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Abstract

The main purpose of this work is to study self-similar branching Markov chains.

First we will construct such a process. Then we will establish certain Limit Theorems

using the theory of self-similar Markov processes.
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1 Introduction.

This work is a contribution to the study of a special type of branching Markov chains. We
will construct a continuous time branching chain X which has a self-similar property and
which takes its values in the space of finite point measures of R

∗
+. This type of process is

a generalization of a self-similar fragmentation (see [4]), which may apply to cases where
the size models non additive quantities as e.g. surface energy in aerosols. We will focus on
the case where the index of self-similarity α is non-negative, which means that the bigger
individuals will reproduce faster than the smaller ones. There is no loss of generality by
considering this model, as the map x → x−1 on atoms in R

∗
+ transforms a self-similar

process with index α into another one with index −α (and preserves the Markov property).
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In this article we choose to construct the process by bare hand. We extend the method
used in [4] to deal with more general processes where we allow an individual to have a mass
bigger than that of its parent. We will explain in the sequel, which difficulties this new
set-up entails. There exists closely related articles about branching processes, like among
others [18], [19] from Kyprianou and [12], [13] from Chauvin. However notice that the time
of splitting of the process depends on the size of the atoms of the process.

More precisely we will first introduce a branching Markov chains as a marked tree and
we will obtain a process, indexed by generations (it is simply a random mark on the tree of
generation, see Section 2). Thanks to a martingale which is associated to the latter and the
theory of random stopping lines on a tree of generation, we will define the process indexed
by time. After having constructed the process, we will study the evolution of the randomly
chosen branch of the chain, from which we shall deduce some Limit Theorems, relying on
the theory of self-similar Markov processes. In an appendix we will consider the intrinsic
process and give some properties in the spirit of the article of Jagers [15]. By the way we
will show properties about the earlier martingale.

2 The marked tree.

In this part we will introduce a branching Markov chain as a marked tree, which gives a
genealogic description of the process that we will construct. This terminology comes from
Neveu in [21] even if here the marked tree we consider is slightly different. First we introduce
some notations and definitions.

A finite point measure on R
∗
+ is a finite sum of Dirac point masses s =

∑n
i=1 δsi

, where
the si are called the atoms of s and n ≥ 0 is an arbitrary integer. We shall often write
♯s = n = s(R∗

+) for the number of atoms of s, and Mp(R
∗
+) for the space of finite point

measures on R
∗
+. We also define for f : R

∗
+ → R measurable function and s ∈ Mp(R

∗
+)

〈f, s〉 :=

♯s∑

i=1

f(si),

by taking the sum over the atoms of s repeated according to their multiplicity and we will
sometimes use the slight abuse of notation

〈f(x), s〉 :=

♯s∑

i=1

f(si)

when f is defined as a function depending on the variable x. We endow the space Mp(R
∗
+)

with the topology of weak convergence, which means that sn converge to s if and only if
〈f, sn〉 converge to 〈f, s〉 for all continuous bounded functions f .

Let α ≥ 0 be an index of self-similarity and ν be some probability measure on Mp(R
∗
+).

The aim of this work is to construct a branching Markov chain X = ((
∑♯X(t)

i=1 δXi(t))t≥0) with
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values in Mp(R
∗
+), which is self-similar with index α and has reproduction law ν. The index

of self-similarity will play a part in the rate at which an individual will reproduce and the
reproduction law ν will specify the distribution of the offspring. We stress that our setting
includes the case when

ν(∃i : si > 1) > 0, (1)

which means that with a positive probability the size of a daughter can exceed that of her
mother.

To do that, exactly as described in Chapter 1 section 1.2.1 of [4], we will construct a
marked tree.

We consider the Ulam Harris labelling system

U := ∪∞
n=0N

n,

with the notation N = {1, 2, ...} and N
0 = {∅}. In the sequel the elements of U are called

nodes (or sometimes also individuals) and the distinguished node ∅ the root. For each u =
(u1, ..., un) ∈ U , we call n the generation of u and write |u| = n, with the obvious convention
|∅| = 0. When n ≥ 0, u = (u1, ..., un) ∈ N

n and i ∈ N, we write ui = (u1, ..., un, i) ∈ N
n+1

for the i-th child of u. We also define for u = (u1, ..., un) with n ≥ 2,

mu = (u1, ..., un−1)

the mother of u, mu = ∅ if u ∈ N. If v = mnu for some n ≥ 0 we write v � u and say that
u stems from v. Additionally for M a set of U , M � v means that u � v for some u ∈ M .
Generally we write M � L if all x ∈ L stem from M .

Here it will be convenient to identify the point measure s with the infinite sequence
(s1, ..., sn, 0, ...) obtained by aggregation of infinitely many 0’s to the finite sequence of the
atoms of s.

In particular we say that a random infinite sequence (ξi, i ∈ N) has the law ν, if there is
a (random) index n such that ξi = 0 ⇔ i > n and the finite point measure

∑n
i=1 δξi

has the
law ν.

Definition 1. Let two independent families of i.i.d. variables be indexed by the nodes of the
tree, (ξu, u ∈ U) and (eu, u ∈ U), where for each u ∈ U ξu = (ξ̃ui)i∈N is distributed according
to the law ν, and (eui)i∈N is a sequence of i.i.d. exponential variables with parameter 1. We
define recursively for some fixed x > 0

ξ∅ := x, a∅ := 0, ζ∅ := x−αe∅,

and for u ∈ U and i ∈ N:

ξui := ξ̃uiξu, aui := au + ζu, ζui := ξ−α
ui eui.
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To each node u of the tree U , we associate the mark (ξu, au, ζu) where ξu is the size, au the
birth-time and ζu the lifetime of the individual with label u. We call

Tx = ((ξu, au, ζu)u∈U)

a marked tree with root of size x, and the law associated is denoted by Px. Let Ω̄ be the set
of all the possible marked trees.

The size of the individuals (ξu, u ∈ U) defines a multiplicative cascade (see the references
in Section 3 of [5]). However the latter is not sufficient to construct the process X, in fact
we also need the information given by ((au, ζu), u ∈ U).

Another useful concept is that of line. A subset L ⊂ U is a line if for every u, v ∈ L,
u � v ⇒ u = v. The pre-L-sigma algebra is

HL := σ(ξ̃u, eu; ∃l ∈ L : u � l).

A random set of individuals
J : Ω̄ → P(U)

is optional if {J � L} ∈ HL for all line L ⊂ U , where P(U) is the power set of U . An
optional line is a random line which is optional. For any optional set J we define the
pre-J -algebra by:

A ∈ HJ ⇔ ∀L line ⊂ U : A ∩ {J � L} ∈ HL.

The first result is:

Lemma 1. The marked tree constructed in Definition 1 satisfies the strong Markov branching
property: for J an optional line and ϕu : Ω̄ → [0, 1], u ∈ U , measurable functions, we get
that,

E1

(
∏

u∈J

ϕu ◦ T
ξu

∣∣∣∣∣HJ

)
=
∏

u∈J

Eξu(ϕu),

where T ξu is the marked tree extracted from T1 at the node (ξu, au, ζu). More precisely

T ξu = ((ξuv, auv − au, ζuv)v∈U).

Proof. Thanks to the i.i.d properties of the random variables (ξ̃u, u ∈ U) and (eu, u ∈ U),
the Markov property for lines is of course easily checked. In order to get the result for a more
general optional line, we use Theorem 4.14 of [15]. Indeed, the tree we have constructed is
a special case of the tree constructed by Jagers in [15]. In our case the Jagers’s notation ρu,
τu and σu are such that the type ρu of u ∈ U , is the mass of u: ξu, the birth time σu is au

and τu is here equal to ζmu (because the mother dies when she gives birth to her daughters).
We notice that all the sisters have the same birth time, which means that for all u ∈ U and
all i ∈ N, we have that τui is here equal to ζu.
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3 Malthusian hypotheses and the intrinsic martingale.

We introduce some notations to formulate the fundamental assumptions of this work:

p := inf

{
p ∈ R :

∫

Mp(R∗
+)

〈xp, s〉ν(ds) <∞

}
,

and

p∞ := inf

{
p > p :

∫

Mp(R∗
+)

〈xp, s〉ν(ds) = ∞

}

(with the convention inf ∅ = ∞) and then for every p ∈ (p, p∞):

κ(p) :=

∫

Mp(R∗
+)

(1 − 〈xp, s〉) ν(ds).

Note that κ is a continuous and concave function (but not necessarily a strictly increasing
function) on (p, p∞), as p →

∫
Mp(R∗

+)
〈xp, s〉ν(ds) is a convex application. By concavity, the

equation κ(p) = 0 has at most two solutions on (p, p∞). When a solution exists, we denote
by p0 := inf{p ∈ (p, p∞) : κ(p) = 0} the smallest, and call p0 the Malthusian exponent.

We now make the fundamental:

Malthusian Hypotheses. We suppose that the Malthusian exponent p0 exists, that
p0 > 0, and that

κ(p) > 0 for some p > p0. (2)

Furthermore we suppose that the integral

∫

Mp(R∗
+)

(〈xp0, s〉)p ν(ds) (3)

is finite for some p > 1.

Throughout the rest of this article, these hypotheses will always be taken for

granted.

Note that (2) always holds when ν(si ≤ 1 for all i) = 1 (fragmentation case). We stress
that κ may not be strictly increasing, and may not be negative when p is sufficiently large
(see Subsection 6.1 for a consequence of this fact.)

We will give one example based on the Dirichlet process (see the book Kingman [16]).
Fix n ≥ 2, (υ1, ..., υn) n positive real numbers and υ =

∑n
i=1 υi. We define the simplex ∆n

by

∆n :=

{
(p1, p2, ..., pn) ∈ R

n
+,

n∑

j=1

pi = 1

}
.
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The Dirichlet distribution of parameter (υ1, ..., υn) over the simplex ∆n has the density (with
respect to the (n− 1)-dimensional Lebesgue measure on ∆n):

f(p1, ..., pn) =
Γ(υ)

Γ(υ1)...Γ(υn)
pυ1−1

1 ...pυn−1
n .

Let a := υ(υ + 1)/(
∑n

i=1 υi(υi + 1)). Note that a is strictly larger than 1. Let the
reproduction measure be the law of (aX1, ..., aXn), where (X1, ..., Xn) is a random vector
with Dirichlet distribution of parameter (υ1, ..., υn). Therefore

κ(p) = ap Γ(υ)

Γ(υ + p)

n∑

i=1

Γ(p+ υi)

Γ(υi)
,

p = −υ, p0 = 1 and the Malthusian hypotheses are verified.
In this article we will call extinction the event that for some n ∈ N, all nodes u at the

n-th generation have zero size, and non-extinction the complementary event. We see that
the probability of extinction is always strictly positive whenever ν(s1 = 0) > 0, and equals
zero if and only if ν(s1 = 0) = 0 (as we have suppose (3); see p.28 [4]).

After these definitions, we introduce a fundamental martingale associated to (ξu, u ∈ U).

Theorem 1. The process

Mn :=
∑

|u|=n

ξp0
u , n ∈ N

is a martingale in the filtration (HLn), with Ln the line associated to the n-th generation
(i.e. Ln := {u ∈ U : |u| = n}). This martingale is bounded in Lp(P) for some p > 1, and in
particular is uniformly integrable.

Moreover, conditionally on non-extinction the terminal value M∞ is strictly positive a.s.

Remark 1. As κ is concave the equation κ(p) = 0 may have a second root p+ := inf{p >
p0, κ(p) = 0}). This second root is less interesting: even though

M+
n :=

∑

|u|=n

ξp+
u , n ∈ N,

is also a martingale, it is easy to check that for all p > 1 the p-variation of M+
n is infinite,

i.e. E (
∑∞

n=0 |Mn+1 −Mn|
p) = ∞).

We can notice that for all p ∈ (p0, p+) (M
(p)
n )n∈N := (

∑
|u|=n ξ

p
u)n∈N is a supermartingale.

The assumption (3) means actually that E(Mp
1 ) <∞.

Proof. • We will use the fact that the empirical measure of the logarithm of the sizes of
fragments

Z(n) :=
∑

|u|=n

δlog ξu (4)
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can be viewed as a branching random walk (see the article of Biggins [8]) and use Theorem
1 of [8]. In order to do that we first introduce some notation: for θ > p, we define

m(θ) := E

(∫
eθxZ(1)(dx)

)
= E




∑

|u|=1

ξθ
u



 = 1 − κ(θ)

and

W (n)(θ) := m(θ)−n

∫
eθxZ(n)(dx) = (1 − κ(θ))−n

∑

|u|=n

ξθ
u.

We notice that Mn = W (n)(p0). Therefore in order to apply Theorem 1 of [8] and to get the
convergence almost surely and in pth mean for some p > 1, it is enough to show that

E(W (1)(p0)
γ) <∞

for some γ ∈ (1, 2] and
m(pp0)/|m(p0)|

p < 1

for some p ∈ (1, γ]. The first condition is a consequence of the Malthusian assumption.
Moreover the second follows from the identities

m(pp0)/|m(p0)|
p = (1 − κ(pp0))/|1 − κ(p0)|

p = 1 − κ(pp0)

which, by the definition of p0, is smaller than 1 for p > 1 well chosen.
• Finally, let us now check that M∞ > 0 a.s. conditionally on non-extinction. Define

q = P(M∞ = 0), therefore as E(M∞) = 1 we get that q < 1. Moreover, an application of the
branching property yields

E(qZn) = q,

where Zn is the number of individuals with positive size at the n-th generation. Notice that
Zn = 〈Z(n), 1〉. By the construction of the marked tree and as ν is a probability measure:
(Zn, n ∈ N) is of course a Galton-Watson process and it follows that q is its probability of
extinction. Since M∞ = 0 conditionally on the extinction, the two events coincide a.s.

4 Evolution of the process in continuous time.

After having defined the process indexed by generation and having shown that the martingale
Mn is Lp(P) bounded, we are now able to define properly the main objet of this paper. In
order to do this, when an individual labelled by u has a positive size, ξu > 0, let Iu :=
[au, au + ζu) be the interval of times during which this individual is alive. Otherwise, i.e.
when ξu = 0, we decide that Iu = ∅. With this definition, we set:

7



Definition 2. We define the process X = (X(t), t ≥ 0) by

X(t) =
∑

u∈U

1l{t∈Iu}δξu , t ≥ 0. (5)

In particular we have for f : R+ → R measurable function

〈f,X(t)〉 =
∑

u∈U

f(ξu)1l{t∈Iu}.

For every x > 0, let Px be the law of the process X starting from a single individual with
size x. And for simplification, we denote P for P1, and let (Ft)t≥0 be the natural filtration
of the process (X(t), t ≥ 0). We use the notation (X1(t), ..., X♯X(t)(t)) for the sequence of
atoms of X(t). In the following we will show that this sequence is almost surely finite. Of
course the set (X1(t), ..., X♯X(t)(t)) is the same as the set ((ξu); t ∈ Iu); but sometimes it will
be clearer to use the notation (Xi(t)).

We define for u ∈ R+:

F (u) :=

∫

Mp(R∗
+)

u♯sν(ds).

We notice that F (u) is the generating function of the Galton-Watson process (Zn, n ≥ 0) =
(♯{u ∈ U : ξu > 0 and |u| = n}, n ≥ 0).

From now on, we will suppose that for every ǫ > 0

∫ 1

1−ǫ

du

F (u) − u
= ∞. (6)

Of course if F
′
(1) = E(Z1) < ∞ this last assumption is fulfilled. Therefore we get the first

theorem about the continous time process:

Theorem 2. The process X takes its values in the set Mp(R
∗
+). It is a branching Markov

chain, more precisely the conditional distribution of X(t+r) given that X(r) = s is the same
as that of the sum

∑
X(i)(t), where for each index i, X(i)(t) is distributed as X(t) under Psi

and the variables X(i)(t) are independent.
The process X also has the scaling property, namely for every c > 0, the distribution of

the rescaled process (cX(cαt), t ≥ 0) under P1 is Pc.

In the fragmentation case, the fact that the size of the fragments decreases with time
entails that the process of the fragments of size larger than or equal to ǫ is Markovian, and
which leads easily to Theorem 2. This property is lost in the present case.

Proof. • First we will check that for all t ≥ 0, X(t) is a (random) finite point measure. By
Theorem 1 and the Doob’s Lp-inequality we get that for some p > 1:

sup
n∈N

Mn = sup
n∈N

∑

|u|=n

ξp0
u ∈ Lp(P).
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As a consequence:
sup
u∈U

ξp0
u ∈ Lp(P)

and then by the definition of the process X, writing X1(t), ... for the (possibly infinite)
sequence of atoms of X(t)

sup
i

sup
t∈R+

Xi(t)
p0 ∈ Lp(P).

Recall that p0 > 0 by assumption. We fix some arbitrarily large m > 0. We now work
conditionally on the event that the size of all individuals is bounded by m, and we will show
that the number of the individuals alive at time t is almost surely finite for all t ≥ 0.

As we are conditioning on the event {supu∈U ξu ≤ m}, by the construction of the marked
tree, we get that the life time of an individual can be stochastically bounded from below by an
exponential variable of parameter mα. Therefore we can bound the number of individuals
present at time t by the number of individuals of a continuous time branching process
denoted by GW in which each individual lives for a random time whose law is exponential
of parameter mα and the probability distribution of the offspring is the law of ♯s ∨ 1 under
ν (we have taken the supremum with 1 to ensure the absence of death). For the Markov
branching process GW , we are in the temporally homogeneous case and, we notice that

∫

Mp(R∗
+)

u(ns)∨1ν(ds) = (f(u) − u)ν(ns 6= 0) + u,

therefore as we have supposed (6), we can use Theorem 1 p.105 of the book of Athreya and
Ney [3] (proved in Theorem 9 p.107 of the book of Harris [14]) and get that we are in the
non-explosive case for the GW . As the number of the individuals is bounded by that of GW
we get that the number of individuals at time t is a.s. finite.

Therefore conditioning on the event {supu∈U ξu ≤ m}, we have that for all t ≥ 0, the
number of individuals at time t is a.s. finite, i.e. X(t) is a finite point measure.

• Second we will show the Markov property. Fix r ∈ R+. Let τr be equal to {u ∈ U :
r ∈ Iu}. We notice that τr is an optional line. In fact for all lines L ⊂ U we have that

{τr � L} = {r < au + ζu ∀u ∈ L} ∈ HL.

By definition, we have the identity

♯X(t+r)∑

i=1

1l{Xj(t+r)>0}δXj(t+r) =
∑

u∈U

1l{t+r∈Iu}δξu .

Let X(r) =
∑n

i=1 δξvn
∈ Mp(R

∗
+) with n = ♯X(r) and (v1, ..., vn) the nodes of U . Define for

all i ≤ n,

T̃ (i) := ((ξviu, aviu − avi
, ζviu − 1l{u=∅}(r − avi

))u∈U) = ((ξ̃(i)
u , ã(i)

u , ζ̃
(i)
u )u∈U),
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Ĩ
(i)
u := [ã

(i)
u , ã

(i)
u + ζ̃

(i)
u [ and

X(i)(t) =
∑

u∈U

1l
{t∈Ĩ

(i)
u }
δ
ξ̃
(i)
u
.

Then

X(t+ r) =
n∑

i=1

X(i)(t).

By the lack of memory of the exponential variable, we have that for u ∈ U , given s ∈ Iu
the law of the marked tree T̃ (i) is the same as that of

T ξvi := ((ξviu, aviu − avi
, ζviu)u∈U) := ((ξi

u, a
i
u, ζ

i
u)u∈U).

Thus we have the equality in law:

∑

u∈U

1l
{t∈Ĩ

(i)
u }
δ
ξ̃
(i)
u

(d)
=
∑

u∈U

1l{t∈Ii
u}
δξi

u
,

with I i
u := [ai

u, a
i
u + ζ i

u[.
Let τ i

r := {viu ∈ U : r ∈ I i
u}. Moreover for all lines L ∈ U we have that

{τ i
r � L} = {r < aviu + ζviu ∀viu ∈ L} ∈ HL.

Therefore τ i
r is an optional line and by applying Lemma 1 for the optional line τ i

s, we have
that the condition distribution of the point measure

∑

u∈U

1l{t+r∈Ii
u}
δξi

u

given Hτr is the law of X(t) under Pxi
. We notice that Hτs = σ(ξ̃u, eu : au ≤ s) is the

same filtration as Fs = σ(X(s
′
) : s

′
≤ s). Therefore (X(1),X(2), ...,X(n)) is a sequence of

independent random processes, where for each i X(i)(t) is distributed as X(t) under Pxi
. We

then have proven the Markovian property.
• The scaling property is an easy consequence of the definition of the tree Tx.

Remark 2. For every measurable function g : R
∗
+ → R

∗
+, define a multiplicative functional

such that for every s =
∑♯s

i=1 δsi
∈ Mp(R

∗
+):

φg(s) := exp(−〈g, s〉) = exp(−

♯s∑

i=1

g(si)).

Then the generator G of the Markov process X(t) fulfills for every y =
∑♯y

i=1 δyi
∈ Mp(R

∗
+):

Gφg(y) =
∑

yα
i e

−
∑

j 6=i g(yj)

∫

Mp(R∗
+)

(e−〈g(xyi),s〉 − e−g(yi))ν(ds). (7)
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The intrinsic martingale Mn is indexed by the generations; it will also be convenient to
consider its analogue in continuous time, i.e

M(t) := 〈xp0 ,X(t)〉 =
∑

u∈U

1l{t∈Iu}ξ
p0
u .

It is straightforward to check that (M(t), t ≥ 0) is again a martingale in the natural filtration
(Ft)t≥0 of the process (X(t), t ≥ 0); and more precisely, the argument Proposition 1.5 in [4]
gives:

Corollary 3. The process (M(t), t ≥ 0) is a martingale, and more precisely

M(t) = E(M∞|Ft),

where M∞ is the terminal value of the intrinsic martingale (Mn, n ∈ N). In particular M(t)
converges in Lp(P) to M∞ for some p > 1.

Proof. We will use the same argument as in the proof of Proposition 1.5 of [4]. Netherless,
we have to deal here with the fact that supu∈U ξu may be larger than 1. Therefore we will
have to condition. We know that Mn converges in Lp(P) to M∞ as n tends to ∞, so

E(M∞|Ft) = lim
n→∞

E(Mn|Ft).

By Theorem 1 as we have
sup
u∈U

ξp0
u ∈ Lp(P),

we fix m > 0. We now work on the event Bm := {supu∈U ξu ≤ m}.
By applying the Markov property at time t we easily get that

E(Mn|Ft) =

♯X(t)∑

i=1

Xp0

i (t)1l{̺(Xi(t))≤n} +
∑

|u|=n

ξp0
u 1l{au+ζu<t} (8)

where ̺(ξv) stands for the generation of the individual v (i.e. ̺(ξv) = |v|), and au + ζu is
the instant when the individual corresponding to the node u reproduces. We can rewrite the
latter as

au + ζu = ξ−α
m|u|u

e0 + ξ−α
m|u|−1u

e1 + ...+ ξ−α
u e|u|

where e0,... is a sequence of independent exponential variables with parameter 1, which is
also independent of ξu. We can remark that in the first term of sum (8) we sum over the
sizes of the individuals which belong to the n-th generation and are alive at time t, and in
the second term we sum over those belonging to the n-th generation and are dead at time t.

As α is nonnegative, and as we are working on the event Bm: ξ−α
miu ≥ m−α we have that

for each fixed node u ∈ U , au + ζu is bounded from below by the sum of |u|+1 independent
exponential variables with parameter mα which are independent of ξu. Thus

lim
n→∞

E




∑

|u|=n

ξp0
u 1l{au+ζu<t}1l{Bm}



 = 0,

11



and therefore by (8) on the event {Bm}, we get that for all m > 0: E(M∞|Ft)1l{Bm} =
M(t)1l{Bm}, and then by letting m tend to ∞ we get the result.

5 A randomly tagged leaf.

We will here (as in [4]) define what a tagged individual is by using a tagged leaf.
We call leaf of the tree U an infinite sequence of integers l = (u1, ...). For each n, ln :=

(u1, ..., un) is the ancestor of l at the generation n. We enrich the probabilistic structure by
adding the information about a so called tagged leaf, chosen at random as follows. Let Hn be
the space of bounded functionals Φ which depend on the markM and of the leaf l up to the n-
th first generation, i.e. such that Φ(M, l) = Φ(M

′
, l

′
) if ln = ln

′
and M(u) = M

′
(u) whenever

|u| ≤ n. For such functionals, we use the slightly abusing notation Φ(M, l) = Φ(M, ln). As
in [4] for a pair (M,λ) where M : U → [0, 1]×R+ ×R+ is a random mark on the tree and λ
is a random leaf of U , the joint distribution denoted by P

∗ (and by P
∗
x if the size of the first

mark is x instead of 1) can be defined unambiguously by

E
∗(Φ(M,λ)) = E




∑

|u|=n

Φ(M,u)ξp0
u



 , Φ ∈ Hn.

Moreover since the intrinsic martingale (Mn, n ∈ Z+) is uniformly integrable (cf. Theorem 1),
the first marginal of P

∗ is absolutely continuous with respect to the law of the random mark
M under P, with density M∞.

Let λn be the node of the tagged leaf at the n-th generation. We denote χn := ξλn for
the size of the individual corresponding to the node λn and χ(t) for the size of the tagged
individual alive at time t, viz.

χ(t) := χn if aλn ≤ t < aλn + ζλn ,

because in the case considered supn∈N aλn = ∞. We stress that, in general the process χ(t)
is not monotonic. However as in [4], Lemma 1.4 there becomes:

Lemma 2. Let k : R+ → R+ be a measurable function such that k(0) = 0. Then we have
for every n ∈ N

E
∗(k(χn)) = E




∑

|u|=n

ξp0
u k(ξu)



 ,

and for every t ≥ 0
E
∗(k(χ(t))) = E (〈xp0k(x), X(t)〉) .

Proposition 1.6 of [4] becomes:

12



Proposition 4. Under P
∗,

Sn := lnχn, n ∈ Z+

is a random walk on R with step distribution

P(lnχn − lnχn+1 ∈ dy) = ν̃(dy),

where the probability measure ν̃ is defined by
∫

]0,∞[

k(y)ν̃(dy) =

∫

Mp(R∗
+)

〈xp0k(ln(x)), s〉ν(ds).

Equivalently, the Laplace transform of the step distribution is given by

E
∗(epS1) = E

∗(χp
1) = 1 − κ(p+ p0), p ≥ 0.

Moreover, conditionally on (χn, n ∈ Z+) the sequence of the lifetimes (ζλ0 , ζλ1, ...) along
the tagged leaf is a sequence of independent exponential variables with respective parameters
χα

0 , χ
α
1 , ...

We now see that we can use this proposition to obtain the description of χ(t) using a
Lamperti transformation. Let

ηt := S ◦Nt, t ≥ 0,

with N a Poisson process with parameter 1 which is independent of the random walk S;
for probabilities and expectations related to η we use the notation P and E. The process
(χ(t), t ≥ 0) is Markovian and enjoys a scaling property. More precisely under P

∗
x we get

that

χ(t)
(d)
= exp(ητ(tx−α)), t ≥ 0, (9)

where η is the compound Poisson defined above and τ the time-change defined implicitly by

t =

∫ τ(t)

0

exp(αηs)ds, t ≥ 0. (10)

6 Asymptotic behaviors.

6.1 The convergence of the size of a tagged individual.

Let

κ
′

(p0) = −

∫

Mp(R∗
+)

〈xp0 ln(x), s〉ν(ds)

denote the derivative of κ at the Malthusian parameter p0.
In this part we focus on the asymptotic behavior of the size of a tagged individual. In

this direction, the quantity ̟t = eαηt plays an important role, as it appears at the time
change of the Lamperti transformation (see (10)), as we see in the next proposition:

13



Proposition 5. Suppose that α > 0, that the support of ν is not a discrete subgroup rZ for
any r > 0 and that 0 < κ

′
(p0) < ∞. Then for every y > 0, under P

∗
y, t

1/αχ(t) converges in
law as t→ ∞ to a random variable Y whose law is specified by

E(k(Y α)) =
1

αm1
E(k(I)I−1),

for every measurable function k : R+ → R+, with I :=
∫∞

0
exp(αηs)ds and m1 := E(η1) =

−κ
′
(p0).

Proof. As −κ
′
(p0) is the mean of the step distribution of the random walk Sn (see Proposition

4), therefore κ
′
(p0) > 0 imply that E(−η1) > 0 thus the assumption of Theorem 1 in the

works of Bertoin and Yor [7] is fulfilled by the self-similar Markov process χ(t)−1, which gives
the result.

We could also try to use the same method as the one used in [6] for which we need
Proposition 1.7 [4]. But in this latter we needed E(〈xp, X(t)〉) to be finite when p is large,
and its derivative to be completely monotone. But here neither of these requirements is
necessarily true as κ is not necessarily positive when p is large. This explains why we have
to use a different method.

Remark 3. In the case κ
′
(p0) = 0 we can extend this proposition. More precisely if∫

Mp(R∗
+)
〈xp0| ln(x)|, s〉ν(ds) <∞,

J :=

∫ ∞

1

xν−((x,∞))dx

1 +
∫ x

0
dy
∫∞

y
ν−((−∞,−z))dz

<∞,

(where ν− is the image of ν̃ by the map u → −u and ν̃ is defined in Proposition 4) and

E
(
log+

∫ T1

0
e−ηsds

)
< ∞ (with Tz := inf{t : −ηt ≥ z}) hold then, for any y > 0 under P

∗
y,

t1/αχ(t) converge in law as t→ ∞, to a random variable Ỹ whose law is specified by
for any bounded and continuous function k and for t > 0:

E(k(Ỹ α)) = lim
λ→0

1

λ
E(I−1

λ k(Iλ)),

where Iλ =
∫∞

0
exp(αηs − λs)ds.

The proof is the same as the previous one using Theorem 1 and Theorem 2 from the
works of Caballero and Chaumont [11] instead of [7].

6.2 Convergence of the mean measure and Lp-convergence.

We encode the configuration of masses X(t) = {(Xi(t))1≤i≤♯X(t)} by the weighted empirical
measure

σt :=

♯X(t)∑

i=1

Xp0

i (t)δt1/αXi(t)

14



which has total mass M(t).
The associated mean measure σ∗

t is defined by the formula

∫ ∞

0

k(x)σ∗
t (dx) = E

(∫ ∞

0

k(x)σt(dx)

)

which is required to hold for all compactly supported continuous functions k. Since M(t) is
a martingale, σ∗

t is a probability measure. We interest us to the convergence of this measure.
This convergence was already established in the case of binary conservative fragmentation
(see the results of Brennan and Durrett [9] and [10]). A very useful tool for this is the
renewal theorem, for which they needed the fact that the process χ(t) is decreasing; here
we no longer have such a monotonicity property. See also Theorem 2 and 5 of [6], Theorem
1.3 of [4] and Proposition 4 of [17] for Theorems about empirical measure for measure which
have a conservative property ν(si ≤ 1 ∀i ∈ N) = 1.

Nonetheless, with Proposition 5 and Lemma 2, we easily get:

Corollary 6. With the assumptions of Proposition 5 we get:

1. The measures σ∗
t converge weakly, as t → ∞, to the distribution of Y i.e. for any

continuous bounded function k : R+ → R+ , we have:

E
(
〈xp0k(t1/αx), X(t)〉

)
→

t→∞
E(k(Y )).

2. For all p+ > p > p0:

t(p−p0)/α
E (〈xp, X(t)〉) →

t→∞
E(Y p−p0).

We now formulate a more precise result concerning the convergence of the empirical
measure:

Theorem 7. Under the same assumptions as in Proposition 5 we get that for every bounded
continuous function k:

Lp − lim
t→∞

∫ ∞

0

k(x)σt(dx) = M∞E(k(Y )) =
M∞

αm
E(k(I)I−1),

for some p > 1.

Remark 4. A slightly different version of Corollary 6 and Theorem 7 exists also under the
assumptions in Remark 3.

See also Asmussen and Kaplan [1] and [2] for a closely related result.
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Proof. We follow the same method as Section 1.4. in [4] and in this direction we use Lemma
1.5 there: for (λ(t))t≥0 = (λi(t), i ∈ N)t≥0 a sequence of non-negative random variables such
that for fixed p > 1

sup
t≥0

E

((
∞∑

i=1

λi(t)

)p)
<∞ and lim

t→∞
E

(
∞∑

i=1

λi(t)

)
= 0,

and for (Yi(t), i ∈ N) a sequence of random variables which are independent conditionally

on λ(t), we assume that there exists a sequence (
−

Yi, i ∈ N) of i.i.d variables in Lp(P), which

is independent of λ(t) for each fixed t, and such that |Yi(t)| ≤
−

Y i for all i ∈ N and t ≥ 0.

Then we know from Lemma 1.5 in [4] that

lim
t→∞

∞∑

i=1

λi(t)(Yi(t) − E (Yi(t)|λ(t))) = 0. (11)

Now, let k be a continuous function bounded by 1 and let

At := 〈xp0k(t1/αx), X(t)〉.

By application of the Markov property at time t for At+s and the self-similarity property
of the process X we can rewrite At+s as

♯X(t)∑

i=1

λi(t)Yi(t, s)

where λi(t) := Xp0

i (t) and

Yi(t, s) := 〈xp0k((t+ s)1/αXi(t)x),Xi,.(s)〉,

with X1,., X2,., ... a sequence of i.i.d. copies of X which is independent of X(t).
By Theorem 1 we get that

sup
t≥0

E






♯X(t)∑

i=1

λi(t)




p
 <∞.

By the last corollary we also obtain that

E




♯X(t)∑

i=1

λp
i (t)


 ∼ t−(p−1)p0E(χ(p−1)p0(1)) → 0,

as t→ ∞.
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Moreover the variables Yi(t, s) are uniformly bounded by

Yi = sup
s≥0

〈xp0,Xi,.(s)〉,

which are i.i.d. variables and also bounded in Lp(P) thanks to Doob’s inequality (as 〈xp0,Xi,.(s)〉
is a martingale bounded in Lp(P)).

Thus we may apply (11), which reduces the study to that of the asymptotic behavior of:

♯X(t)∑

i=1

λi(t)E(Yi(t, s)|X(t)),

as t tends to ∞. On the event {Xi(t) = y}, we get

E(Yi(t, s)|X(t)) = E
(
〈xp0k((t+ s)1/αyx),X(s)〉

)
.

Then by Lemma 2:

E
(
〈xp0k((t+ s)1/αyx),Xi,.(s)〉

)
= E

∗
(
k
(
(t+ s)1/αyχ(s)

))
.

With Proposition 5, we obtain

lim
t→∞

E
∗
(
k
(
(t+ s)1/αyχ(s)

))
= E (k (Y )) .

Moreover recall from Corollary 3 that
∑♯X(t)

i=1 λi(t) converges to M∞ in Lp(P). Therefore we
finally get that when t goes to infinity:

♯X(t)∑

i=1

λi(t)E(Yi(t, s)|X(t)) ∼ E (k (Y ))

♯X(t)∑

i=1

λi(t) ∼ E (k (Y ))M∞.

A Further results about the intrinsic process

We will give more general properties about the intrinsic process {MQ, Q ⊂ U}, MQ =∑
u∈M ξp0

u . For a line Q, {MQ} is adapted to the filtration {HL}. We use the abuse of
notation that Mn stand for the process MLn , with Ln = {u ∈ U : |u| = n} the labels of the
n-th generation. We introduce new definitions, we say that a line Q covers L, if Q � L and
any individual stemming from L either stems from Q or has progeny in Q. If Q covers the
ancestor it may simply be called covering. Let C0 be the class of covering lines with finite
maximal generation. We denoted the generation of Q: |Q| = supu∈Q |u|. The origin of the
intrinsic martingale comes from real time martingale of Nerman [20].
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Also for r ∈ R
∗
+, let ϑr be the structural measure:

ϑr(B) := Er(♯{u ∈ U : ξu ∈ B}) =
∞∑

i=1

ν(rsi ∈ B) for B ⊂ B,

where B is the Borel algebra on R
∗
+. Let the reproduction measure µ on the sigma-field

B ⊗ B be such that for every r ≥ 0:

µ(r, dv × du) := rαe−rαudu

∞∑

i=1

ν(rsi ∈ dv)

and for any λ ∈ R

µλ(r, dv × du) := e−λuµ(r, du× dv).

The composition operation ∗ denotes the Markov transition on the size space R+ and con-
volution on the time space R+, so that: for all A ∈ B and B ∈ B,

µ∗2(s, A× B) = µ ∗ µ(s, A× B) =

∫

R+×R+

µ(r, A× (B − u))µ(s, dr× du).

With the convention that the ∗-power 0 is 1l{A×B}(s, 0) which gives all the mass to (s, 0).
We define the renewal measure as

ψλ :=

∞∑

0

µ∗n
λ .

Let
α

′

:= inf{λ : ψλ(r,R+ × R+) <∞ for some r ∈ R+}.

Moreover as

µλ(r,R+ × R+) =

{
mrα/(rα + λ) if λ > −rα

∞ else,

thus
ψλ(r,R+ × R+) <∞ if and only if λ < (r/(m− 1))1/α

therefore we get α
′
= 0. For A ∈ B, let

π(A) := lim
n→∞

µ∗n(1, A× R+) (12)

which is well defined as µ∗n(1, A× R+) is a decreasing function in n and nonnegative. Let
h(s) := sp0 for all s ∈ R+ and β := 1. These objects correspond to those defined in [15].

Recall that the Galton-Watson process (Zn, n ≥ 0)) is equal to (♯{u ∈ U : ξu >
0 and |u| = n}, n ≥ 0).

We suppose that

m := E(Z1) <∞,

i.e.
∫
Mp(R∗

+)
♯sν(ds) <∞ this assumption is slightly stronger than (6), therefore we get that:
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Proposition 8. 1. If L � Q are lines, then

E(MQ|HL) ≤ML.

If Q verifies |Q| <∞ and covers L, then

E(MQ|HL) = ML.

2. For all s > 0, {ML; L ∈ C0} is uniformly Ps-integrable.

3. There is a random variable M ≥ 0 such that for π-almost all s > 0

ML = Es(M |HL)

and ML
L1(Ps)
→ M, as L ∈ C0 filters (�). If ςn � ςn+1 ∈ C0 and to any x ∈ U there is an

ςn such that x has progeny in ςn, Mςn →M , as n→ ∞, also a.s. Ps.

A consequence of the first and second points applied for Ln = {u ∈ U : |u| = n} and
Lm = {u ∈ U : |u| = m} with m ≥ n ≥ 0, is that Mn is a martingale and the uniform Ps-
integrability of this martingale. The third point applied for the lines τt give the convergence
of M(t) in L1(Ps) and almost surely.

Proof. • First the conditions of Malthusian population are fulfilled, thus by Theorem 5.1 in
[15] we get the first point.

Let ξ :=
∫

R+×R+
h(s)rαe−trα

dtϑ1(ds) =
∑

|u|=1 ξ
p0
u and Eπ be the expectation with respect

to
∫

R+
Ps(dw)π(ds). Therefore,

Eπ(ξ log+ ξ) =

∫

R+

Ex

(
∞∑

i=1

ξp0

i

(
log+

∞∑

j=1

ξp0

j

))
π(dx),

and it follows readily from the Malthusian hypotheses and the fact that
∑

|u|=n ξ
pp0
u is a

supermartingale, that this quantity is finite. Therefore the assumption of Theorem 6.1 of
[15] are check, which gives by Theorem 6.1 of [15] the second point and by Theorem 6.3 of
[15] we get the third point.
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