses in fagtrdoer of practical situations in chemoinformat-
ics and beyond. We focus here in particular on situationsrevittee objects available are small molecules,
and the classes to be predicted represents various pexpefiinterest such as toxic/non toxic, druggable/non-
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druggable, or inhibitor/non-inhibitor of a given targeteite a typical pattern recognition problem could be,
given a list of toxic and non-toxic molecules, to learn a naegredict whether a new candidate molecule is
toxic or not.

More formally, we represent the training set available st @%&: objectsey, . . ., z,, € X, whereX denotes
the set of all possible objects, and associated binarydahel. .y, € {—1;1}. In our case each object
represents a moleculd, denotes the set of all possible molecules, and the two cldsaed —1 are arbitrary
representations of two classes or interest, such as “taxid™non-toxic”. Pattern recognition algorithms, such
as SVM, use this training set to produce a classifierX — {—1; 1} that can be used to predict the class of
any new data: € X by the valuef(x). When objects aré-dimensional vectors, that ig; = R?, the classifier
output by SVM is based on the sign of a linear function:

f(x) = sign((w, z) +b), 1)

for some(w, b) € X x R defined below. In this case the classifier has a geometrigirgiation: the hyperplane
(w, ) + b = 0 separates the input spa&einto two half-spaces, and the prediction of the class of a pewt
depends on its position on the one or on the other side of therplane. The particular hyperplane selected by
SVM is the one that solves the following optimization prable

Hﬁg{%llwl?+OZL(yi,<w,xi>+b)}, @)

=1

whereC' is a parameter anfl(y, t) is thehinge lossfunction equal td) if y¢ > 1, and1l — yt otherwise. For
a given training exampléx;, y;), the hinge loss terni (y;, (w, z;) + b) quantifies how “good” the prediction
(w, z;) + b of a candidate classifi€iv, b) is, in the sense that the better the prediction, the smaikeioiss. For
example there is no loss whanandb are such thag; ((w, z;) + b) > 1, which means thafw, z;) + b has the
sign ofy,; and is larger than in absolute value. In other words the loss is zero when thdigtien is correct
and made with large confidence. Now the second term in the E)J'm {he average loss over the training set of
the candidate classifi¢w, b): it is small when the classifier fits well the training poirits,, makes on average
“good” predictions. On the other hand, the first tejim||2 in (H) is small when the slope of the classifier is
small. The two terms irﬂ2) are often in conflicts, especialliarge dimension, because it is often difficult to
fit the training points well with linear functions of limiteslopes. The rational behind the optimization problem
(E) is indeed to find a linear classifier that reaches a trdfieetween the goodness of fit on the training set (as
guantified by the second term of this sum), and the smoottoi¢ke classifier (as quantified by the first term).
The paramete€' controls this trade-off, by balancing the importance ofretmrm. In the extreme case when
C = 40 and the training points can be correctly separated by a pigeg, then no error is allowed on the
training set and the classifier with largest margin is fouﬁgtare[j,).

Itis often interesting to rewrite problerﬂ (2) in an equivaleay, using classical optimization theory. Indeed,
this problem is equivalent to the following quadratic pexil called its dual:

n n
1
gé%% E o — 1 ‘ g Q05 YY 5 <xia xj> )
i=1 i,j=1 (3)

subject to :Zaiyi =0and0<q; <C,i€[l:n].
=1
Both problems|]2) an(ﬂ(3) are equivalent in the sense thadheion(w*, b*) of the primal problem|]2) can be
deduced from the solution* of the dual problem[{3). In particular, it can be shown that= """ | oy,
andb* can also be deduced fromri. As a result, the decision functioﬂ (1) can also be expreisseims of the
solutiona™* of the dual problem:

f(z) = sign (Z ol (x,x) + b*) : (4)

=1

Let us now consider the use SVM for pattern recognition withlaoules, represented for example by their
2D or 3D structures. Such structures being not vectors,¢haynot be directly input to SVM. Instead we need
to embed the set of 2D or 3D structures of molecutet a vector spaceé{ through a mappin@ : X — H.

We can then apply the SVM algorithm to the training vectd(s;),i = 1,...,n, as illustrated in Figurﬂ 2.
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@) <w,x>+b>(

<w,x>+b<(

Figure 1: SVM estimates a linear separation between theeda®Vhen the training patterns are linearly separable
and the trade-off parametér in Equation [R) is set teroo, then the separating hyperplane selected by SVM is
the one that maximizes the distance to the closest pointcm side { on this picture). In general, some training
points may be misclassified by the selected hyperplane toa@mverfitting.

Feature space R"d

Chemical space X

Figure 2: In order to use SVM with molecules, we need to defimerabedding of the space of molecules to a
vector space, i.e., a representation of each molecals a vectod(z). Note that, contrary to usual fingerprint-

based approaches, the vector space might have a large anéuaée dimension.



An important point to notice is that in the dual formulati@),(the data are only present through dot-products:
pairwise dot-products between the training points durireglearning phase ir[|(3), and dot-products between
a new data and the training points during the prediction tpﬁnas@). This means that instead of explicitly
knowing®(x) for anyx € X, it suffices to be able to compute inner products of the form:

k(x’ ‘r/) = <(I)(‘T)’ (I)(CC/)> ) (5)

foranyz, 2’ € X. In that case the dual optimization probIeEh (3) solved by Ssév be rewritten as follows:

OI}%%}% E a; — — g Oézajyzyj SCZ,SCJ) 5
] 1
= (6)

subject to :Zaiyi =0and0<o; <C,i€[l:n].
i=1

Moreover the classification functioﬂ (1) becomes:

f(x) = sign <Zo¢;‘k(z,xi)+b*> : (7)

=1

Hence we see that for both the training of the S\/E/I (6) and tlegligtion of the class of new pointﬂ)( the
feature mapb only appears through the functi@which is called &ernel Importantly it is sometimes easier
to compute directly the kernél(x, 2') between two points than their explicit representationseasors inH.

In fact a classical result ¢f Aronszhjh (1950) character&éfunctionsk : X x X — R that are valid kernel,
i.e., for which there exists a feature spa¢eand a mappin@g : X — H such that|Z|5) holds (they constitute
the so-called class gfositive definitéunctions). Hence, with this characterization at hand,lemelk can be
used with a SVM as long as it satisfies the positive definitepesperty.

The formulation of SVM in terms of kernelﬂ @5-7) offers atdetwo major advantages over the formulation
in terms of explicit vectorsﬂﬂ4). First, it enables thagthtforward extension of the linear SVM to non linear
decision functions by using a nonlinear kernel, while kagjpis nice properties intact (e.g., unicity of the solu-
tion, robustness to over-fitting, etc...). As an example Gaussian kernél(z,z’) = exp (—||z — 2/|[* /20>
is positive definite and can therefore be used as a kerne¢iSWM algorithm Kb). Plugging this kernel intﬁ(?)
we see that the resulting discrimination function has thefo

_S|gn{2a eXp( e — s >}

which is clearly a nonlinear function af Second, this formulation offers the possibility to difgetpply SVM

to non-vectorial data, such as 2D or 3D structures of moés;ydrovided a positive definite kernel function to
compare these structures is defined. The definition of streicture kernel§or molecules is explained in the
following sections.

2 A simplekerne for 2D structures

It is common to describe the 2D structure of a molecule aseéalundirected grapfi = (V, E), with atoms
as verticed/ and covalent bounds as edgésHere we assume that a label is assigned to each node and edge,
typically to describe the type of atoms and bounds involedrder to train linear models for structure-property
relationship prediction, each labeled gra@trepresenting a molecule must first be transformed into aovect
®(G). In this section we describe a simple vector representatidained by counting all walks of a given
lengthn, and show the relevance of the kernel formulation in thigcas

A walk of lengthn on a graph is a sequencewfadjacent vertices. We note that this definition allows a
given vertex or edge to be present more than once in a wallarlglehe number of walks of length on a
graphd is finite, and we denote by, (G) this set of walks in the following. By concatenating the lisbef
the vertices and of the edges of a walkve obtain a sequence of labels which we denoté by, the label of
the walkw. Moreover, we notd.,, the set of possible labels for walks of lengthi.e., all possible sequences
alternatingn vertex labels withn — 1 edge labels. Figwﬂ 3 illustrates these definitions. Nowrgkd way to

5



represent a grapty by a vector is to extract all walks of lengthfrom its structure, sort them by label, and
count in®(G) the number of walks with each possible labellip. In other words the dimension @f(G) is
equal to the size of.,,, and for each possible walk lablek L,, we define the coordinat®;(G) as the number
of walks inG having label. More formally the featur®,(G) is defined by:

oG = . 1w =1). 8)

weW, (G)

A direct approach to train a linear model with these vectpresentations would require the explicit compu-
tation and storage @b(G) for all graphsG in a dataset. This approach becomes problematic whsecomes
large, because the number of walk labels increases expalhentith ». As an example, keeping onbytypes
of atoms and types of covalent bounds, the number of possible labelthe=dc944 for walks of length3;
34,992 for walks of lengthd; 629, 856 for walks of length5; and more tham billions for walks of lengths.
This explosion in the dimension 6f(G) suggests in practice either to restrict oneself to walkewogth 2 or 3,
or to compress the representatid((z). The later approach is widely used in chemoinformatics bsedrag-
ments of lengt3-10 are known to provide useful information in many structuregerty relationship problems.
The solution most often encountered is to use a hash tabimipédl size (typicallyl024 or 2048) to map the
vector®(G) onto a vector of smaller dimension, called a molecular fipget (Gasteiger and Engel, 2Q03).
An obvious drawback of this solution is the danger of clashes the mapping of different labels to the same
position in the hashed vector.

An alternative solution for the use of largevalues is to use kernels. As we now show, indeed, kernels
allow the estimation of linear models for vectob$G) without reducing their dimension nor requiring the
computation and storage of the vectors. Indeed, remenpedm Sectior[|1 that SVM only need the definition
of the inner product between vectors to estimate a linedsleno, we only need to show how the inner product
for the vector representatioﬂ (8) can be computed effigiemibr that purpose, let us write this inner product
more explicitly for any two graph& andG’:

(®(G), 2(G") = Y ¢(G)i(C)

leL,
=Y ( > 1(l(w)=l)) ( > 1(l(w’)=l)>
€L, \wEW,L(Q) w' €W, (G')

(9)

> > <Z 1(l(w) = D1(l(w') = z>>
)

weW, (G) w eW, (G’ leL,

> Y Hw) =)

weW, (G) w eW, (G’)

In other words the inner product betwe@(G) and®(G’) can be expressed exactly as the number of pairs of
walks (w, w’) of lengthn, respectively inG andG’, with the same label. In order to show how this number
can be computed efficiently, it is useful to introduce pineduct graphG x G’ which is a graph whose vertices
are pairs of vertices off and G’ with the same label, and whose edges connect pairs of vemibech are
connected both i andG’ (Figure[}). In other words the vertices 6fx G’ are the pairgv,v’) € V x V'

with I(v) = I(v'), and there is an edge between, v}) and(vz, v4) if and only if there is both an edge between
v; andwy in G and an edge betweer) andv} in G', and if both edges have the same label. It is easy to see,
then, that a walk in the product graph is a sequence of paisrtites(v, v'), in G andG’, that are connected

in G x G’ and therefore iG andG’. Moreover both sequences of vertice<irandG’ are made of pairs of
vertices and pairs of edges with the same label, i.e., they fopair of walks inG andG’ with the same label.
Conversely, given any walks in G andw’ in G’ with same label(w) = I(w’), there is a walk in the product
graph that corresponds to the pair of walks w’). In other words, there is a bijection between the pairs of
walks inG andG’ with the same label, on the one hand, and the walk&onG’, on the other hand. Hence
counting the number of pairs of walks of lengthon G and G’ with the same label is equivalent to simply
counting the number of walks of lengthon G x G’, as illustrated in FigurE 4. It turns out that counting the
number of walks of length on a general graph (and in particular on a product graph foporpose) can be
easily computed by a recursion overindeed, for a general graph, if we denoteAy(v) the number of walks
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Figure 3: The 2D structure of a molecule (on the left) can Ipeasented by a labeled graph (on the right). Two
walks on the graph are illustrated, together with their lamg length.

1’
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3

Figure 4: The product graph of two graphs (on the left) is ioleté by considering all pairs of vertices with similar
labels as vertices, and connecting two such vertices wheereipective pairs of vertices in the initial graphs are
connected (on the right). Each walk in the product graph,(&g1’) — (3,2')) is associated to a pair of walks in
the initial graphs with same labels (e.g+ 3 and1’ — 2’), and vice-versa.

of lengthi starting at vertex, thenA; (u) = 1 for any vertexu and the following recursion formula holds:

A (v) = > Ag(u), (10)

u~v

where the sum is over the neighbor vertices.ofi,, (u) can therefore be computed for amyc V' by applying
this formula recursively ovei. The number of walks of length on the graph is then simply obtained by
summingA,, (u) over the vertices.. We observe that if we denote bythe adjacency matrix of the graph and
by 1 the vector whose entries are all equal tahen ) simply expresse*!1 asA x A1, and the count of
walks of lengthn is equal tol " A7~ 11.

To summarize, we have shown that for the vector represent@b, the inner product between two graphs
G and G’ representing the 2D structures of two molecules can be ctdpay (i) constructing the adjacency
matrix A of the product graply x G’ and (i) computingl " A" ~'1 using the recursiormO). This computation
is exact and efficient, although the dimension of the veatarsreach the billions. In particular, the complexity
of the computation increases only linearly withwhile the number of features increases exponentiallyngJsi
this inner product with a kernel method for pattern recdgnibr regression allows to estimate a linear model
in this space without ever computing nor storing any vector.

3 2D kernel extensions

The kernel for 2D structures presented in the previous@etdti illustrate the power of kernels can be used as
such, but many extensions have been proposed to increafexibéity and the expressiveness of the represen-
tation. In this section we review some of these extensions.



3.1 Walksof variouslengths

In the computation of the kernel based on walks of lengttve note that kernels of lengih< n are computed
as intermediaries. The choice ofis arbitrary in practice and should depend on the targeteticapion and
the data available. Alternatively we may decide not to cleagarticular value of, but to combine walks of
different lengths in a joint feature model. The inner praduging additive when new features are added, the
kernel corresponding to the feature spa@e (8) where allsvaflkength up ton are considered is the sum of
the kernels corresponding walks of fixed length smaller thamhe complexity of the computation is barely
increased for this extension: instead of performing theinrson )n times before summing the terms, one
just need to increase a counter by the sum of the terms at tesatian.

Whenn increases the inner product in this "until-extension grows exponentially with and diverges. A
solution if one wishes to use large values#fgrand even infinite: to be able to include all walks, is to weight
the contributions of different walks by a factdfw) that will ensure convergence of the series, i.e., to conside
the following kernel:

KGGY=> Y > A1 (l(w) = 1(w')). (11)

n=1weW, () w' €W, (G")

As an exampld, Gartrjdr (2402) proposed to weight the damrttan of walks of lengthi in the inner product by
a factor3i/2, i.e., to consider the formula:

He.) =% Y Y AM0w) = W)

n=1weW, (G) w eW,(G")

. (12)
=Y B"kn(G,G),
n=1

wherek,, denotes the kernel based on the count of walks of length lgxacRemembering from the previous
Section thatk,, (G, G’) is equal tol " A"~ 11, whereA is the adjacency matrix af x G’, we can rewrite and
factorize this kernel as follows fg# small enough:

k(GG =Y priTAn 1

n=1

n=0

=p1T (I-pA) "1,

Hence the computation of the inner productin the infinitexelisional space of all walk counts can be performed
explicitly, at the cost of inverting the sparse matfix- 5A. In practice the first terms of the power series
expansion provide a fast and good approximation to the cetafiernel, and allow more flexibility in the
weighting of the walks of different length.

Another weighting scheme for walks has been proposed imiigwely by[Kashima et hlf (20p3), who pro-
pose to define Markov random walks of each graph and weight¢herrence of each walk on a graph by its
probability under the corresponding random walk model. gkgtie exponential decay, the random walk weight-
ing scheme factorizes along the walks and can be computbdhetsame tricks as the exponential decay walk
kernel.

3.2 Filteringtottering walks

In the previous section, we did not make any restriction andsfinition of walks: they are simply defined
as successions of connected graph vertices. Because taolgraphs are essentially undirected, this generic
definition allows walks to have an erratic behaviour, whiah tead in turn to a misleading information about
the true structure of the graph in the kernel. Indeed, amtiigrlong walks can for instance be generated by
simply alternating between two connected vertices. A r@tway to increase the expressive power of walks
with respect to the structure of the graphs is to prevenioessrfrom appearing more than once in a walk. In the
terminology of graph theory, this corresponds to defininga&l based on commgaathsinstead of common
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Figure 5: Tottering (red) and no-tottering (blue) walks.e$b two walks are labeled as a succession of 3 carbon
atoms, but only the blue one involves 3 distinct atoms.

walks. Albeit very natural, this extension unfortunatednders the kernel computation untractable, as pointed
out by[Gartner et 4] (20P3).

A computationally efficient alternative proposedby Mahalp(200}) is to disregard ttettering walksin
the enumeration of walks. As illustrated in Figlﬂe 5, a ritipwalk is a walk that comes back to a vertex it has
just left. Although the notion of path is stronger than théiomof tottering walks for general graphs, they are
equivalent on graphs without cycles. The relevance of tineept of tottering walks stems from computational
advantages: as shown py Mahé dt[al. (2005) the set of tugterdlks of a grapki: corresponds to a set of walks
of a transformed graphG), where the transformationinvolves adding additional vertices and edges. As a
result, the kernel for two graplis andG’ based on non-tottering walks only is easily computed asttrelard
walk kernel between the transformed grapts) andt¢(G’). More details about this transformation can be

found in[Mahé et 31[(205).

3.3 Increasing the expressiveness of walks

A second criticism that can be made to walk kernels is thetfeatf because of their linearity, walks bear limited
information about the structure of a graph. A principled wayaddress this issue, which is actually the topic
of the next subsection, is to introduce subgraphs of a hitgwed of complexity in the kernel construction.
In practice, however, this approach usually raises aduditioomplexity issues that can be hard to circumvent.
A simpler alternative is to keep a walk-based charactéamadf graphs and introduce some form of prior
knowledge in the graph labeling function, in order to entloh information brought by walks about the graph
structure. This is in particular the approach takem in Mahall {(2005) where a new set of labels is defined
for the vertices of a graph, based on the local environmetit@ftoms in the corresponding molecule. This
method relies on a topological index, called Mergan index which is defined for each atom of the molecule
according to the following iterative procedure. Initiallige index associated to every vertex is equal to 1. Then,
at each step, the index of a vertex is defined as the sum ofdieemassociated to its neighbors at the previous
iteration. This process is straightforward to implemenpiactice, since if we led/; be the vector of Morgan
indices computed at thieth iteration, it reads a8/, = 1 andM,,; = AM;, wherel is the unity vector and!

is the adjacency matrix of the graph.

As illustrated in Figur({|6, Morgan indices make it possilol@istinguish between atoms having the same
type but different topological properties. When they arguded in the labels of the vertices, these indices
therefore define a walk as a sequence of atoms taken in ayartiopological configuration. In practice, the
advantage of this refinement is twofold. First, the intrathrcof topological information in walk labels enriches
the information they bear with respect to the structure efdhaphs to be compared. Second, because atoms
are made more specific to the graph they belong to, as iltestia Figure[b, the number of identically labeled
atoms found in a pair of graphs automatically decreaseghwtas the effect of reducing the size of their product
graph, hence the time of computing the kernel. Note thatdhisputation advantage is surprisingly due to the
increase in dimension of the feature space. We note howkaémthile this Morgan process systematically
reduces the cost of computing the kernel, performing tooyntanations makes it impossible to detect common
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Figure 6: lllustration of the Morgan process. Initially] atoms of the cycle are seen as identical. For increasing
iterations, the presence of thEd2branch is more and more reflected in the atoms of the cycle.

walks within a pair of graphs.

3.4 Subtreekernels

As mentioned in the previous subsection, the linear natfiveatks limits their ability to properly encode the
structure of a graph. This fact is emphasized[by Ramon amth&a{200B) who show that graphs can be
structurally different yet have the same walk content, Wwhitakes them indistinguishable by a kernel based
on the count of common walks. FigLﬂe 7 illustrates this issne simple example. On the other hand, they
also show that computing a perfect graph kernel, that is,ragkenapping non-isomorphic graphs to distinct
points in the feature space, is at least as hard as solvingréipd isomorphism problem for which there is no
known polynomial-time algorithm. This suggests that thpregsiveness of graph kernels must be traded for
their computational complexity.

As a first step towards a refinement of the feature space usedlkibased graph kernels, Ramon and
GartnerS) introduce a kernel function comparing gsapn the basis of their common subtrees. As illus-
trated in FigureﬂS, this representation looks particularlymising for molecules, since it allows to capture in a
principled way a wide range of functional features of molesuthat typically correspond to specific branching
patterns on their associated graphs. On the practical #itdetype of kernels can be computed by means of
dynamic programming algorithms that recursively detect extend identical neighborhood properties within
the vertices of the graphs to be compared, in order to eyllmiild their set of common subtrees. The relative
contribution of subtrees of different sizes is typicalyntwlled by means of a parameter playing a similar role
to that of the parametetin Equation @2). These algorithms have a prohibitive caxity in general, but they
can be deployed for molecular graphs where, because ofcalertes, the degree of the vertices is small in
average. The relevance of this class of kernels, as wel asldtionship with standard walk-based kernels, has
been analyzed in details jn Mahé and Meért (4006).

Figure 7: Two graphs having the same walk content, namely 5 ; e—e : x4 ande—e—e : x2, and consequently
mapped to the same point of the feature space correspondiemel based on the count of walks (Gartner ¢t al.,

i)
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Figure 8: lllustration of the tree-structured fragmentresgntation: a grap&y’ (left) and an extract of its feature
space representatief{G) (right). Note that the green tree corresponds to a walk strec

4 2D kernelsin practice

As a conclusion about kernels for 2D structures, we now disceveral issues related to their application in
practice.

4.1 Implementation and complexity issues

As mentioned in Sectioﬂ 2 an elegant way to compute walk bkesatkls lies in the product graph formalism
initially introduced by Gartner et hlf (2003). The basieadof the product graph construction is to merge the
pair of graphs to be compared into a single graph, in such athatya bijection is defined between the set
of walks of the product graph and the set of common walks otwleinitial graphs. It then follows that the
number of walks of a given length occuring at the same timbértwo graphs can be obtained by simple matrix
products, which actually offers a closed form solution te tomputation of kernels based on walks of infinite
length for well chosen walk weighting schemés (Gartnef pPa03;[Kashima et &I[, 20p4). As a result, even
though the dimensionality associated to these kernels eaety large, and actually infinite, computing these
kernels under the product graph formalism has a polynoroialatexity with respect to the product of the size
of the graphs to be compared

In practice, this type of product-graph implementatiomaaims time consuming, even for relatively small
graphs, which questions the suitability of these kernalwiftual screening applications, that typically involve
large datasets of molecules. However, if only walks up toveryiength are considered, which usually makes
sense for real world applications, fast algorithms can leel te compute walk kernels, based for instance on
trie tree structures and string kernel algorith[Es (Ledlialk [200R{ Shawe-Taylor and Cristiahipi, 2p04), or
standard depth-first search procedufes (Ralaivolal€t@05%)2 Moreover, alternative implementations allow-
ing to drastically reduce the time needed to compute suchekein their general form have recently been
proposed(Vishwanathan ef dI., 2P07).

4.2 Kerne normalization

A potential drawback of kernels comparing structured digjby means of their substructures lies in the fact
that kernel values are highly dependent on the size of thextdbjo be compared. Indeed, big objects tend to be
granted a higher degree of similarity than small objectstferonly reason that they are made of a larger number
of substructures. This fact can lead to a serious bias oftthsesjuent prediction model, and the classical way
to tackle this issue it to apply a normalization operatiooiider to take into account the size of the objects in
the value of the kernel function. In practice, the mainstreermalization scheme is given by the following

IMore precisely, the worst case complexity is cubic with sespo the product of the size of the graphs.
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expression:
~ k(z,
k('rvy) = #7
k(z, x)k(y,y)

wherek is the original kernel, anél its normalized value. Note that this normalization operatias the effect

of setting the diagonal of the kernel matrix to one, meanira individual objects are given the same degree
of self-similarity, whatever their size is. Geometricallyis amounts to scaling all vectors to unit norm before
taking their inner product.

In the context of molecular graph kernels, alternative radiration schemes based on the Tanimoto simi-
larity coefficient have recently been introducEd (Ralavel al.[2005; Swamidass ef 4., 2005). The Tanimoto
coefficient is widely used in chemoinformatics to assessiimdarity of molecular fingerprints. For a pair of
fingerprints(A, B), itis defined as:

_ ATB
T ATA+BTB-—ATB’

Tap

For binary fingerprints, it can be seen as the ratio betweein ititersection, that is, the number of bits set to
one in both fingerprints, and their union. As pointed ou{ byaRala et al. [2005), since it is based on inner
product operations, this coefficient can be generalizedydarnel function, leading to the notion ®&nimoto
kernel defined for a kernet as:

7. _ k(xvy)
koy) = k(x,x) + k(y,y) — k(z,y)

This transformation provides an alternative way to normeakernel functions in the sense thidt:, z) = 1
for all . Several variations on this idea, that allow to generalizediassical Tanimoto coefficient in different
ways, are proposed ip (Ralaivola e} gl., 4005; Swamidadg, @08%).

4.3 Kernel parameterization

Last but not least comes the issue of kernel parametenizafiois question is of tremendous importance since
a bad parameterization can seriously entail the succesedubsequent virtual screening application. First
one must choose to consider the kernel based on walks or thelkeased on subtrees. As for now, this
questions remains largely open since apart from the stuifadiée and Veft[(2036), the relevance of subtrees
in graph kernels has not been studied in details. While thérpinary results presented in this study suggest
that subtree kernels may indeed improve over their walleth@a®unterparts, they also show that this class of
substructures raises additional issues, related in piatito the computational complexity of the kernels as well
as the explosion in the number of subtrees found in the graphs

Concerning the parameterization of walk kernels, the nssne concerns the length(s) of the walks to con-
sider: either walks of a precise length, up to a maximal (itd) length, or even up to infinite length. In
practice, this question is highly dependent on the problensicered. Optimally choosing this parameter can
therefore hardly be made priori but involves cross-validation procedures. Although facg®on walks of a
precise length can be optimal in some cédsasafe default choice is to consider walks of length up tnétdid
value to be taken around 8 or 10. Actually, because kernalschan an infinite number of walks require to
down-weight the contribution of walks depending on themgth (as in Equatiorm.Z) for instance), long walks
are in practice so penalized that their individual conttitruis barely taken into account in the kernel. Explicitly
limiting the length of the walks to be taken into account #iere makes sense in practice. Moreover, consid-
ering a finite number of walks provides a greater flexibilitythhie way to control their relative contribution in
the kernel, and offers the practical advantage of pavingweto the deployment of computationally cheaper
algorithms, as discussed in Sect@ 4.1. A second impoidaune is related to kernel normalization. Although
the impact of choosing the first or the second normalizatiresie introduced in Sectidn 4.2 has not been
analysed in details, Tanimoto kernels led to good resulteireral validation studie (Ralaivola ef fl., 4005;
Bwamidass et al|, 200B6; Azencott e} pl., 2007). Finally, miag consider further refinements such as filtering
tottering walks and introducing Morgan indices. As showMiahé et a). [(2005), Morgan indices of a limited
order, typically obtained at the 2nd or 3rd iteration of thegess, can indeed improve virtual screening models

2For instance, walks of length 6 or 7 can be optimal to charaetenolecules mainly made of aromatic cycles.
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Figure 9: Left: the molecule of flavone. Right: a pharmacaophmade of one hydrogen bond acceptor (topmost
sphere) and two aromatic rings, with distandgsd, andds between the features that can be extracted from its
structure, as shown in the middle.

while reducing their computational cotsFiltering tottering walks should be subject to caution keer. In-
deed, as shown ih Mahé and Ydrt (2J006), while this can indepdove the models in some cases, it seems that
the tottering phenomenon can also be helpful to detectaiityilbetween structurally different compounds.

5 A 3D pharmacophore kernel

Motivated by the fact that the tridimensional structure aflecules have a central role in many biological
mechanisms, including drug-target interactions for incéa recent attempts have been made to develop ker-
nels for 3D structure of molecules. In this section, we idtrce a class of kernels that relies on the notion of
pharmacophoravhich is widely used in chemoinformatics. A pharmacophsrasually defined as a spatial
arrangement of three to four atofresponsible for the biological activity of a drug molecukethe following,

we focus orthree-points pharmacophoresmposed of three atoms, whose arrangement therefore fotrs
angle in the 3D space (Figuﬂe 9), but similar ideas natuegdjly to pharmacophores of different cardinalities
With a slight abuse we refer as pharmacophore belaanypossible configuration of three atoms arranged as a
triangle and present in a molecule, representing therefpugativeconfiguration responsible for the biological
property of interest. More precisely, we consider a molegubs a set of atoms in the 3D space, that is:

m = {(Il, ll) S R3 x E}izl,...,\m\ ,
where| m | is the number of atoms that compose the molecule,(and;) € R? x £ stands for its-th atom,
x; being its vector of (x,y,z) coordinates, ahdts label, such as its type for instance, but more generakgn

from a setL of atom labels. With these notations at hand, the set of tho#ats pharmacophores that can be
extracted from the molecule can be formally defined as:

P(m) = {(p1,p2,p3) € m®,p1 # pa,p1 # D3, D2 # D3} -

Following our discussion of Secti(ﬂ'n 2, a simple way to repnés moleculen is to extract all its pharma-
cophores, sort them by type, and count in a vedt@r.) the number of pharmacophores of each possible type.
Clearly, the number of pharmacophores associated to a mielecfinite, but since their definition is based on
the precise (x,y,z) coordinates of the atoms it is made oggoiivalently on continuous inter-atomic distances,
the space of alpossiblepharmacophores is infinite. Defining such a vector reprasienttherefore requires in
practice to discretize the space of pharmacophores, whiith dhown to discretizing the range of inter-atomic
distances into a pre-defined number of bins. Formally, if aesidern bins in the discretization, this operation
defines a space afiscrete pharmacophores = £3 x [1,n]?, where each pharmacophore corresponds to a
triplet of atom labels, taken from the alphalfetand a triplet of distance bin indices, taken[inn]. We can

3Actually, this is only true foproduct-graph implementations. For trie-tree implemgmia, Morgan indices have the opposite effect
of increasing the cost of computing the kernel.

“More generally, pharmacophore are defined as arrangememi®ups of atoms having particular properties, such as positive or
negative polarity, high hydrophobicity, and so on.

®In particular, similar ideas were developed in Swamidass|€2005) based on two-points pharmacophores, that isytadistances
between pairs of atoms.
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now define the vector representatid(n), in which each coordinat®;(m) is the number of pharmacophores
extracted from the molecule that correspond to the discrete pharmacophgtteat is,

Oy (m)= Y 1(disdp) =1),

pEP(m)

where the functiori (disq(p) = t) is one if the discretized version of the pharmacophoigt, meaning that
they are based on the same triplet of atom labels and the siptet bf distance bins, and zero otherwise.
The numbenr of bins considered in the discretization specifies the el at which distinct pharmacophores
are considered to be equivalent, and constitutes a crifmameterization issue. Indeed, small distance bins
may prevent the detection of similar pharmacophores, viduitge distance bins can lead to a matching between
unrelated pharmacophores. In practice, this parameterdgfines the dimension d(m). For example,
considering 6 distinct types of atoms and 10 distance bihg&mcorresponds to bins of 2 angstroms if pairs of
atoms are considered to lie within the 0-20 angstrom digtaaiege, the cardinality &, hence the dimension of
®(m), is 216, 000. This number is raised up g 728, 000 in order to reach a precision of 1 angstrom per inter-
atomic distance bin. This explosion in the number of dimemsisuggests again that in order to explicitly store
the vector®(m), one should either consider a limited number of bins, theoemsidering a poor resolution to
characterize molecular structures, or rely on hashingréihgos to map the vectab(m) onto a vector of limited
size, which as discussed previously, has the effect of imdudashes between distinct pharmacophores. This
representation highlights once again the benefit of usimgatéunctions since, following the lines of Equation
B, one can define the kernel:

k(m,m') = ®(G)"®(G")
= Y 3 1(disdp) = disap)), (14)

pEP(m) p’€P(m’)

which, as will be discussed in Secti6.1, enables to map pamolecules and compute their inner product in
feature spaces indexed by millions of pharmacophores,dongutational complexity that remains polynomial
with respect to the product of their sizes.

Of course, the idea of representing a molecule by means phasmacophoric content is not new, and the
above approach bears strong similarity with well known prezophore fingerprint representations (Brown and
Martin, [L997 { Matter and Pottdr, 1999; McGregor and Midka@b9). The above discussion nevertheless illus-
trates the interest of using kernel functions in this caiseesthey allow tcexactlycompute the inner products
between very high-dimensional feature vectors withoutrtbed of computing nor storing them, which is not
possible in general and comes at the price of an informatiss IThis is not, however, the major improvement
made possible by kernel functions in this context. Indesdshewn in Figurﬂo, the main drawback of this
approach lies in the discretization of the pharmacophaseesjitself: not only the choice of the discretization
step controls the precision required to match a pair of paaophores, but it also prevents pharmacophores
falling on different sides of bins edges to be matched, alginahey can be very close, and actually even closer
that two pharmacophores falling in the same bin. The kerpet@ach allows to circumvent this discretization
issue by means of a simple generalization of Equa (1hgrevthe binary function checking whether pairs
of pharmacophores have the same discretized version os meplaced by a general kernel between pharma-
cophores in order to continuously quantify their simikarltetting k» be such a kernel, this leads to the general

3D kernel formulation:
k(mvm/) = Z Z kP(pvp/)v (15)
pEP(m) p’€P(m’)

which was introduced ip Mahé etl|al. (2006). A meaningfulnet» between pharmacophores should intu-
itively quantify at the same the similarity of the tripletsadoms the pair of pharmacophoresto be compared are
defined from, and the similarity of their spatial arrangemé@matural way to achieve this goal, which is at the
same time compatible with the algorithm implementing thmké) (see Secti.l), consists in factorizing
the kernelkp along the pairs of atoms and inter-atomic distances thatelétfie pair of pharmacophores to be

compared[ Mahé et hI[ (2006) suggest for instance to inteelementary kernel functiohs; : £ x £ — R
andkpist : R x R — R comparing atoms and distances respectively, and to defineetimelk o as:

3 3
kp(p,p') = H Kae (13, 17) H kist(||zi — @it ], |2 — i), (16)
i=1 i=1
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Figure 10: lllustration of the discretization issue;, o andxs correspond to pharmacophores living in a dis-
cretized bidimensional (Euclidean) spage.is closer tazrs than it is fromzs, yet the discretization affects, and
x5 to the same bin and; to another bin. The kernel of Equatidn}(15) allows to circemivthis issue.

17 3
clidean distance, and the indéx 1 is taken modulo 3. In this approach, the task of defining addyvatween
3D structures therefore boils down to defining a couple oh&krcomparing atoms and inter-atomic distances.
These kernels intuitively define the elementary notiongrofiarity involved in the pharmacophore comparison,
which in turns define the overall similarity between molesulA simple default choice for these kernels is to
define the atom kerndlx; as a binary kernel simply checking whether the pair of atatsetcompared have
the same label or not, that is:

where the pharmacophope(resp. p’) is defined as((li,:vz-))i:l:3 (resp. ((1 x’))i:m), |.|| denotes the Eu-

ka1, =1(1=1),

and to define the inter-atomic distance kerqgl; as the following Gaussian radial basis function (RBF) kerne

|z —yl?
7)7

Ko, ) = exp(——

whereo is a bandwidth parameter. Under this parameterizatioss, iiteresting to note that the continuous
kernel of EquationKi,S) and its discretized counter partepid&ion ) share an important feature: because the
atom kernekx; is binary, both kernels are based on pairs of pharmacopHefied by the same triplets of atom
labels. The striking difference between the two formulagities in the fact that in the kernel of Equati(15),
the strength of the pharmacophore matchingpistinuouslycontrolled by the parameterof the (RBF) kernel
comparing inter-atomic distances. Choosing a small valueanrresponds to imposing a strong constraint on
the spatial similarity of pharmacophores, while a largéugaf o allows pairs of pharmacophores to be taken
into account in the kernel although their spatial configoret may differ.

We conclude this section by noting that the class of kerrefisdd by EquatiormS) does not have an explicit
inner product interpretation in general, and in particulsing the above parameterization. Nevertheless, this
construction is known to be valid as long as the kefnels a proper kernel functior (Haus$ler, 1099).

6 3D kernel in practice

In this Section, we discuss general considerations retatdte application of 3D kernels in practice.

6.1 Implementation and complexity issues

Without going into technical details, it can be shown tha dhass of pharmacophore kernels introduced in
Sectionﬂi can be computed by algorithms derived from thoed f the computation of 2D kernels. Indeed,

while the 3D structure of a molecule was previously defineal set of atoms in the 3D space, it can equivalently
be seen as a fully connected labeled (and undirected) grafthatoms as vertices and inter-atomic distances
as edge labels. Under this representation, it is easy tdhvaéedmputing the continuous kernel of Equati@ (15)
can be interpreted as computing a walk kernel restricteltgtovalks that define cycles of length 3 on the graphs.
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Moreover, provided the kernél factorizes along the pair of pharmacophore to be comparei@hvis the case

of the kernel proposed in Equati16), it is easy to showttiia kernel can be computed by product-graph
algorithms and simple matrix product operations, for a cabmplexity with respect to the product of the sizes
of the molecules to be compared. While this complexity carptodhibitive for applications involving large
datasets of molecules, the discretized version of the keamebenefit from fast implementations derived, here
also, from string kernel algorithms and trie-tree struesutVe refer the interested readef to Mahé [e{ al. {2006)
for a detailed discussion about the implementation anddhgpaitational complexity of these kernels.

6.2 Kerne parameterization

In its discretized version, the only parameter enteringdégnition of the kernel is the number of bimsto
discretize the inter-atomic distances. As already notabtr:tiorﬂi, this parameter is of critical importance since
it controls the precision up to which pharmacophores arsidened to be identical or not. Unfortunately, this
parameter can hardly be chosen a priori, dt alff20@gest to optimize this parameter using cross-
validation procedures. In this study, when optimized oherdrid {4, 6, 8, ..., 30} for a 0-20 angstrom inter-
atomic distance range, this parameter was usually takeveket20 and 30, which suggests that the matching
between a pair of pharmacophores should be subject to sspatl constraints. On the other hand, such fine
grained resolutions have the effect of increasing the impithe discretization issue illustrated in Fig@ 10.

Under the parameterization proposed in Secﬂon 5, the aargmpeter entering the definition of the general
kernel of Equation @5) is the bandwidehof the RBF kernel between inter-atomic distances. In thev@bo
study, small values aof, which correspond to strong spatial constraints in the phaophore comparison, are
usually selected by cross-validation procedures. Whith@se cases the discrete and continuous formulations
of the kernel tend to coinci@gthe continuous formulation usually led to better perfonegin this study.

6.3 Molecule enrichment

Many mechanisms of interest in tridimensional virtual seieg involve specific physicochemical properties
of the molecules. In the case of drug-target interactionidstance, the molecular mechanisms responsible
for the binding are known to depend on a precise 3D complesmignbetween the drug and the target, from
both the steric and electrostatic perspectives. For tlisom, standard pharmacophore based approaches, and
in particular pharmacophore fingerprints, usually definerptacophores from atoms or groups of atoms having
particular properties. Typical molecular features of iagt are positive and negative charges, high hydropho-
bicity, hydrogen donors and acceptors and aromatic ripigk€R et al.{1996).

Similarly to the introduction of Morgan indices in 2D keraeliscussed in Sectign B.3, the atom-based ker-
nel constructions presented in the previous section camalbt be extended to integrate this type of external
information using specific label enrichment schemes. Fstaimce| Mahé et plf (20J06) use a simple scheme
where the label of an atom is composed of its type and the sSige partial charge. Positively-charged, neutral
and negativaly-charged atoms of carbon are thereforeddlze{ C+, CY, C~} in this approach. Alternative la-
beling schemes are considered in Azencott et al. (2007¢ddagarticular on element hybridization, where for
instance arsp3carbon atom is labeled @53, and a typing of atoms according to conventional pharmagoph
features, such as polarity, hydrophobicity, and hydrolgend donors and acceptors. These studies show that,
in general, such label enrichments have a positive influemctihe subsequent structure-activity relationship
models, while enabling to drastically reduce the compatatiost of the kernels in some casps (Mahé kt al.,

p00§).

6.4 Conformational analysis

For real-world applications, considering the tridimemsibstructure of molecules raises the additional issue
of conformational analysis. Indeed, because of the presehcotational bonds, molecules are not static in
the 3D space, but can alternate between several spatiaguocatibns of low-energy calledonformations
The mainstream approach to conformational analysis isgoesent a molecule as a set of structures, called
conformers, sampled from its class of admissible confaonat On the methodological side, this operation
casts the learning problem into the framework of multi-émste learning, that has been drawing a considerable
interest in the machine learning community since its ihfdamulation (Dietterich et gl), 1997). The SVM and
kernel approaches lend themselves particularly well ®phdblem, due, on the one hand, to extensions of the

SIndeed, in the extreme case wheréends to 0 and: to +oo, both formulations are equivalent.
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SVM algorithm {Andrews et &l[, 20D2), and, on the other hamdhe possibility to define kernels between sets
of structures from a kernel between structufes (Gartnal] g2002). A possible solution to the latter approach
consists in averaging kernel values over all possible pdiconformers. While more elaborated schemes can

be adopted, such ag (Blaschko and Hof?énn, [2006) for instainis simple configuration was already shown
to be efficient in practice by Azencott ef 4l. (2P07).

7 Discussion

As a conclusion, it is probably fair to say that the empirieghluations of the different kernel constructions
introduced in this paper demonstrate the relevance of theaph based on structure kernels for virtual screen-
ing. Indeed, on the different tasks they have been testeiddoding notably the prediction of high mutagenic-
ity molecules and drug-target inhibitors, these kernelesroEompare favorably to state-of-the-art approaches.
Moreover, because of the intrinsic modularity of kernelmoefs, this approach offers, to some extent, a unified
approach to SAR and virtual screening, for two reasonst,Hiecause they circumvent the need of selecting
and extracting molecular descriptors, these kernels caightforwardly be used to model different biological
properties. Second, although we focused in this paper asifilzation applications, these kernels can be used
in conjunction with the whole family of algorithms calledrkel methods to solve a great variety of tasks which
are relevant for virtual screening and chemoinformatiqdiagtions, such as, for instance, regression, cluster-
ing and similarity analysis. Concerning its practical usethe screening of large datasets however, it must be
stressed that the approach based on kernel methods can patetionally demanding, even for relatively small
datasets. Speeding up SVM and kernel methods for largeadaiascurrently a topic of interest in the machine
learning community, and applications in virtual screerdandarge databases of molecules will certainly benefit
from the advances in this field. The choice of a particulank&gror even more importantly, of the 2D or 3D
representation of molecular structures, should be didtayethe application considered. For example, while
it is widely accepted that several drug-like propertieghsas intestinal absorptiop (Lipinski et dl., 2p01) or
mutagenicity [King et g1, 1996) for instance, can be effidiededuced from the 2D structure of the molecule,
target binding prediction is known to depend on a precise 8Dplementarity between the structures of the
drug and the target, from both the steric and electrostatisgectives|(Bohm et al., 2003). Nevertheless, even
in such problems that intrinsically depend on tridimenaianechanisms, it is not clear that models based on
3D kernels are more efficient than models based on 2D kernkis.fact is especially emphasized in Azencott
etal. ) where 2D kernels are shown to outperform 3Déderin general, which actually tallies previous
fingerprint-based studief (Brown and Mdrfin, 1996, 1997).

We see many potential extensions to the general kernelrcmtisins presented above:

e First, the fact that the models could benefit from simple éatéchment schemes, based, for instance, on
Morgan indices in the 2D case and partial charges in the 3B, saggests that the introduction of a more
thorough chemical knowledge could improve the expressiweep of the kernels. In particular, several
reduced representations of molecular structures exifhetk for instance, by merging aromatic cycles
and atoms that are part of the same functional groups in theegi2zsentation (Gillet et gl., 2CZ03), or by
considering generic pharmacophoric features insteadlaitesd atoms in the 3D case (Pickett dffal., 1996).
Applying such transformations in a pre-processing stepdstriikely to improve the characterization of
the molecular structures in the kernels, while reducing t@mputational cost.

e Other important issues that, in our opinion, would be wottitging in more details are related to confor-
mational analysis, and more precisely to the way the corditional space of a molecule is sampled and
multi-instance kernels are defined. Although in their carferm 3D kernels tend to be outperformed
by their 2D counterpart$ (Azencott eff al., 2D07), we belidgaag a proper handling of multi-conformers,
together with a higher level of pharmacophoric characition of molecules, can have a great impact for
virtual screening applications.

e Another possible extension would be to adopt a global reptasion of molecules and to integrate the
information derived from their 1D, 2D and 3D structures. Asgpible approach would be to consider a
single kernel defined as a linear combination of kernels Bbafd 3D structures, together with a simple
kernel based on global physicochemical properties. Skewegthods have been proposed to optimize

"including 3D kernels based on multi-conformers.
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such a kernel combination within the framework of suppartter machines based, for instance, on semi-
definite programmind (Lanckriet et]dl., 2004).

e Finally, in the case of drug-target prediction when addiilinformation about the structure of the target
is available, it would be interesting to combine the ligaadd the structure-based approaches to virtual
screening, that would most likely benefit to each other ia tointext.

Last but not least, note that this gentle introduction tokés for molecular structures and virtual screening
applications only reflects our own view and experience, and #eliberately biased towards our own devel-
opments in this field. Indeed it must be stressed that, fatigwhe pioneer introduction of graph kernels by
Kashima et d1.[(2003) ar{d Gartner e} &l. (4003), severairative kernel constructions have been proposed in
recent years, among which:

o A graph kernel based on the detection of cyclic- and tregepa by Horvath et al[ (20D4).

e Agraph kernel based on the count of common paths by BorgweaiKriegel (2005). However, because
it is not possible to consider exhaustive sets of paths, asiomed in Sectiof 3.2, the kernel construction
is restricted to the sets of shortest paths between pairsrt€gs.

e An optimal assignment kernddased on the idea of optimally assigning the atoms from oolecule to
those of another, bl Frohlich et dl. (2005). This kernefrfalates as the sum of a kernel between pairs of
atoms, that has to be maximized over all possible assignai¢hé set of atoms of the smaller molecule
to the set of atoms of the bigger one. Unfortunately, alb&iywatural, this kernel is not positive definite
and might require additional tricks to be used with kerneltrods.

e Finally, borrowing techniques from computational geomettandard walk-based graph kernels have re-
cently been extended to kernels between tridimensionadtsires, based on graphs approximating molec-

ular surfaces bl Azencott etldl. (2007).

Together with the references given in the above presentatis list constitutes, to our knowledge, a compre-
hensive view of kernel for molecular structures with apgiiens in virtual screening. As an ending remark, we
would like to mention that open-source implementationfieffamily of kernels introduced in this paper can be
found within the C++#ChemCpptoolbox, freely and publicly available http://chemcpp.sourceforge.net

We hope that this introductory presentation, together thighavailability of this software, will help and motivate
the chemoinformatics community to further investigate /md molecular kernels to model structure-activity
relationship.
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