Nathalie Krell 
email: .krell@ccr.jussieu.fr
  
Self-similar branching Markov chains

Keywords: Branching process, Self-similar Markov process, Tree of generations, Limit Theorems Classification. 60J80, 60G18, 60F25, 60J27

The main purpose of this work is to study self-similar branching Markov chains. First we will construct such a process. Then we will establish certain Limit Theorems using the theory of self-similar Markov processes.

In this article we choose to construct the process by bare hand. We extend the method used in [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF] to deal with more general processes where we allow an individual to have a mass bigger than that of its parent. We will explain in the sequel, which difficulties this new set-up entails. There exists closely related articles about branching processes, like among others [START_REF] Kyprianou | A note on branching Lévy processes[END_REF], [START_REF] Kyprianou | Martingale convergence and the stopped branching random walk[END_REF] from Kyprianou and [12], [START_REF] Chauvin | Product martingales and stopping lines for branching Brownian motion[END_REF] from Chauvin. However notice that the time of splitting of the process depends on the size of the atoms of the process.

More precisely we will first introduce a branching Markov chains as a marked tree and we will obtain a process, indexed by generations (it is simply a random mark on the tree of generation, see Section 2). Thanks to a martingale which is associated to the latter and the theory of random stopping lines on a tree of generation, we will define the process indexed by time. After having constructed the process, we will study the evolution of the randomly chosen branch of the chain, from which we shall deduce some Limit Theorems, relying on the theory of self-similar Markov processes. In an appendix we will consider the intrinsic process and give some properties in the spirit of the article of Jagers [START_REF] Jagers | General branching processes as Markov fields[END_REF]. By the way we will show properties about the earlier martingale.

2 The marked tree.

In this part we will introduce a branching Markov chain as a marked tree, which gives a genealogic description of the process that we will construct. This terminology comes from Neveu in [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF] even if here the marked tree we consider is slightly different. First we introduce some notations and definitions.

A finite point measure on R * + is a finite sum of Dirac point masses s = n i=1 δ s i , where the s i are called the atoms of s and n ≥ 0 is an arbitrary integer. We shall often write ♯s = n = s(R * + ) for the number of atoms of s, and M p (R * + ) for the space of finite point measures on R * + . We also define for f : R * + → R measurable function and s ∈ M p (R * + )

f, s := ♯s i=1 f (s i ),
by taking the sum over the atoms of s repeated according to their multiplicity and we will sometimes use the slight abuse of notation

f (x), s := ♯s i=1 f (s i )
when f is defined as a function depending on the variable x. We endow the space M p (R * + ) with the topology of weak convergence, which means that s n converge to s if and only if f, s n converge to f, s for all continuous bounded functions f . Let α ≥ 0 be an index of self-similarity and ν be some probability measure on M p (R * + ). The aim of this work is to construct a branching Markov chain X = (( ♯X(t) i=1 δ X i (t) ) t≥0 ) with values in M p (R * + ), which is self-similar with index α and has reproduction law ν. The index of self-similarity will play a part in the rate at which an individual will reproduce and the reproduction law ν will specify the distribution of the offspring. We stress that our setting includes the case when ν(∃i :

s i > 1) > 0, (1) 
which means that with a positive probability the size of a daughter can exceed that of her mother.

To do that, exactly as described in Chapter 1 section 1.2.1 of [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF], we will construct a marked tree.

We consider the Ulam Harris labelling system

U := ∪ ∞ n=0 N n ,
with the notation N = {1, 2, ...} and N 0 = {∅}. In the sequel the elements of U are called nodes (or sometimes also individuals) and the distinguished node ∅ the root. For each u = (u 1 , ..., u n ) ∈ U, we call n the generation of u and write |u| = n, with the obvious convention

|∅| = 0. When n ≥ 0, u = (u 1 , ..., u n ) ∈ N n and i ∈ N, we write ui = (u 1 , ..., u n , i) ∈ N n+1
for the i-th child of u. We also define for u

= (u 1 , ..., u n ) with n ≥ 2, mu = (u 1 , ..., u n-1 )
the mother of u, mu = ∅ if u ∈ N. If v = m n u for some n ≥ 0 we write v u and say that u stems from v. Additionally for M a set of U, M v means that u v for some u ∈ M.

Generally we write M L if all x ∈ L stem from M.

Here it will be convenient to identify the point measure s with the infinite sequence (s 1 , ..., s n , 0, ...) obtained by aggregation of infinitely many 0's to the finite sequence of the atoms of s.

In particular we say that a random infinite sequence (ξ i , i ∈ N) has the law ν, if there is a (random) index n such that ξ i = 0 ⇔ i > n and the finite point measure n i=1 δ ξ i has the law ν. Definition 1. Let two independent families of i.i.d. variables be indexed by the nodes of the tree, (ξ u , u ∈ U) and (e u , u ∈ U), where for each u ∈ U ξ u = ( ξ ui ) i∈N is distributed according to the law ν, and (e ui ) i∈N is a sequence of i.i.d. exponential variables with parameter 1. We define recursively for some fixed x > 0

ξ ∅ := x, a ∅ := 0, ζ ∅ := x -α e ∅ ,
and for u ∈ U and i ∈ N:

ξ ui := ξ ui ξ u , a ui := a u + ζ u , ζ ui := ξ -α ui e ui .
To each node u of the tree U, we associate the mark (ξ u , a u , ζ u ) where ξ u is the size, a u the birth-time and ζ u the lifetime of the individual with label u. We call

T x = ((ξ u , a u , ζ u ) u∈U )
a marked tree with root of size x, and the law associated is denoted by P x . Let Ω be the set of all the possible marked trees.

The size of the individuals (ξ u , u ∈ U) defines a multiplicative cascade (see the references in Section 3 of [START_REF] Bertoin | Different aspects of a random fragmentation model[END_REF]). However the latter is not sufficient to construct the process X, in fact we also need the information given by ((a u , ζ u ), u ∈ U).

Another useful concept is that of line. A subset L ⊂ U is a line if for every u, v ∈ L, u v ⇒ u = v. The pre-L-sigma algebra is

H L := σ( ξ u , e u ; ∃l ∈ L : u l).
A random set of individuals

J : Ω → P(U)
is optional if {J L} ∈ H L for all line L ⊂ U, where P(U) is the power set of U . An optional line is a random line which is optional. For any optional set J we define the pre-J -algebra by:

A ∈ H J ⇔ ∀L line ⊂ U : A ∩ {J L} ∈ H L .
The first result is:

Lemma 1. The marked tree constructed in Definition 1 satisfies the strong Markov branching property: for J an optional line and ϕ u : Ω → [0, 1], u ∈ U, measurable functions, we get that,

E 1 u∈J ϕ u • T ξu H J = u∈J E ξu (ϕ u ),
where T ξu is the marked tree extracted from T 1 at the node (ξ u , a u , ζ u ). More precisely

T ξu = ((ξ uv , a uv -a u , ζ uv ) v∈U ).
Proof. Thanks to the i.i.d properties of the random variables ( ξ u , u ∈ U) and (e u , u ∈ U), the Markov property for lines is of course easily checked. In order to get the result for a more general optional line, we use Theorem 4.14 of [START_REF] Jagers | General branching processes as Markov fields[END_REF]. Indeed, the tree we have constructed is a special case of the tree constructed by Jagers in [START_REF] Jagers | General branching processes as Markov fields[END_REF]. In our case the Jagers's notation ρ u , τ u and σ u are such that the type ρ u of u ∈ U, is the mass of u: ξ u , the birth time σ u is a u and τ u is here equal to ζ mu (because the mother dies when she gives birth to her daughters).

We notice that all the sisters have the same birth time, which means that for all u ∈ U and all i ∈ N, we have that τ ui is here equal to ζ u .

3 Malthusian hypotheses and the intrinsic martingale.

We introduce some notations to formulate the fundamental assumptions of this work:

p := inf p ∈ R : Mp(R * + )
x p , s ν(ds) < ∞ , and p ∞ := inf p > p :

Mp(R * + )
x p , s ν(ds) = ∞ (with the convention inf ∅ = ∞) and then for every p ∈ (p, p ∞ ):

κ(p) := Mp(R * + ) (1 -x p , s ) ν(ds).
Note that κ is a continuous and concave function (but not necessarily a strictly increasing function) on (p, p ∞ ), as p → Mp(R * + ) x p , s ν(ds) is a convex application. By concavity, the equation κ(p) = 0 has at most two solutions on (p, p ∞ ). When a solution exists, we denote by p 0 := inf{p ∈ (p, p ∞ ) : κ(p) = 0} the smallest, and call p 0 the Malthusian exponent.

We now make the fundamental:

Malthusian Hypotheses. We suppose that the Malthusian exponent p 0 exists, that p 0 > 0, and that κ(p) > 0 for some p > p 0 .

(

) 2 
Furthermore we suppose that the integral

Mp(R * + ) ( x p 0 , s ) p ν(ds) (3) 
is finite for some p > 1.

Throughout the rest of this article, these hypotheses will always be taken for granted.

Note that (2) always holds when ν(s i ≤ 1 for all i) = 1 (fragmentation case). We stress that κ may not be strictly increasing, and may not be negative when p is sufficiently large (see Subsection 6.1 for a consequence of this fact.) We will give one example based on the Dirichlet process (see the book Kingman [START_REF] Kingman | Poisson processes[END_REF]). Fix n ≥ 2, (υ 1 , ..., υ n ) n positive real numbers and υ = n i=1 υ i . We define the simplex ∆ n by

∆ n := (p 1 , p 2 , ..., p n ) ∈ R n + , n j=1 p i = 1 .
The Dirichlet distribution of parameter (υ 1 , ..., υ n ) over the simplex ∆ n has the density (with respect to the (n -1)-dimensional Lebesgue measure on ∆ n ):

f (p 1 , ..., p n ) = Γ(υ) Γ(υ 1 )...Γ(υ n ) p υ 1 -1 1 ...p υn-1 n .
Let a := υ(υ + 1)/( n i=1 υ i (υ i + 1)). Note that a is strictly larger than 1. Let the reproduction measure be the law of (aX 1 , ..., aX n ), where (X 1 , ..., X n ) is a random vector with Dirichlet distribution of parameter (υ 1 , ..., υ n ). Therefore

κ(p) = a p Γ(υ) Γ(υ + p) n i=1 Γ(p + υ i ) Γ(υ i ) ,
p = -υ, p 0 = 1 and the Malthusian hypotheses are verified.

In this article we will call extinction the event that for some n ∈ N, all nodes u at the n-th generation have zero size, and non-extinction the complementary event. We see that the probability of extinction is always strictly positive whenever ν(s 1 = 0) > 0, and equals zero if and only if ν(s 1 = 0) = 0 (as we have suppose (3); see p.28 [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF]).

After these definitions, we introduce a fundamental martingale associated to (ξ u , u ∈ U).

Theorem 1. The process

M n := |u|=n ξ p 0 u , n ∈ N
is a martingale in the filtration (H Ln ), with L n the line associated to the n-th generation (i.e. L n := {u ∈ U : |u| = n}). This martingale is bounded in L p (P) for some p > 1, and in particular is uniformly integrable. Moreover, conditionally on non-extinction the terminal value M ∞ is strictly positive a.s.

Remark 1. As κ is concave the equation κ(p) = 0 may have a second root p + := inf{p > p 0 , κ(p) = 0}). This second root is less interesting: even though

M + n := |u|=n ξ p + u , n ∈ N,
is also a martingale, it is easy to check that for all p > 1 the p-variation of

M + n is infinite, i.e. E ( ∞ n=0 |M n+1 -M n | p ) = ∞). We can notice that for all p ∈ (p 0 , p + ) (M (p) n ) n∈N := ( |u|=n ξ p u ) n∈N is a supermartingale. The assumption (3) means actually that E(M p 1 ) < ∞.
Proof. • We will use the fact that the empirical measure of the logarithm of the sizes of fragments

Z (n) := |u|=n δ log ξu (4) 
can be viewed as a branching random walk (see the article of Biggins [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]) and use Theorem 1 of [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]. In order to do that we first introduce some notation: for θ > p, we define

m(θ) := E e θx Z (1) (dx) = E   |u|=1 ξ θ u   = 1 -κ(θ)
and

W (n) (θ) := m(θ) -n e θx Z (n) (dx) = (1 -κ(θ)) -n |u|=n ξ θ u .
We notice that M n = W (n) (p 0 ). Therefore in order to apply Theorem 1 of [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] and to get the convergence almost surely and in pth mean for some p > 1, it is enough to show that

E(W (1) (p 0 ) γ ) < ∞ for some γ ∈ (1, 2] and m(pp 0 )/|m(p 0 )| p < 1 for some p ∈ (1, γ].
The first condition is a consequence of the Malthusian assumption. Moreover the second follows from the identities

m(pp 0 )/|m(p 0 )| p = (1 -κ(pp 0 ))/|1 -κ(p 0 )| p = 1 -κ(pp 0 )
which, by the definition of p 0 , is smaller than 1 for p > 1 well chosen.

• Finally, let us now check that M ∞ > 0 a.s. conditionally on non-extinction. Define q = P(M ∞ = 0), therefore as E(M ∞ ) = 1 we get that q < 1. Moreover, an application of the branching property yields E(q Zn ) = q, where Z n is the number of individuals with positive size at the n-th generation. Notice that Z n = Z (n) , 1 . By the construction of the marked tree and as ν is a probability measure: (Z n , n ∈ N) is of course a Galton-Watson process and it follows that q is its probability of extinction. Since M ∞ = 0 conditionally on the extinction, the two events coincide a.s.

4 Evolution of the process in continuous time.

After having defined the process indexed by generation and having shown that the martingale M n is L p (P) bounded, we are now able to define properly the main objet of this paper. In order to do this, when an individual labelled by u has a positive size, ξ u > 0, let I u := [a u , a u + ζ u ) be the interval of times during which this individual is alive. Otherwise, i.e. when ξ u = 0, we decide that I u = ∅. With this definition, we set: Definition 2. We define the process X = (X(t), t ≥ 0) by

X(t) = u∈U 1l {t∈Iu} δ ξu , t ≥ 0. ( 5 
)
In particular we have for f : R

+ → R measurable function f, X(t) = u∈U f (ξ u )1l {t∈Iu} .
For every x > 0, let P x be the law of the process X starting from a single individual with size x. And for simplification, we denote P for P 1 , and let (F t ) t≥0 be the natural filtration of the process (X(t), t ≥ 0). We use the notation (X 1 (t), ..., X ♯X(t) (t)) for the sequence of atoms of X(t). In the following we will show that this sequence is almost surely finite. Of course the set (X 1 (t), ..., X ♯X(t) (t)) is the same as the set ((ξ u ); t ∈ I u ); but sometimes it will be clearer to use the notation (X i (t)).

We define for u ∈ R + :

F (u) := Mp(R * + )
u ♯s ν(ds).

We notice that F (u) is the generating function of the Galton-Watson process (Z n , n ≥ 0) = (♯{u ∈ U : ξ u > 0 and |u| = n}, n ≥ 0).

From now on, we will suppose that for every ǫ > 0

1 1-ǫ du F (u) -u = ∞. (6) 
Of course if F ′ (1) = E(Z 1 ) < ∞ this last assumption is fulfilled. Therefore we get the first theorem about the continous time process: Theorem 2. The process X takes its values in the set M p (R * + ). It is a branching Markov chain, more precisely the conditional distribution of X(t + r) given that X(r) = s is the same as that of the sum X (i) (t), where for each index i, X (i) (t) is distributed as X(t) under P s i and the variables X (i) (t) are independent.

The process X also has the scaling property, namely for every c > 0, the distribution of the rescaled process (cX(c α t), t ≥ 0) under P 1 is P c .

In the fragmentation case, the fact that the size of the fragments decreases with time entails that the process of the fragments of size larger than or equal to ǫ is Markovian, and which leads easily to Theorem 2. This property is lost in the present case.

Proof. • First we will check that for all t ≥ 0, X(t) is a (random) finite point measure. By Theorem 1 and the Doob's L p -inequality we get that for some p > 1:

sup n∈N M n = sup n∈N |u|=n ξ p 0 u ∈ L p (P).
As a consequence:

sup u∈U ξ p 0 u ∈ L p (P)
and then by the definition of the process X, writing X 1 (t), ... for the (possibly infinite) sequence of atoms of X(t)

sup i sup t∈R + X i (t) p 0 ∈ L p (P).
Recall that p 0 > 0 by assumption. We fix some arbitrarily large m > 0. We now work conditionally on the event that the size of all individuals is bounded by m, and we will show that the number of the individuals alive at time t is almost surely finite for all t ≥ 0.

As we are conditioning on the event {sup u∈U ξ u ≤ m}, by the construction of the marked tree, we get that the life time of an individual can be stochastically bounded from below by an exponential variable of parameter m α . Therefore we can bound the number of individuals present at time t by the number of individuals of a continuous time branching process denoted by GW in which each individual lives for a random time whose law is exponential of parameter m α and the probability distribution of the offspring is the law of ♯s ∨ 1 under ν (we have taken the supremum with 1 to ensure the absence of death). For the Markov branching process GW , we are in the temporally homogeneous case and, we notice that

Mp(R * + ) u (ns)∨1 ν(ds) = (f (u) -u)ν(n s = 0) + u,
therefore as we have supposed (6), we can use Theorem 1 p.105 of the book of Athreya and Ney [START_REF] Athreya | Branching processes[END_REF] (proved in Theorem 9 p.107 of the book of Harris [START_REF] Harris | The theory of branching processes[END_REF]) and get that we are in the non-explosive case for the GW . As the number of the individuals is bounded by that of GW we get that the number of individuals at time t is a.s. finite. Therefore conditioning on the event {sup u∈U ξ u ≤ m}, we have that for all t ≥ 0, the number of individuals at time t is a.s. finite, i.e. X(t) is a finite point measure.

• Second we will show the Markov property. Fix r ∈ R + . Let τ r be equal to {u ∈ U : r ∈ I u }. We notice that τ r is an optional line. In fact for all lines L ⊂ U we have that

{τ r L} = {r < a u + ζ u ∀u ∈ L} ∈ H L .
By definition, we have the identity

♯X(t+r) i=1 1l {X j (t+r)>0} δ X j (t+r) = u∈U 1l {t+r∈Iu} δ ξu . Let X(r) = n i=1 δ ξv n ∈ M p (R * + )
with n = ♯X(r) and (v 1 , ..., v n ) the nodes of U. Define for all i ≤ n,

T (i) := ((ξ v i u , a v i u -a v i , ζ v i u -1l {u=∅} (r -a v i )) u∈U ) = (( ξ(i) u , ã(i) u , ζ(i) u ) u∈U ),
The intrinsic martingale M n is indexed by the generations; it will also be convenient to consider its analogue in continuous time, i.e

M(t) := x p 0 , X(t) = u∈U 1l {t∈Iu} ξ p 0 u .
It is straightforward to check that (M(t), t ≥ 0) is again a martingale in the natural filtration (F t ) t≥0 of the process (X(t), t ≥ 0); and more precisely, the argument Proposition 1.5 in [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF] gives:

Corollary 3. The process (M(t), t ≥ 0) is a martingale, and more precisely

M(t) = E(M ∞ |F t ),
where M ∞ is the terminal value of the intrinsic martingale (M n , n ∈ N). In particular M(t) converges in L p (P) to M ∞ for some p > 1.

Proof. We will use the same argument as in the proof of Proposition 1.5 of [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF]. Netherless, we have to deal here with the fact that sup u∈U ξ u may be larger than 1. Therefore we will have to condition. We know that M n converges in L p (P) to M ∞ as n tends to ∞, so

E(M ∞ |F t ) = lim n→∞ E(M n |F t ).
By Theorem 1 as we have sup u∈U ξ p 0 u ∈ L p (P), we fix m > 0. We now work on the event B m := {sup u∈U ξ u ≤ m}. By applying the Markov property at time t we easily get that

E(M n |F t ) = ♯X(t) i=1 X p 0 i (t)1l {̺(X i (t))≤n} + |u|=n ξ p 0 u 1l {au+ζu<t} (8) 
where ̺(ξ v ) stands for the generation of the individual v (i.e. ̺(ξ v ) = |v|), and a u + ζ u is the instant when the individual corresponding to the node u reproduces. We can rewrite the latter as

a u + ζ u = ξ -α m |u| u e 0 + ξ -α m |u|-1 u e 1 + ... + ξ -α u e
|u| where e 0 ,... is a sequence of independent exponential variables with parameter 1, which is also independent of ξ u . We can remark that in the first term of sum [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] we sum over the sizes of the individuals which belong to the n-th generation and are alive at time t, and in the second term we sum over those belonging to the n-th generation and are dead at time t.

As α is nonnegative, and as we are working on the event B m : ξ -α m i u ≥ m -α we have that for each fixed node u ∈ U , a u + ζ u is bounded from below by the sum of |u| + 1 independent exponential variables with parameter m α which are independent of ξ u . Thus

lim n→∞ E   |u|=n ξ p 0 u 1l {au+ζu<t} 1l {Bm}   = 0,
and therefore by ( 8) on the event {B m }, we get that for all m > 0: E(M ∞ |F t )1l {Bm} = M(t)1l {Bm} , and then by letting m tend to ∞ we get the result.

5 A randomly tagged leaf.

We will here (as in [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF]) define what a tagged individual is by using a tagged leaf. We call leaf of the tree U an infinite sequence of integers l = (u 1 , ...). For each n, l n := (u 1 , ..., u n ) is the ancestor of l at the generation n. We enrich the probabilistic structure by adding the information about a so called tagged leaf, chosen at random as follows. Let H n be the space of bounded functionals Φ which depend on the mark M and of the leaf l up to the nth first generation, i.e. such that Φ(M, l) = Φ(M ′ , l ′ ) if l n = l n ′ and M(u) = M ′ (u) whenever |u| ≤ n. For such functionals, we use the slightly abusing notation Φ(M, l) = Φ(M, l n ). As in [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF] for a pair (M, λ) where M : U → [0, 1] × R + × R + is a random mark on the tree and λ is a random leaf of U, the joint distribution denoted by P * (and by P *

x if the size of the first mark is x instead of 1) can be defined unambiguously by

E * (Φ(M, λ)) = E   |u|=n Φ(M, u)ξ p 0 u   , Φ ∈ H n .
Moreover since the intrinsic martingale (M n , n ∈ Z + ) is uniformly integrable (cf. Theorem 1), the first marginal of P * is absolutely continuous with respect to the law of the random mark M under P, with density M ∞ .

Let λ n be the node of the tagged leaf at the n-th generation. We denote χ n := ξ λn for the size of the individual corresponding to the node λ n and χ(t) for the size of the tagged individual alive at time t, viz.

χ(t) := χ n if a λn ≤ t < a λn + ζ λn ,
because in the case considered sup n∈N a λn = ∞. We stress that, in general the process χ(t) is not monotonic. However as in [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF], Lemma 1.4 there becomes:

Lemma 2. Let k : R + → R + be a measurable function such that k(0) = 0. Then we have for every n ∈ N E * (k(χ n )) = E   |u|=n ξ p 0 u k(ξ u )   ,
and for every t ≥ 0

E * (k(χ(t))) = E ( x p 0 k(x), X(t) ) .
Proposition 1.6 of [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF] becomes: where the probability measure ν is defined by

]0,∞[ k(y) ν(dy) = Mp(R * + )
x p 0 k(ln(x)), s ν(ds).

Equivalently, the Laplace transform of the step distribution is given by

E * (e pS 1 ) = E * (χ p 1 ) = 1 -κ(p + p 0 ), p ≥ 0.
Moreover, conditionally on (χ n , n ∈ Z + ) the sequence of the lifetimes (ζ λ 0 , ζ λ 1 , ...) along the tagged leaf is a sequence of independent exponential variables with respective parameters χ α 0 , χ α 1 , ... We now see that we can use this proposition to obtain the description of χ(t) using a Lamperti transformation. Let

η t := S • N t , t ≥ 0,
with N a Poisson process with parameter 1 which is independent of the random walk S; for probabilities and expectations related to η we use the notation P and E. The process (χ(t), t ≥ 0) is Markovian and enjoys a scaling property. More precisely under P * x we get that χ(t)

(d) = exp(η τ (tx -α ) ), t ≥ 0, (9) 
where η is the compound Poisson defined above and τ the time-change defined implicitly by

t = τ (t) 0 exp(αη s )ds, t ≥ 0. (10) 
6 Asymptotic behaviors.

6.1 The convergence of the size of a tagged individual.

Let κ ′ (p 0 ) = - Mp(R * + )
x p 0 ln(x), s ν(ds) denote the derivative of κ at the Malthusian parameter p 0 .

In this part we focus on the asymptotic behavior of the size of a tagged individual. In this direction, the quantity ̟ t = e αηt plays an important role, as it appears at the time change of the Lamperti transformation (see [START_REF] Brennan | Splitting intervals. II. Limit laws for lengths[END_REF]), as we see in the next proposition: Proposition 5. Suppose that α > 0, that the support of ν is not a discrete subgroup rZ for any r > 0 and that 0 < κ ′ (p 0 ) < ∞. Then for every y > 0, under P * y , t 1/α χ(t) converges in law as t → ∞ to a random variable Y whose law is specified by

E(k(Y α )) = 1 αm 1 E(k(I)I -1 ),
for every measurable function k : R + → R + , with I := ∞ 0 exp(αη s )ds and

m 1 := E(η 1 ) = -κ ′ (p 0 ).
Proof. As -κ ′ (p 0 ) is the mean of the step distribution of the random walk S n (see Proposition 4), therefore κ ′ (p 0 ) > 0 imply that E(-η 1 ) > 0 thus the assumption of Theorem 1 in the works of Bertoin and Yor [START_REF] Bertoin | The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes[END_REF] is fulfilled by the self-similar Markov process χ(t) -1 , which gives the result.

We could also try to use the same method as the one used in [START_REF] Bertoin | Asymptotic laws for nonconservative self-similar fragmentations[END_REF] for which we need Proposition 1.7 [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF]. But in this latter we needed E( x p , X(t) ) to be finite when p is large, and its derivative to be completely monotone. But here neither of these requirements is necessarily true as κ is not necessarily positive when p is large. This explains why we have to use a different method.

Remark 3. In the case κ ′ (p 0 ) = 0 we can extend this proposition. More precisely if

Mp(R * + ) x p 0 | ln(x)|, s ν(ds) < ∞, J := ∞ 1 xν -((x, ∞))dx 1 + x 0 dy ∞ y ν -((-∞, -z))dz < ∞,
(where ν -is the image of ν by the map u → -u and ν is defined in Proposition 4) and E log + T 1 0 e -ηs ds < ∞ (with T z := inf{t : -η t ≥ z}) hold then, for any y > 0 under P * y , t 1/α χ(t) converge in law as t → ∞, to a random variable Ỹ whose law is specified by for any bounded and continuous function k and for t > 0:

E(k( Ỹ α )) = lim λ→0 1 λ E(I -1 λ k(I λ )),
where I λ = ∞ 0 exp(αη sλs)ds. The proof is the same as the previous one using Theorem 1 and Theorem 2 from the works of Caballero and Chaumont [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF] instead of [START_REF] Bertoin | The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes[END_REF].

6.2 Convergence of the mean measure and L p -convergence.

We encode the configuration of masses X(t) = {(X i (t)) 1≤i≤♯X(t) } by the weighted empirical measure

σ t := ♯X(t) i=1 X p 0 i (t)δ t 1/α X i (t)
which has total mass M(t).

The associated mean measure σ * t is defined by the formula

∞ 0 k(x)σ * t (dx) = E ∞ 0 k(x)σ t (dx)
which is required to hold for all compactly supported continuous functions k. Since M(t) is a martingale, σ * t is a probability measure. We interest us to the convergence of this measure. This convergence was already established in the case of binary conservative fragmentation (see the results of Brennan and Durrett [START_REF] Brennan | Splitting intervals[END_REF] and [START_REF] Brennan | Splitting intervals. II. Limit laws for lengths[END_REF]). A very useful tool for this is the renewal theorem, for which they needed the fact that the process χ(t) is decreasing; here we no longer have such a monotonicity property. See also Theorem 2 and 5 of [START_REF] Bertoin | Asymptotic laws for nonconservative self-similar fragmentations[END_REF], Theorem 1.3 of [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF] and Proposition 4 of [START_REF] Krell | Multifractal spectra and precise rates of decay in homogeneous fragmentations[END_REF] for Theorems about empirical measure for measure which have a conservative property ν(s i ≤ 1 ∀i ∈ N) = 1.

Nonetheless, with Proposition 5 and Lemma 2, we easily get: Corollary 6. With the assumptions of Proposition 5 we get:

1. The measures σ * t converge weakly, as t → ∞, to the distribution of Y i.e. for any continuous bounded function k : R + → R + , we have:

E x p 0 k(t 1/α x), X(t) → t→∞ E(k(Y )).
2. For all p + > p > p 0 :

t (p-p 0 )/α E ( x p , X(t) ) → t→∞ E(Y p-p 0 ).
We now formulate a more precise result concerning the convergence of the empirical measure: Theorem 7. Under the same assumptions as in Proposition 5 we get that for every bounded continuous function k:

L p -lim t→∞ ∞ 0 k(x)σ t (dx) = M ∞ E(k(Y )) = M ∞ αm E(k(I)I -1 ),
for some p > 1.

Remark 4. A slightly different version of Corollary 6 and Theorem 7 exists also under the assumptions in Remark 3.

See also Asmussen and Kaplan [START_REF] Asmussen | Branching random walks[END_REF] and [START_REF] Asmussen | Branching random walks[END_REF] for a closely related result.

Proof. We follow the same method as Section 1.4. in [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF] and in this direction we use Lemma Then we know from Lemma 1.5 in [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF] that

lim t→∞ ∞ i=1 λ i (t)(Y i (t) -E (Y i (t)|λ(t))) = 0. (11) 
Now, let k be a continuous function bounded by 1 and let

A t := x p 0 k(t 1/α x), X(t) .
By application of the Markov property at time t for A t+s and the self-similarity property of the process X we can rewrite A t+s as

♯X(t) i=1 λ i (t)Y i (t, s)
where λ i (t) := X p 0 i (t) and

Y i (t, s) := x p 0 k((t + s) 1/α X i (t)x), X i,. (s) ,
with X 1,. , X 2,. , ... a sequence of i.i.d. copies of X which is independent of X(t).

By Theorem 1 we get that

sup t≥0 E     ♯X(t) i=1 λ i (t)   p   < ∞.
By the last corollary we also obtain that

E   ♯X(t) i=1 λ p i (t)   ∼ t -(p-1)p 0 E(χ (p-1)p 0 (1)) → 0, as t → ∞.
Moreover the variables Y i (t, s) are uniformly bounded by

Y i = sup s≥0 x p 0 , X i,. (s) 
, which are i.i.d. variables and also bounded in L p (P) thanks to Doob's inequality (as x p 0 , X i,. (s) is a martingale bounded in L p (P)). Thus we may apply [START_REF] Caballero | Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes[END_REF], which reduces the study to that of the asymptotic behavior of:

♯X(t) i=1 λ i (t)E(Y i (t, s)|X(t)),
as t tends to ∞. On the event {X i (t) = y}, we get

E(Y i (t, s)|X(t)) = E x p 0 k((t + s) 1/α yx), X(s) .
Then by Lemma 2: E x p 0 k((t + s) 1/α yx), X i,. (s) = E * k (t + s) 1/α yχ(s) .

With Proposition 5, we obtain lim t→∞ E * k (t + s) 1/α yχ(s) = E (k (Y )) .

Moreover recall from Corollary 3 that ♯X(t) i=1 λ i (t) converges to M ∞ in L p (P). Therefore we finally get that when t goes to infinity:

♯X(t) i=1 λ i (t)E(Y i (t, s)|X(t)) ∼ E (k (Y )) ♯X(t) i=1 λ i (t) ∼ E (k (Y )) M ∞ .
A Further results about the intrinsic process

We will give more general properties about the intrinsic process {M Q , Q ⊂ U}, M Q = u∈M ξ p 0 u . For a line Q, {M Q } is adapted to the filtration {H L }. We use the abuse of notation that M n stand for the process M Ln , with L n = {u ∈ U : |u| = n} the labels of the n-th generation. We introduce new definitions, we say that a line Q covers L, if Q L and any individual stemming from L either stems from Q or has progeny in Q. If Q covers the ancestor it may simply be called covering. Let C 0 be the class of covering lines with finite maximal generation. We denoted the generation of Q: |Q| = sup u∈Q |u|. The origin of the intrinsic martingale comes from real time martingale of Nerman [START_REF] Nerman | The growth and composition of supercritical branching populations on general type spaces[END_REF]. 2. For all s > 0, {M L ; L ∈ C 0 } is uniformly P s -integrable.

3. There is a random variable M ≥ 0 such that for π-almost all s > 0

M L = E s (M|H L ) and M L L 1 (Ps)
→ M, as L ∈ C 0 filters ( ). If ς n ς n+1 ∈ C 0 and to any x ∈ U there is an ς n such that x has progeny in ς n , M ςn → M, as n → ∞, also a.s. P s .

A consequence of the first and second points applied for L n = {u ∈ U : |u| = n} and L m = {u ∈ U : |u| = m} with m ≥ n ≥ 0, is that M n is a martingale and the uniform P sintegrability of this martingale. The third point applied for the lines τ t give the convergence of M(t) in L 1 (P s ) and almost surely.

Proof. • First the conditions of Malthusian population are fulfilled, thus by Theorem 5.1 in [START_REF] Jagers | General branching processes as Markov fields[END_REF] we get the first point.

Let ξ := R + ×R + h(s)r α e -tr α dtϑ 1 (ds) = |u|=1 ξ p 0 u and E π be the expectation with respect to R + P s (dw)π(ds). Therefore,

E π (ξ log + ξ) = R + E x ∞ i=1 ξ p 0 i log + ∞ j=1 ξ p 0 j π(dx),
and it follows readily from the Malthusian hypotheses and the fact that |u|=n ξ pp 0 u is a supermartingale, that this quantity is finite. Therefore the assumption of Theorem 6.1 of [START_REF] Jagers | General branching processes as Markov fields[END_REF] are check, which gives by Theorem 6.1 of [START_REF] Jagers | General branching processes as Markov fields[END_REF] the second point and by Theorem 6.3 of [START_REF] Jagers | General branching processes as Markov fields[END_REF] we get the third point.

Proposition 4 .

 4 Under P * , S n := ln χ n , n ∈ Z + is a random walk on R with step distribution P(ln χ nln χ n+1 ∈ dy) = ν(dy),

Proposition 8 . 1 .

 81 If L Q are lines, then E(M Q |H L ) ≤ M L . If Q verifies |Q| < ∞ and covers L, then E(M Q |H L ) = M L .

  1.5 there: for (λ(t)) t≥0 = (λ i (t), i ∈ N) t≥0 a sequence of non-negative random variables such that for fixed p > 1 , i ∈ N) of i.i.d variables in L p (P), which is independent of λ(t) for each fixed t, and such that |Y i (t)| ≤

			∞	p			∞	
	sup t≥0	E	i=1	λ i (t)	< ∞ and lim t→∞	E	i=1	λ i (t) = 0,
	and for (Y i (t), i ∈ N) a sequence of random variables which are independent conditionally
	on λ(t), we assume that there exists a sequence (			

-Y i -Y i for all i ∈ N and t ≥ 0.
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Ĩ(i)

Then

By the lack of memory of the exponential variable, we have that for u ∈ U, given s ∈ I u the law of the marked tree T (i) is the same as that of

Thus we have the equality in law:

Moreover for all lines L ∈ U we have that

Therefore τ i r is an optional line and by applying Lemma 1 for the optional line τ i s , we have that the condition distribution of the point measure

given H τr is the law of X(t) under P x i . We notice that H τs = σ( ξu , e u : a u ≤ s) is the same filtration as F s = σ(X(s ′ ) : s ′ ≤ s). Therefore (X (1) , X (2) , ..., X (n) ) is a sequence of independent random processes, where for each i X (i) (t) is distributed as X(t) under P x i . We then have proven the Markovian property.

• The scaling property is an easy consequence of the definition of the tree T x .

Remark 2. For every measurable function g : R * + → R * + , define a multiplicative functional such that for every s = ♯s i=1 δ s i ∈ M p (R * + ):

Then the generator G of the Markov process X(t) fulfills for every y = ♯y i=1 δ y i ∈ M p (R * + ):

Gφ g (y) = y α i e -j =i g(y j )

(e -g(xy i ),se -g(y i ) )ν(ds).

Also for r ∈ R * + , let ϑ r be the structural measure:

where B is the Borel algebra on R * + . Let the reproduction measure µ on the sigma-field B ⊗ B be such that for every r ≥ 0:

and for any λ ∈ R µ λ (r, dv × du) := e -λu µ(r, du × dv).

The composition operation * denotes the Markov transition on the size space R + and convolution on the time space R + , so that: for all A ∈ B and B ∈ B,

With the convention that the * -power 0 is 1l {A×B} (s, 0) which gives all the mass to (s, 0). We define the renewal measure as

Moreover as

which is well defined as µ * n (1, A × R + ) is a decreasing function in n and nonnegative. Let h(s) := s p 0 for all s ∈ R + and β := 1. These objects correspond to those defined in [START_REF] Jagers | General branching processes as Markov fields[END_REF]. Recall that the Galton-Watson process (Z n , n ≥ 0)) is equal to (♯{u ∈ U : ξ u > 0 and |u| = n}, n ≥ 0).

We suppose that m := E(Z 1 ) < ∞, i.e. Mp(R * + ) ♯sν(ds) < ∞ this assumption is slightly stronger than (6), therefore we get that: