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Self-similar branhing Markov hainsNathalie KrellAugust 1, 2007Laboratoire de Probabilités et Modèles Aléatoires,Université Pierre et Marie Curie,175 rue du Chevaleret, 75013 Paris, Frane.AbstratThe main purpose of this work is to study self-similar branhing Markov hains.First we will onstrut suh a proess. Then we will establish ertain Limit Theoremsusing the theory of self-similar Markov proesses.Key Words. Branhing proess, Self-similar Markov proess, Tree of generations, LimitTheorems.A.M.S. Classi�ation. 60J80, 60G18, 60F25, 60J27.e-mail. krell�r.jussieu.fr
1 Introdution.This work is a ontribution to the study of a speial type of branhing Markov hains. We willonstrut a ontinuous time branhing hain X whih has a self-similar property and whihtakes its values in the spae of �nite point measures. This type of proess is a generalisationof a self-similar fragmentation (see [4℄), whih applies to ases where the size modelises nonadditive quantities as e.g. surfae energy in aerosols. We will fous on the ase wherethe index of self-similarity α is non-negative, whih means that the bigger individuals willreprodue faster than the smaller ones. There is of ourse no lost of generality by onsideringthis model, as 1/X is then a self-similar proess where the index of self-similarity equal to
−α (whih mean that the smaller individuals will reprodue faster than the bigger ones.)1



We extend the method used in [4℄ to deal with more general proesses where we allowan individual to have a mass bigger than that of its parent. First we will reall somebakground on trees and more spei�ally on marked trees. Then, we will onstrut suha proess, indexed by generations (it is simply a random mark on the tree of generation,see Setion 2). Thanks to a martingale whih is assoiated to the latter and the theory ofrandom stopping lines on a tree of generation, we will de�ne the proess indexed by time.After having onstruted the proess, we will study the evolution of the randomly hosenbranh of the hain, from whih we shall dedue some Limit Theorems, relying on the theoryof self-similar Markov proesses.2 The marked tree.Let α ≥ 0 be an index of self-similarity and ν be some probability measure on
Mp(R

∗
+) :=

{
ms =

n∑

i=1

δsi
with n ∈ N and si > 0 for all 1 ≤ i ≤ n

}
,the spae of �nite point measures on R

∗
+. We also de�ne for f : R

∗
+ → R measurable funtionand ms ∈ Mp(R

∗
+)

〈f,ms〉 :=
∑

f(si),by taking the sum over the atoms of ms repeated aording to their multipliity and we willsometimes use the slight abuse of notation
〈f(x), ms〉 :=

∑
f(si)when f is de�ned as a funtion depending on the variable x. We endow the spae Mp(R

∗
+)with the topology of weak onvergene, whih means that mn onverge to m if and only if

〈f,mn〉 onverge to 〈f,m〉 for all ontinuous bounded funtions f .The aim of this work is to onstrut a branhing Markov hain X = ((
∑
δXi(t))t≥0) withvalues in Mp(R

∗
+), whih is self-similar with index α and has reprodution law ν. The indexof self-similarity will play a part in the rate in whih an individual will reprodue and thereprodution law ν will speify the distribution of the o�spring. We stress that our settinginludes the ase when

ν(s1 > 1) > 0, (1)whih means that with a positive probability the size of a hild an exeed that of his mother.In order to do that, exatly as desribed in Chapter 1 setion 1.2.1 of [4℄, we will onstruta marked tree.First we will introdue some notions. We onsider the in�nite tree
U := ∪∞

n=0N
n,2



with the notation N = {1, 2, ...} and N
0 = {∅}. In the sequel the elements of U are allednodes (or sometimes also individuals) and the distinguished node ∅ the root. For eah u =

(u1, ..., un) ∈ U , we all n the generation of u and write g(u) = n, with the obvious onvention
g(∅) = 0. When n ≥ 0 u = (u1, ..., un) ∈ N

n and i ∈ N, we write ui = (u1, ..., un, i) ∈ N
n+1for the i-th hild of u. We also de�ne for u = (u1, ..., un) with n ≥ 2,

mu = (u1, ..., un−1)the mother of u, mu = ∅ if u ∈ N. If v = mnu for some n ≥ 0 we write v ≺ u and say that
u stems from v. Additionally for M a set of U , M ≺ v means that u ≺ v for some u ∈ M .Generally we write M ≺ L if for all x ∈ L stem from M .Here it will be onvient to identify the �nite sequene s = (s1, ..., sn) of positive realnumbers with the in�nite sequene (s1, ..., sn, 0, ...) obtained by aggregation of in�nitelymany 0's.In partiular we say that an in�nite sequene (ξi, i ∈ N) has the law ν, if there is a(random) index n suh that ξi = 0 ⇔ i > n and the �nite point measure ∑n

i=1 δξi
has thelaw ν.De�nition 1. Let two independent families of i.i.d. variables be indexed by the nodes of thetree, (ξ̃u, u ∈ U) and (eu, u ∈ U), where for eah u ∈ U (ξ̃ui)i∈N is distributed aording tothe law ν, and (eui)i∈N is a sequene of i.i.d. exponential variables with parameter 1. Wede�ne for some �xed x > 0

ξ∅ := x, a∅ := 0, ζ∅ := x−α
e∅,and for u ∈ U and i ∈ N:

ξui := ξ̃uiξu, aui := au + ζu, ζui := ξ−α
ui eui.To eah node u of the tree U , we assoiate the mark (ξu, au, ζu) where ξu is the size, au thebirth-time and ζu the lifetime of the individual with label u. We all

Tx = ((ξu, au, ζu)u∈U)a marked tree with root of size x, and the law assoiated is denoted by Px. Let Ω̄ be the setof all the possible marked trees.The size of the individuals (ξu, u ∈ U) de�ne a so-alled multipliative asade (see thereferenes in Setion 3 of [5℄). But the latter would not be enough to onstrut the proess
X, in fat we also need the information given by ((au, ζu), u ∈ U).Another useful onept is that of stopping line, or, for short, line. L ⊂ U is a (stopping)line if u, v ∈ L, u ≺ v ⇒ u = v. The pre-L-sigma algebra is

HL := σ(ξ̃u, eu; ∃l ∈ L : u ≺ l).3



A random set of individuals
J : Ω̄ → P(U)is optional if {J ≺ L} ∈ HL for all L ⊂ U , where P(U) is the power set of U . An optionalline is a random stopping line whih is optional. For any optional set J we de�ne thepre-J -algebra by:

A ∈ HJ ⇔ ∀L line ⊂ U : A ∩ {J ≺ L} ∈ HL.See also the artile of Chauvin [9℄ for additional information about this onept.Lemma 1. The marked tree onstruted in De�nition 1 veri�es the strong Markov branhingproperty: for J an optional stopping line and ϕu : Ω̄ → [0, 1], u ∈ U , measurable funtions,we get that,
E1

(
∏

u∈J

ϕu ◦ T
(ξu)

∣∣∣∣∣HJ

)
=
∏

u∈J

Eξu(ϕu),where T (ξu) is the marked tree extrated from T1 at the node (ξu, au, ζu). More preisely
T (ξu) = ((ξuv, auv − au, ζuv)v∈U ).Proof. Thanks to the i.i.d properties of the random variables (ξ̃u, u ∈ U) and (eu, u ∈ U),the Markov property for stopping lines is of ourse easily heked. In order to get the resultfor a more general optional stopping line, we use Theorem 4.14 of [11℄. Indeed, the tree wehave onstruted is a speial ase of the tree onstruted by Jagers in [11℄. In our ase thetype ρu of u ∈ U , is the mass of u: ξu, τu is here equal to ζu (beause here the mother dieswhen she gives birth to her hildren whose birth times are all the same), and the birth time

σu is au.3 Malthusian hypotheses and the intrinsi martingale.We start by introduing some notation:
p := inf

{
p ∈ R :

∫

Mp(R∗
+)

〈xp, ms〉ν(dms) <∞

}
,and

p := inf

{
p > p :

∫

Mp(R∗
+)

〈xp, ms〉ν(dms) = ∞

}(with the onvention inf ∅ = ∞) and then for every p ∈]p, p[:
κ(p) :=

∫

Mp(R∗
+)

(1 − 〈xp, ms〉) ν(dms).4



Note that κ is a ontinuous and onave funtion (but not neessarily a stritly inreasingfuntion) on ]p, p[, as p→ ∫
Mp(R∗

+)
〈xp, ms〉ν(dms) is a onvex appliation. By onavity, theequation κ(p) = 0 has at most two solutions on ]p, p[. When a solution exists, we denote by

p0 := inf{p ∈]p, p[: κ(p) = 0} the smallest, and all p0 the Malthusian exponent.We now make the fundamental:Malthusian Hypotheses. We suppose that the Maltusian exponent p0 exists, that p0 >
0, and that

κ(p) > 0 for some p > p0.Furthermore we suppose that the integral
∫

Mp(R∗
+)

(〈xp0, ms〉)
p ν(dms)is �nite for some p > 1.Throughout the rest of this artile, these hypotheses will always be taken forgranted.In this artile we will all extintion the event that for some n ∈ N, all nodes u at the

n-th generation have zero size, and non-extintion the omplementary event. We see thatthe probability of extintion is always stritly positive whenever ν(s1 = 0) > 0, and equalszero if and only if ν(s1 = 0) = 0.Theorem 1. The proess
Mn :=

∑

g(u)=n

ξp0
u , n ∈ Nis a martingale whih is bounded in Lp(P) for some p > 1, and in partiular is uniformlyintegrable.Moreover, onditionally on non-extintion the terminal value M∞ is stritly positive a.s.Remark 1. • As κ is onave the equation κ(p) = 0 may have a seond root p+ := inf{p >

p0, κ(p) = 0}). This seond root will not interest us: even though
M+

n :=
∑

g(u)=n

ξp+
u , n ∈ N,is also a martingale, it is easy to hek that for all p > 1 the p-variation of M+

n is in�nite.We an notie that for all p ∈]p0, p+[ (M
(p)
n )n∈N := (

∑
g(u)=n ξ

p
u)n∈N is a supermartingale.

• Using the branhing property we get the identity in law
M∞

(d)
=

∞∑

j=1

ξp0

j M
(j)
∞where ξ = (ξj , j ∈ N) follows the law ν(.), and M

(j)
∞ are independent opies of M∞, alsoindependent of ξ. 5



Proof. In the �rst point we will use the artile of Jagers [11℄ to show the uniform integrabilityofM(t). In the seond point we will use the fat that the empirial measure of the logarithmof the sizes of fragments
Z(n) :=

∑

g(u)=n

δlog ξu (2)an be viewed as a branhing random walk (see the artile of Biggins [7℄). In the last pointwe will show the last part of the theorem.
• The aim of the �rst point is to show that the ondition of Malthusian population isful�lled in order to apply Theorem 5.1 of [11℄. We �rst introdue some notation. For r ∈ R+,let ϑr be the strutural probability:

ϑr(B) := Er(♯{u ∈ U : ξu ∈ B}) for B ⊂ B,where B is the Borel algebra on R+. Let the reprodution measure µ be suh that for every
r ≥ 0:

µ(r, du× ds) := rαe−rαuduϑr(ds)and for any λ ∈ R

µλ(r, du× ds) := e−λsµ(r, du× ds).The omposition operation ∗ denotes the Markov transition on the size spae R+ and on-volution on the time spae R+, so that: for all A ∈ B and B ∈ B,
µ∗2(s, A× B) = µ ∗ µ(s, A× B) =

∫

R+×R+

µ(r, A× (B − u))µ(s, dr× du).With the onvention that the ∗-power 0 is 1l{A×B}(s, 0) whih gives all the mass to (s, 0). Wede�ne the renewal measure as
ψλ :=

∞∑

0

µ∗n
λ .Let

α
′

:= inf{λ : ψλ(s,R+ × R+) <∞ for some s ∈ R+}.Moreover as
µλ(r,R+ × R+) =

{
rα/(rα + λ) if λ > −rα

∞ else,thus we get α′

= 0. For A ∈ B, let
π(A) := lim

n→∞
µ∗n(1, A× R+)whih is well de�ned as µ∗n(1, A× R+) is a dereasing funtion in n and nonnegative. Let

h(s) := sp0 for all s ∈ R+ and β := 1. These objets orrespond to those de�ned in [11℄. Thus6



by Theorem 5.1 in [11℄ applied for L = {u ∈ U : g(u) = n} and M = {u ∈ U : g(u) = m}with m ≥ n ≥ 0, we get that Mn is a martingale.Let ξ :=
∫

R+×R+
h(s)rαe−trα

dtϑ1(ds) =
∑

g(u)=1 ξ
p0
u and Eπ be the expetation with re-spet to ∫

R+
Ps(dw)π(ds). Therefore,

Eπ(ξ log+ ξ) =

∫

R+

Es

(∑
ξp0

i

(
log+

∑
ξp0

j

))
π(ds),and it follows readily from the Malthusian hypotheses and the fat that ∑g(u)=n ξ

pp0
u is asupermartingale, that this quantity is �nite. Therefore by Theorem 6.1 [11℄ we get theuniform Ps-integrability of the martingale.

• We will now show that we atually have the stronger onvergene by using Theorem1 of [7℄. In order to do that we �rst introdue some notation: reall (2) and for θ > p, wede�ne
m(θ) := E

(∫
eθxZ(1)(dx)

)
= E



∑

g(u)=1

ξθ
u


 = 1 − κ(θ)and

W (n)(θ) := m(θ)−n

∫
eθxZ(n)(dx) = (1 − κ(p))−n

∑

g(u)=n

ξθ
u.We notie that Mn = W (n)(p0). Therefore in order to apply Theorem 1 of [7℄ and to get theonvergene almost surely and in pth mean for some p > 1, it is enough to show that

E(W (1)(p0)
γ) <∞for some γ ∈ (1, 2] and

m(pp0)/|m(p0)|
p < 1for some p ∈ (1, γ]. The �rst ondition is a onsequene of the Malthusian assumption.Moreover the seond follows from the identities

m(pp0)/|m(p0)|
p = (1 − κ(pp0))/|1 − κ(p0)|

p = 1 − κ(pp0)whih, by the de�nition of p0, is smaller that 1 for p > 1 well hosen. ompletes the proof ofthe �rst part of the statement.
• Finally, let us now hek that M∞ > 0 a.s. onditionally on non-extintion. De�ne

q = P(M∞ = 0), therefore as E(M∞) = 1 we get that q < 1. Moreover, an appliation of thebranhing property yields
E(qZn) = q,where Zn is the number of individuals with positive size at the n-th generation. By theonstrution of the marked tree and as ν is a probability measure: (Zn, n ∈ N) is of ourse aGalton-Watson proess and it follows that q is its probability of extintion. Sine M∞ = 0onditionally on the extintion, the two events oinide a.s.7



4 Evolution of the proess in ontinuous time.We de�ne for u ∈ R+:
f(u) :=

∫

Mp(R∗
+)

u♯msν(dms)where ♯ms stands for the numbers of atoms of the point measure ms. We notie that f(u)is the generating funtion of the Galton-Watson proess (Zn, n ≥ 0) = (♯{u ∈ U : ξu >
0 and g(u) = n}, n ≥ 0).From now on, we will suppose that for every ǫ > 0

∫ 1

1−ǫ

du

f(u) − u
= ∞. (3)When an individual labelled by u has a positive size, ξu > 0, let Iu := [au, au + ζu) bethe interval of times during whih this individual labelled by u is alive. Otherwise we deidethat Iu = ∅ when ξu = 0.De�nition 2. We de�ne the proess X = (X(t), t ≥ 0) with

X(t) =
∑

u∈U

1l{t∈Iu}δξu , t ≥ 0. (4)In partiular we denote for f : R+ → R measurable funtion
〈f,X(t)〉 =

∑

u∈U

f(ξu)1l{t∈Iu}.For every x ∈ R
∗
+ let Px be the law of the proess X starting from a single individual withsize x. And for simpli�ation, we denote P for P1, and let (Ft)t≥0 be the natural �ltrationof the proess (X(t), t ≥ 0).Theorem 2. The proess X takes its values in the set Mp(R

∗
+), is a Markov hain, and morepreisely, enjoys the branhing property: for every ms =

∑
δsi

∈ Mp(R
∗
+) and every t ≥ 0,the distribution of X(t) given that X(0) = ms is the same as that of the sum ∑

X(i)(t) ofan independent random sequene where for eah index i, X(i)(t) is distributed as X(t) under
Psi

.The proess X also has the saling property, namely for every c > 0, the distribution ofthe resaled proess (cX(cαt), t ≥ 0) under P1 is Pc.For every measurable funtion g : R+ → (0,∞), de�ne a multipliative funtional suhthat for every ms =
∑
δsi

∈ Mp(R
∗
+):

exp(−〈g,ms〉) = exp(−
∑

g(si)).Then the generator G of the Markov proess X(t) ful�lls for every my =
∑
δyi

∈ Mp(R
∗
+):

Ge−〈g,my〉 =
∑

yα
i e

−
∑

j 6=i g(yj)

∫

Mp(R∗
+)

(e−〈g(xyi),ms〉 − e−g(yi))ν(dms). (5)8



Proof. • First we will hek that for all t ≥ 0, X(t) is a (random) �nite point measure. ByTheorem 1 and the Doob's Lp-inequality we get that for some p > 1:
sup
n∈N

∑

g(u)=n

ξp0
u ∈ Lp(P).As a onsequene:

sup
u∈U

ξp0
u ∈ Lp(P)and then by the de�nition of the proess X, writing X1(t), ... for the (possibly in�nite)sequene of atoms of X(t)

sup
i

sup
t∈R+

Xi(t)
p0 ∈ Lp(P).Reall that p0 > 0 by assumption. We �x some arbitrarily large m > 0. We now workonditionally on the event that the size of all individuals is bounded by m, and we will showthat the number of the individuals alive at time t is �nite for all t ≥ 0.As we are onditioning on the event {supu∈U ξu ≤ m}, by the onstrution of the markedtree, we get that the life time of an individual an be stohastially bounded from below by anexponential variable of parameter mα. Therefore we an bound the number of individualspresent at time t by the number of individuals of a ontinuous time branhing proessdenoted by GW in whih eah individual lives for a random time whose law is exponentialof parameter mα and the probability distribution of the o�spring is the law of ♯s ∨ 1 under

ν (we have taken the supremum with 1 in order to be sure that there is never any death).For the Markov branhing proess GW , we are in the temporally homogeneous ase and, wenotie that ∫

Mp(R∗
+)

u(♯ms)∨1ν(dms) = (f(u) − u)ν(♯ms 6= 0) + u,therefore as we have supposed (3), we an use Theorem 1 p.105 of the book of Athreya andNey [3℄ (proved in Theorem 9 p.107 of the book of Harris [10℄) and get that we are in thenon-explosive ase for the GW . As the number of the individuals is bounded by that of GWwe get that the number of individuals at time t is �nite.Therefore onditioning on the event {supu∈U ξu ≤ m}, we have that for all t ≥ 0, thenumber of individuals at time t is �nite, i.e. X(t) is a �nite point measure.
• Seond we will show the Markov property. Fix s ∈ R+. Let τs be equal to {u ∈ U :

s ∈ Iu}. We notie that τs is an optional line. In fat for all lines L ⊂ U we have that
{τs ≺ L} = {s < au + ζu ∀u ∈ L} ∈ HL.By the de�nition of X, we have that the point measure

∑
1l{Xj(t+s)>0}δXj(t+s)is equal to ∑

u∈U

1l{t+s∈Iu}δξu .9



Let X(s) =
∑n

i=1 δxi
∈ Mp(R

∗
+) and onsider the nodes (ξv1 , ξv2, ..., ξvn) suh that X(s) =∑n

i=1 δξvi
. De�ne for all i ≤ n

T̃i := ((ξviu, aviu − avi
, ζviu − 1l{u=∅}(s− avi

))u∈U) = ((ξ̃u, ãu, ζ̃u)u∈U),

Ĩu := [ãu, ãu + ζ̃u[ and
X(i)(t) =

∑

u∈U

1l{t∈Ĩu}
δξ̃u
.Then

X(t+ s) =

n∑

i=1

X(i)(t).By the lak of memory of the exponential variable, we have that for u ∈ U , given s ∈ Iuthe law of the marked tree T̃i is the same as that of
T (ξvi ) := ((ξviu, aviu − avi

, ζviu)u∈U) = ((ξi
u, a

i
u, ζ

i
u)u∈U).Thus we have the equality in law:

∑

u∈U

1l{t∈Ĩu}
δξ̃u

d
=
∑

u∈U

1l{t∈Ii
u}
δξi

u
,with I i

u := [ai
u, a

i
u + ζ i

u[.Let τ i
s := {viu ∈ U : s ∈ I i

u}. Moreover for all lines L ∈ U we have that
{τ i

s ≺ L} = {s < aviu + ζviu ∀viu ∈ L} ∈ HL.Therefore τ i
s is an optional line and by applying Lemma 1 for the optional stopping line τ i

s,we have that the point measure ∑

u∈U

1l{t+s∈Ii
u}
δξi

uonditionally on Hτs is distributed as X(t) under Pxi
. Therefore (X(1), X(2), ..., X(n)) is asequene of independent random proesses, where for eah i X(i)(t) is distributed as X(t)under Pxi

. We then have proven the Markovian property and the branhing property.
• The saling property is an easily onsequene of the de�nition of the tree Tx.The intrinsi martingale Mn is indexed by the generations; it will also be onvenient toonsider its analogue in ontinuous time, i.e

M(t) := 〈xp0 , X(t)〉 =
∑

u∈U

1l{t∈Iu}ξ
p0
u .It is straightforward to hek that (M(t), t ≥ 0) is again a martingale in the natural �ltration

(Ft)t≥0 of the proess (X(t), t ≥ 0); and more preisely, the argument Proposition 1.5 in [4℄gives: 10



Corollary 3. The proess (M(t), t ≥ 0) is a martingale, and more preisely
M(t) = E(M∞|Ft),where M∞ is the terminal value of the intrinsi martingale (Mn, n ∈ N). In partiular M(t)onverges in Lp(P) to M∞ for some p > 1.Proof. We know that Mn onverges in Lp(P) to M∞ as n tends to ∞, so

E(M∞|Ft) = lim
n→∞

E(Mn|Ft).By Theorem 1 as we have
sup
u∈U

ξp0
u ∈ Lp(P),we �x m > 0. We now work on the event Bm := {supu∈U ξu ≤ m}.By applying the Markov property at time t we easily get that

E(Mn|Ft) =
∑

Xp0

i (t)1l{G(Xi(t))≤n} +
∑

g(u)=n

ξp0
u 1l{au+ζu<t} (6)where G(ξv) stands for the generation of the individual v (i.e. G(ξv) = g(v)), and au + ζuis the instant when the individual orresponding to the node u reprodues. We an rewritethe latter as

au + ζu = ξ−α
mg(u)u

e0 + ξ−α
mg(u)−1u

e1 + ... + ξ−α
u eg(u)where e0,... is a sequene of independent exponential variables with parameter 1, whih isalso independent of ξu. We an remark that in the �rst term of sum (6) we sum over thesize of the individuals whih belong to the n-th generation and are alive at time t, and inthe seond term we sum over those belonging to the n-th generation and are dead at time t.As α is non negative, and as we are working on the event Bm: ξ−α

miu ≥ m−α we have thatfor eah �xed node u ∈ U , au +ζu is bounded from below by the sum of g(u)+1 independentexponential variables with parameter mα whih are independent of ξu. Thus
lim

n→∞
E



∑

g(u)=n

ξp0
u 1l{au+ζu<t}1l{Bm}


 = 0,and therefore by (6) on the event {Bm}, we get that for all m > 0: E(M∞|Ft)1l{Bm} =

M(t)1l{Bm}, and then by letting m tend to ∞ we get the result.5 A randomly tagged leaf.We will here (as in [4℄) de�ne what a tagged individual is by using a tagged leaf.11



We all leaf of the marked tree U an in�nite sequene of integers l = (u1, ...). Foreah n, we assoiate to l its anestor ln := (u1, ..., un) at the generation n. We enrih theprobabilisti struture by adding the information about a so alled tagged leaf, hosen atrandom as follows. Let Hn be the spae of bounded funtionals Φ whih depend on the mark
M and of the leaf l on the n-th �rst generation, i.e. suh that Φ(M, l) = Φ(M

′

, l
′

) if ln = l
′

nand M(u) = M
′

(u) whenever g(u) ≤ n. For suh funtionals, we use the slightly abusingnotation Φ(M, l) = Φ(M, ln). As in [4℄ for a pair (M,λ) where M : U → [0, 1]×R+×R+ is arandom mark on the marked tree and λ is a random leaf of U , the joint distribution denotedby P
∗ (and by P

∗
x if the size of the �rst mark is x instead of 1) an be de�ned unambiguouslyby

E
∗(Φ(M,λ)) = E



∑

g(u)=n

Φ(M,u)ξp0
u


 , Φ ∈ Hn.Moreover sine the intrinsi martingale (Mn, n ∈ Z+) is uniformly integrable (f. Theorem 1),the �rst marginal of P

∗ is absolutely ontinuous with respet to the law of the random mark
M under P, with density M∞.Let λn be the node of the tagged leaf at the n-th generation. We denote χn := ξλn forthe size of the individual orresponding to the node λn and χ(t) for the size of the taggedindividual alive at time t, viz.

χ(t) := χn if aλn ≤ t < aλn + ζλn ,beause in the ase onsidered supn∈N aλn = ∞. Exatly as in [4℄ Lemma 1.4 there beomes:Lemma 2. Let k : R+ → R+ be a measurable funtion suh that k(0) = 0. Then we havefor every n ∈ N

E
∗(k(χn)) = E




∑

g(u)=n

ξp0
u k(ξu)



 ,and for every t ≥ 0
E
∗(k(χ(t))) = E (〈xp0k(x), X(t)〉) .Proposition 1.6 of [4℄ beomes:Proposition 4. Under P

∗,
Sn := lnχn, n ∈ Z+is a random walk on R with step distribution

P(lnχn − lnχn+1 ∈ dy) = ν̃(dy),where the probability measure ν̃ is de�ned by
∫

]0,∞[

k(y)ν̃(dy) =

∫

Mp(R∗
+)

〈xp0k(ln(x)), ms〉ν(dms).12



Equivalently, the Laplae transform of the step distribution is given by
E
∗(epS1) = E

∗(χp
1) = 1 − κ(p+ p0), p ≥ 0.Moreover, onditionally on (χn, n ∈ Z+) the sequene of the lifetimes (ζλ0 , ζλ1, ...) alongthe tagged leaf is a sequene of independent exponential variables with respetive parameters

χα
0 , χ

α
1 , ...We now see that we an use this proposition to obtain the desription of χn by a Lampertitransformation. Let

ηt := S ◦Nt, t ≥ 0,with N a Poisson proess with parameter 1 whih is independent of the random walk S;for probabilities and expetations related to η we use the notation P and E. The proess
(χ(t), t ≥ 0) is Markovian and enjoys a saling property. More preisely under P

∗
x we getthat

χ(t) = exp(ητ(tx−α)), t ≥ 0,where η is the ompound Poisson de�ned above and τ the time-hange de�ned impliitly by
t =

∫ τ(t)

0

exp(αηs)ds, t ≥ 0.6 Asymptoti behaviors.6.1 The onvergene of the size of a tagget individual.Let
κ

′

(p0) = −

∫

Mp(R∗
+)

〈xp0 ln(x), ms〉ν(dms)denote the derivative of κ at the Malthusian parameter p0.Proposition 5. Suppose that α > 0, that the support of ν is not a disrete subgroup rZ forany r > 0 and that 0 < κ
′

(p0) <∞. Then for every y > 0

P
∗
y(t

1/αχ(t) ∈ ·) ⇒ P(χ(1) ∈ ·),as t → ∞, where P is a probability measure suh that for every measurable funtion k :
R+ → R+

E(k(χ(1)α)) =
1

αm
E(k(I)I−1),with I :=

∫∞

0
exp(αηs)ds and m := E(η1). 13



Proof. As −κ′

(p0) is the mean of the step distribution of the random walk Sn (see Proposition4), therefore κ′

(p0) > 0 imply that E(−η1) > 0 thus the assumption of Theorem 1 in theartile by Bertoin and Yor [6℄ is ful�lled by the self-similar Markov proess χ(t)−1, whihgives the result.We ould also see by diret alulation that E(−η1) is equal to κ′

(p0).Remark 2. • In the ase κ′

(p0) = 0 we an extend this proposition. More preisely if∫
Mp(R∗

+)
〈xp0| ln(x)|, ms〉ν(dms) <∞,

J :=

∫ ∞

1

xν−(]x,∞[)dx

1 +
∫ x

0
dy
∫∞

y
ν−(] −∞,−z[)dz

<∞,(with ν− is the image of ν̃ by the map u → −u where ν̃ is de�ned in Proposition 4) and
E
(
log+

∫ T1

0
e−ηsds

)
<∞ (with Tz := inf{t : −ηt ≥ z}) hold then1. For any y > 0

P
∗
y(t

1/αχ(t) ∈ ·) ⇒ P0(χ(1) ∈ ·),as t→ ∞, where P0 is a probability measure.2. For any bounded and ontinuous funtion k and for t > 0:
E0(k(χ(t)α)) = lim

λ→0

1

λ
E(I−1

λ k(Iλ/t)),where Iλ =
∫∞

0
exp(αηs − λs)ds.The proof is the same as the previous one using Theorem 1 and Theorem 2 from the artileby Caballero and Chaumont [8℄ instead of [6℄.

• We ould also try to use the same method as the one used in [4℄ Proposition 1.7. Butthe problem is that in our ase E(〈xp, X(t)〉) is not neessarily �nite when p is large, andeven if it was the ase, its derivative is not ompletely monotone beause κ is not neessarilypositive when p is large. This explains why we have to use a di�erent method.6.2 Convergene of the mean measure and Lp-onvergene.We enode the on�guration of masses X(t) = {Xi(t)} by the weighted empirial measure
σt :=

∑
Xp0

i (t)δt1/αXi(t)whih has total mass M(t).The assoiated mean measure σ∗
t is de�ned by the formula

∫ ∞

0

k(x)σ∗
t (dx) = E

(∫ ∞

0

k(x)σt(dx)

)14



whih is required to hold for all ompatly supported ontinuous funtions k. Sine M(t) isa martingale, σ∗
t is a probability measure.Therefore, with Proposition 5 and Lemma 2, we easily get:Corollary 6. With the assumptions of Proposition 5 we get:1. The measures σ∗

t onverge weakly, as t → ∞, to the probability measure P(χ(1) ∈ .)i.e. for any measurable funtion k : R+ → R+ , we have:
E
(
〈xp0k(t1/αx), X(t)〉

)
→

t→∞
E(k(χ(1))).2. For all p+ > p > p0:

t(p−p0)/α
E (〈xp, X(t)〉) →

t→∞
E((χ(1))p−p0).We now formulate a more preise result onerning the onvergene of the empirialmeasure:Theorem 7. Under the same assumptions as in Proposition 5 we get that for every boundedontinuous funtion k:

Lp − lim
t→∞

∫ ∞

0

k(x)σt(dx) = M∞E(k(χ(1))) =
M∞

αm
E(k(I)I−1),for some p > 1.Remark 3. A slightly di�erent version of Corollary 6 and Theorem 7 exists also under theassumptions in Remark 2.See also Asmussen and Kaplan [1℄ and [2℄ for a losely related result.Proof. We use the same method as Setion 1.4. in [4℄ and in this diretion we use Lemma1.5 there: for (λ(t))t≥0 = (λi(t), i ∈ N)t≥0 a sequene of non-negative random variables suhthat for �xed p > 1

sup
t≥0

E

((
∞∑

i=1

λi(t)

)p)
<∞ and lim

t→∞
E

(
∞∑

i=1

λi(t)

)
= 0,and for (Yi(t), i ∈ N) a sequene of random variables whih are independent onditionallyon λ(t), we assume that there exists a sequene (

−

Yi, i ∈ N) of i.i.d variables in Lp(P), whihis independent of λ(t) for eah �xed t, and suh that |Yi(t)| ≤
−

Y i for all i ∈ N and t ≥ 0.Then we know from Lemma 1.5 in [4℄ that
lim
t→∞

∞∑

i=1

λi(t)(Yi(t) − E (Yi(t)|λ(t))) = 0. (7)15



Now, let k be a ontinuous funtion bounded by 1 and let
At := 〈xp0k(t1/αx), X(t)〉.By appliation of the Markov property at time t for At+s and the self-similarity propertyof the proess X we an rewrite At+s as

∞∑

i=1

λi(t)Yi(t, s)where λi(t) := Xp0

i (t) and
Yi(t, s) := 〈xp0k((t+ s)1/αXi(t)x), Xi,.(s)〉,with X1,., X2,., ... a sequene of i.i.d. opies of X whih is independent of X(t).By Theorem 1 we get that

sup
t≥0

E

((
∞∑

i=1

λi(t)

)p)
<∞.By the last orollary we also obtain that

E

(
∞∑

i=1

λp
i (t)

)
∼ t−(p−1)p0E(χ(p−1)p0(1)) → 0,as t→ ∞.Moreover the variables Yi(t, s) are uniformly bounded by

Yi = sup
s≥0

〈xp0 , Xi,.(s)〉,whih are i.i.d. variables and also bounded in Lp(P) thanks to Doob's inequality (as we havethat 〈xp0 , Xi,.(s)〉 is a martingale bounded in Lp(P)).Thus we may apply (7), whih redues the study to that of the asymptoti behaviour of:
∞∑

i=1

λi(t)E(Yi(t, s)|X(t)),as t tends to ∞. On the event {Xi(t) = y}, we get
E(Yi(t, s)|X(t)) = E

(
〈xp0k((t+ s)1/αyx), X(s)〉

)
.Then by Lemma 2:

E
(
〈xp0k((t+ s)1/αyx), Xi,.(s)〉

)
= E

∗
(
k
(
(t+ s)1/αyχ(s)

))
.16



With Proposition 5, we obtain
lim
t→∞

E
∗
(
k
(
(t+ s)1/αyχ(s)

))
= E (k (χ(1))) .Moreover reall from Corollary 3 that ∑∞

i=1 λi(t) onverges to M∞ in Lp(P). Therefore we�nally get that when t goes to in�nity:
∞∑

i=1

λi(t)E(Yi(t, s)|X(t)) ∼ E (k (χ(1)))
∞∑

i=1

λi(t) ∼ E (k (χ(1)))M∞.
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