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Abstract

The main purpose of this work is to study self-similar branching Markov chains.
First we will construct such a process. Then we will establish certain Limit Theorems
using the theory of self-similar Markov processes.
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1 Introduction.

This work is a contribution to the study of a special type of branching Markov chains. We will
construct a continuous time branching chain X which has a self-similar property and which
takes its values in the space of finite point measures. This type of process is a generalisation
of a self-similar fragmentation (see [4]), which applies to cases where the size modelises non
additive quantities as e.g. surface energy in aerosols. We will focus on the case where
the index of self-similarity « is non-negative, which means that the bigger individuals will
reproduce faster than the smaller ones. There is of course no lost of generality by considering
this model, as 1/X is then a self-similar process where the index of self-similarity equal to
—a (which mean that the smaller individuals will reproduce faster than the bigger ones.)
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We extend the method used in [4] to deal with more general processes where we allow
an individual to have a mass bigger than that of its parent. First we will recall some
background on trees and more specifically on marked trees. Then, we will construct such
a process, indexed by generations (it is simply a random mark on the tree of generation,
see Section B). Thanks to a martingale which is associated to the latter and the theory of
random stopping lines on a tree of generation, we will define the process indexed by time.
After having constructed the process, we will study the evolution of the randomly chosen
branch of the chain, from which we shall deduce some Limit Theorems, relying on the theory
of self-similar Markov processes.

2 The marked tree.

Let o > 0 be an index of self-similarity and v be some probability measure on

Mp(RY) = {ms:Z&i with n €N and s; >0 for all 1§z’§n},

i=1

the space of finite point measures on R*. We also define for f : R} — R measurable function
and m, € M,(R?%)

(fims) = flsi),

by taking the sum over the atoms of m; repeated according to their multiplicity and we will
sometimes use the slight abuse of notation

<f(ﬂ7), ms> = Z f(52>

when f is defined as a function depending on the variable z. We endow the space M, (R?)
with the topology of weak convergence, which means that m,, converge to m if and only if
(f,my) converge to (f, m) for all continuous bounded functions f.

The aim of this work is to construct a branching Markov chain X = ((3_ 0x,))e>0) With
values in M,(R? ), which is self-similar with index o and has reproduction law v. The index
of self-similarity will play a part in the rate in which an individual will reproduce and the
reproduction law v will specify the distribution of the offspring. We stress that our setting
includes the case when

v(sy > 1) >0, (1)

which means that with a positive probability the size of a child can exceed that of his mother.
In order to do that, exactly as described in Chapter 1 section 1.2.1 of [4], we will construct
a marked tree.
First we will introduce some notions. We consider the infinite tree

U = U= N",
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with the notation N = {1,2,...} and N° = {0}. In the sequel the elements of U are called
nodes (or sometimes also individuals) and the distinguished node ) the root. For each u =
(U, ..., u,) € U, we call n the generation of u and write g(u) = n, with the obvious convention
g(0) =0. When n >0 u = (uy,...,u,) € N" and i € N, we write ui = (uy, ..., u,,1) € N*T!
for the i-th child of u. We also define for v = (uy, ..., u,) with n > 2,

mu = (U, ..., Up_1)

the mother of u, mu = () if w € N. If v = m™u for some n > 0 we write v < u and say that
u stems from v. Additionally for M a set of Y, M < v means that u < v for some u € M.
Generally we write M < L if for all z € L stem from M.

Here it will be convient to identify the finite sequence s = (sq, ..., s,) of positive real
numbers with the infinite sequence (si,...,s,,0,...) obtained by aggregation of infinitely
many 0’s.

In particular we say that an infinite sequence (&;,7 € N) has the law v, if there is a
(random) index n such that §; = 0 < ¢ > n and the finite point measure » ., ¢, has the
law v.

Definition 1. Let two independent families of 4.7.d. variables be indexed by the nodes of the
tree, (&u,u € U) and (e,,u € U), where for each u € U (£4i)ien s distributed according to
the law v, and (e )ien 1S a sequence of i.i.d. exponential variables with parameter 1. We
define for some fized x > 0

o=, ap:=0, (p:=1z ey,
and for w € U and i € N:
gui = 5uz§u> Ay *= Qyy + Cm Cuz = gq:iaeui-

To each node u of the tree U, we associate the mark (£, ay, () where &, is the size, a, the
birth-time and C, the lifetime of the individual with label u. We call

TSC = ((gua Qo Cu)ueu)

a marked tree with root of size x, and the law associated is denoted by P,. Let Q be the set
of all the possible marked trees.

The size of the individuals (&, u € U) define a so-called multiplicative cascade (see the
references in Section 3 of [5]). But the latter would not be enough to construct the process
X, in fact we also need the information given by ((ay, (), u € U).

Another useful concept is that of stopping line, or, for short, line. L C U is a (stopping)
line if u,v € L, u < v = u = v. The pre-L-sigma algebra is

Hy =0(Eu, e €L:u~l).



A random set of individuals

J Q= PU)

is optional if {J < L} € Hy, for all L C U, where P(U) is the power set of U . An optional
line is a random stopping line which is optional. For any optional set J we define the
pre-J-algebra by:

AcHys e VL line CU:AN{T <L} e H,.
See also the article of Chauvin [9] for additional information about this concept.

Lemma 1. The marked tree constructed in Definitiond verifies the strong Markov branching
property: for J an optional stopping line and ¢, : Q2 — [0,1], u € U, measurable functions,

we get that,
Ey (H pu 0 T HJ) = ] Ee.(20),

ueJ ueJ

where T is the marked tree extracted from T at the node (&, ayu, ). More precisely

T = (€ — s oot

Proof. Thanks to the i.i.d properties of the random variables (&,,u € U) and (e,,u € U),
the Markov property for stopping lines is of course easily checked. In order to get the result
for a more general optional stopping line, we use Theorem 4.14 of [TT]. Indeed, the tree we
have constructed is a special case of the tree constructed by Jagers in [I1]. In our case the
type p, of u € U, is the mass of u: &,, 7, is here equal to ¢, (because here the mother dies
when she gives birth to her children whose birth times are all the same), and the birth time
Oy 1S Q. O

3 Malthusian hypotheses and the intrinsic martingale.

We start by introducing some notation:

p := inf {pE]R:/ (2P, ms)v(dmy) <oo},
B Mp(RY)

and

p := inf {p>p:/ <:Ep,m8)l/(dms):oo}
= e

(with the convention inf () = co) and then for every p €]p,7[:
K(p) = / (1= (a?,my)) v(dm,).
My(RY)
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Note that k is a continuous and concave function (but not necessarily a strictly increasing
function) on |p,p[, as p — f/vt (R*)<J}p7 ms)v(dmyg) is a convex application. By concavity, the
p p(R
equation x(p) = 0 has at most two solutions on |p,p[. When a solution exists, we denote by
po := inf{p €]p,p[: x(p) = 0} the smallest, and call py the Malthusian exponent.
We now make the fundamental:

Malthusian Hypotheses. We suppose that the Maltusian exponent py exists, that py >
0, and that
k(p) >0 for some p > py.

Furthermore we suppose that the integral
[ tammy vidm)
Mp(RY)

s finite for some p > 1.

Throughout the rest of this article, these hypotheses will always be taken for
granted.

In this article we will call eztinction the event that for some n € N, all nodes u at the
n-th generation have zero size, and non-eztinction the complementary event. We see that
the probability of extinction is always strictly positive whenever v(s; = 0) > 0, and equals
zero if and only if v(s; = 0) = 0.

Theorem 1. The process
M,= Y &, neN
g(u)=n
is a martingale which is bounded in 1LP(P) for some p > 1, and in particular is uniformly

integrable.
Moreover, conditionally on non-extinction the terminal value My, is strictly positive a.s.

Remark 1. e As k is concave the equation k(p) = 0 may have a second root py = inf{p >
po, K(p) =0}). This second root will not interest us: even though

M= > &+ neN,

g(u)=n
is also a martingale, it is easy to check that for all p > 1 the p-variation of M is infinite.

We can notice that for all p €]po, p+ ] (M,(Lp))neN 1= (g (u)=n EW)nen 18 a supermartingale.
e Using the branching property we get the identity in law

[e.e]

M S YY)

Jj=1

where § = (&;,j € N) follows the law v(.), and MY are independent copies of My, also
independent of €.



Proof. In the first point we will use the article of Jagers [IT] to show the uniform integrability
of M(t). In the second point we will use the fact that the empirical measure of the logarithm

of the sizes of fragments
ARRES Z Olog €. (2)
g(u)=n

can be viewed as a branching random walk (see the article of Biggins [[]). In the last point
we will show the last part of the theorem.

e The aim of the first point is to show that the condition of Malthusian population is
fulfilled in order to apply Theorem 5.1 of [IT]. We first introduce some notation. For r € R,
let ¥, be the structural probability:

U.(B) =E,(H{ueld: ¢ € B}) for BCB,

where B is the Borel algebra on R, . Let the reproduction measure u be such that for every
r > 0:
p(r,du x ds) == r*e™"" “dud,(ds)
and for any A € R
pn(r, du x ds) == e pu(r, du x ds).

The composition operation * denotes the Markov transition on the size space R, and con-
volution on the time space R, , so that: for all A € B and B € B,

(s, Ax B) = px*pu(s,Ax B) = / w(ry A x (B —u))u(s,dr x du).

R+ XR+

With the convention that the *-power 0 is I4, (s, 0) which gives all the mass to (s,0). We
define the renewal measure as .
Uy =Yy
0

Let
o =1inf{\ : ¥\(s,Ry xR,) < oo for some s € Ry}

Moreover as
re/(re4+ ) if A > —r®

pa(r, Ry x Ry) = {
%) else,

thus we get o' = 0. For A € B, let

m(A) := lim (1, A x R})

n—oo

which is well defined as p*"(1, A x R, ) is a decreasing function in n and nonnegative. Let
h(s) := s forall s € Ry and 3 := 1. These objects correspond to those defined in [TT)]. Thus



by Theorem 5.1 in [I1] applied for L ={u e U : g(u) =n}and M ={uecl: g(u) =m}
with m >n > 0, we get that M,, is a martingale.

Let & := fR+XR+ h(s)r®e=" dtd,(ds) = > o= 10 and Er be the expectation with re-
spect to [ Ps(dw)m(ds). Therefore,

BElog™®) = [ B (e (log" 3¢ ) wlas)

and it follows readily from the Malthusian hypotheses and the fact that g(w)=n EPPO is a
supermartingale, that this quantity is finite. Therefore by Theorem 6.1 [II] we get the
uniform P,-integrability of the martingale.

e We will now show that we actually have the stronger convergence by using Theorem

1 of [7]. In order to do that we first introduce some notation: recall ([£) and for 6 > p, we
define

m(9) =E ( / eerzm(dx)) =E g(uz):lgg =1—r(0)

and
WO0) = mi6) ™ [ 20 dn) = (1= k(p) " Y €l
g(u)=n
We notice that M, = W™ (py). Therefore in order to apply Theorem 1 of [7] and to get the
convergence almost surely and in pth mean for some p > 1, it is enough to show that

E(W M (py)") < 0o

for some v € (1, 2] and
m(ppo)/Im(po)|” <1

for some p € (1,7]. The first condition is a consequence of the Malthusian assumption.
Moreover the second follows from the identities

m(ppo)/Im(po)l” = (1 — (ppo))/I1 — K(po)|” =1 — K(ppo)

which, by the definition of py, is smaller that 1 for p > 1 well chosen. completes the proof of
the first part of the statement.

e Finally, let us now check that M., > 0 a.s. conditionally on non-extinction. Define
q =P(M., = 0), therefore as E(M.) = 1 we get that ¢ < 1. Moreover, an application of the
branching property yields

E(¢™) =1,
where 7, is the number of individuals with positive size at the n-th generation. By the
construction of the marked tree and as v is a probability measure: (Z,,n € N) is of course a

Galton-Watson process and it follows that ¢ is its probability of extinction. Since M., = 0
conditionally on the extinction, the two events coincide a.s. O



4 Evolution of the process in continuous time.

We define for u € Ry:
Fu) = / W™y (dm,)
My (%)

where fm stands for the numbers of atoms of the point measure mg. We notice that f(u)
is the generating function of the Galton-Watson process (Z,,n > 0) = (f{u € U : &, >
0 and g(u) =n},n >0).
From now on, we will suppose that for every ¢ > 0
! du
1—e€ f(U) —u
When an individual labelled by u has a positive size, &, > 0, let I, :== [a,,a, + (,) be

the interval of times during which this individual labelled by w is alive. Otherwise we decide
that I, = () when &, = 0.

Definition 2. We define the process X = (X (t),t > 0) with

X(t) =Y Myeryde,.t > 0. (4)

uel

= 00. (3)

In particular we denote for f : R, — R measurable function

X(t) =) f(&) ery-

ueU

For every x € R let P, be the law of the process X starting from a single individual with
size z. And for simplification, we denote P for Py, and let (F;):;>o be the natural filtration
of the process (X (t),t > 0).

Theorem 2. The process X takes its values in the set M,(R?), is a Markov chain, and more
precisely, enjoys the branching property: for every ms =) ds, € Mp(RY) and every t > 0,
the distribution of X (t) given that X (0) = my is the same as that of the sum > X (t) of
an independent random sequence where for each index i, XV (t) is distributed as X (t) under
P, .

The process X also has the scaling property, namely for every ¢ > 0, the distribution of
the rescaled process (¢ X (c*t),t > 0) under Py is P,.

For every measurable function ¢g : Ry — (0,00), define a multiplicative functional such
that for every my = 3" d5, € M,(R%):

exp(—(g,ms)) = exp(— Y _ g(s;)
Then the generator G of the Markov process X (t) fulfills for every m, =" d,, € M,(R%):

—(g:my) Zy e~ Ljid / (e~ (9tzvi)ms) _ =9y (dm,). (5)
My(RY)



Proof. e First we will check that for all £ > 0, X (¢) is a (random) finite point measure. By
Theorem [M and the Doob’s LP-inequality we get that for some p > 1:

sup Z g0 e LP(P).

neN
g(u)=n

As a consequence:

sup & € L7(P)

ueU
and then by the definition of the process X, writing X;(t),... for the (possibly infinite)
sequence of atoms of X ()

sup sup X;(t)™ € LP(P).
i teR}

Recall that py > 0 by assumption. We fix some arbitrarily large m > 0. We now work
conditionally on the event that the size of all individuals is bounded by m, and we will show
that the number of the individuals alive at time ¢ is finite for all ¢ > 0.

As we are conditioning on the event {sup,, & < m}, by the construction of the marked
tree, we get that the life time of an individual can be stochastically bounded from below by an
exponential variable of parameter m®. Therefore we can bound the number of individuals
present at time ¢ by the number of individuals of a continuous time branching process
denoted by GW in which each individual lives for a random time whose law is exponential
of parameter m® and the probability distribution of the offspring is the law of #s vV 1 under
v (we have taken the supremum with 1 in order to be sure that there is never any death).
For the Markov branching process GW, we are in the temporally homogeneous case and, we
notice that

w1y (dmy,) = (f(u) — u)v(tmg # 0) + u,
Mp(RY)
therefore as we have supposed (B), we can use Theorem 1 p.105 of the book of Athreya and
Ney [3] (proved in Theorem 9 p.107 of the book of Harris [I0]) and get that we are in the
non-explosive case for the GW. As the number of the individuals is bounded by that of GW
we get that the number of individuals at time ¢ is finite.

Therefore conditioning on the event {sup,, & < m}, we have that for all ¢ > 0, the
number of individuals at time ¢ is finite, i.e. X (¢) is a finite point measure.

e Second we will show the Markov property. Fix s € R;. Let 75 be equal to {u € U :
s € I,}. We notice that 7 is an optional line. In fact for all lines L C U we have that

{rs <L} ={s<a,+( YuelL}eH,.
By the definition of X, we have that the point measure

Z Wix; (t45)>01 0, (t45)

is equal to

> Werserle,-

uel



Let X(s) = Y "0, € My(R%) and consider the nodes (&,, v, -, &, ) such that X(s) =
Yo d¢,,- Define for all i <n

,fi = ((gviua Ay — Aoy s Cviu - ll{u:(l)} (8 - @vi))ueu) = ((ém am éu)UGZ/{)v

I, = |ay, a, + fu[ and
X(Z Z ﬂ{tEIu 196"

ueU

X(t+s) ZX

By the lack of memory of the exponential Var1able, we have that for u € U, given s € [,
the law of the marked tree T; is the same as that of

T = ((6”1’“7 Ay — Aoy Cviu)ueu) = (( qiu afm C;)ueu)

Thus we have the equality in law:

> Veryde, Y Mpersydes

uel ueU

Then

Let 7/ := {vu e U : s € I'}. Moreover for all lines L € U we have that
{Tsi < L} = {5 < aviu —|— gviu V'UZ"U/ S L} S HL-

Therefore 7! is an optional line and by applying Lemma [ for the optional stopping line 77,
we have that the point measure
D Mprser)Oe

uel

conditionally on H,, is distributed as X (¢) under P,,. Therefore (XM, X® . XM) is a
sequence of independent random processes, where for each i X @ (¢) is distributed as X ()
under P,.. We then have proven the Markovian property and the branching property.

e The scaling property is an easily consequence of the definition of the tree T,,. O

The intrinsic martingale M,, is indexed by the generations; it will also be convenient to
consider its analogue in continuous time, i.e

M(t) == (xP, X (t Z Wirer,y &0’
ueU

It is straightforward to check that (M (t),t > 0) is again a martingale in the natural filtration
(Fi)t>o of the process (X (t),t > 0); and more precisely, the argument Proposition 1.5 in [4]
gives:
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Corollary 3. The process (M(t),t > 0) is a martingale, and more precisely
M(t) = E(Mo| Fr),

where My, is the terminal value of the intrinsic martingale (M,,n € N). In particular M (t)
converges in LP(P) to My, for some p > 1.

Proof. We know that M, converges in LP(IP) to M. as n tends to oo, so

E(Myo|F) = lim E(M,|F,).

By Theorem [l as we have
sup £i° € L (P),

ueU

we fix m > 0. We now work on the event B, := {sup, ¢y, & < m}.
By applying the Markov property at time ¢ we easily get that

E(Ma|F) =) X' Nexamzny T O, E0Nautcuen (6)

g(u)=n

where G(&,) stands for the generation of the individual v (i.e. G(§,) = ¢g(v)), and a, + (,
is the instant when the individual corresponding to the node w reproduces. We can rewrite
the latter as
ay + Gy = 5,:91(1;)“90 + gn_l(;(u)quel + ...+ €Jaeg(u)

where eg,... is a sequence of independent exponential variables with parameter 1, which is
also independent of &,. We can remark that in the first term of sum (B)) we sum over the
size of the individuals which belong to the n-th generation and are alive at time ¢, and in
the second term we sum over those belonging to the n-th generation and are dead at time .

As « is non negative, and as we are working on the event B,,: 5;% > m~“ we have that
for each fixed node u € U , a, +(, is bounded from below by the sum of g(u)+1 independent
exponential variables with parameter m® which are independent of &,. Thus

T E (> e Uiy | =0,
g(u)=n
and therefore by (@) on the event {B,,}, we get that for all m > 0: E(My|F)1lip,) =
M(t)1yp,,}, and then by letting m tend to oo we get the result. O

5 A randomly tagged leaf.

We will here (as in [4]) define what a tagged individual is by using a tagged leaf.

11



We call leaf of the marked tree U an infinite sequence of integers | = (ui,...). For
each n, we associate to [ its ancestor [, := (uq, ..., u,) at the generation n. We enrich the
probabilistic structure by adding the information about a so called tagged leaf, chosen at
random as follows. Let H,, be the space of bounded functionals ® which depend on the mark
M and of the leaf [ on the n-th first generation, i.e. such that ®(M,l) = &(M',I')if I, =1,
and M(u) = M'(u) whenever g(u) < n. For such functionals, we use the slightly abusing
notation ®(M, 1) = ®(M,1,,). Asin [ for a pair (M, \) where M : U — [0,1] xR, xR, isa
random mark on the marked tree and A is a random leaf of U, the joint distribution denoted
by P* (and by P¥ if the size of the first mark is x instead of 1) can be defined unambiguously
by

EX(@(MN)=E [ Y oMu)k ], @¢ecH,
g(u)=n

Moreover since the intrinsic martingale (M,,, n € Z. ) is uniformly integrable (cf. Theorem[),
the first marginal of P* is absolutely continuous with respect to the law of the random mark
M under P, with density M.

Let A, be the node of the tagged leaf at the n-th generation. We denote x,, := &), for
the size of the individual corresponding to the node A, and x(¢) for the size of the tagged
individual alive at time t, viz.

X(t) :=xn if ay, <t<ay, +(,,
because in the case considered sup,,cy @y, = 00. Exactly as in [4] Lemma 1.4 there becomes:

Lemma 2. Let k : R, — Ry be a measurable function such that k(0) = 0. Then we have
for everyn € N

E'(k(x) =E | 3 &ok(s) | .

g(u)=n

and for every t > 0
E*(k(x(1))) = E ((z"k(x), X(1))) .

Proposition 1.6 of [4] becomes:

Proposition 4. Under P*,
Sp:=Inyx,, né€eZ,

15 a random walk on R with step distribution
P(In x,, — In x,a1 € dy) = v(dy),

where the probability measure v is defined by

k(y)v(dy) = 2P k(In(x)), mg)v(dms).
/M@)(y)/ (&P k(1n(z)), ma)v(dimy)

My (RY)

12



Equivalently, the Laplace transform of the step distribution is given by
E* (") =E (X)) =1-x(p+m), p=0.

Moreover, conditionally on (xn,n € Zy) the sequence of the lifetimes ((xy,Cy,,---) along
the tagged leaf s a sequence of independent exponential variables with respective parameters

a o
XO)XI)"'

We now see that we can use this proposition to obtain the description of x,, by a Lamperti
transformation. Let
n; =S o Ny, t >0,

with N a Poisson process with parameter 1 which is independent of the random walk S;
for probabilities and expectations related to  we use the notation P and E. The process
(x(t),t > 0) is Markovian and enjoys a scaling property. More precisely under P* we get
that

x(t) = exp(Nr(z-oy), t>0,

where 7 is the compound Poisson defined above and 7 the time-change defined implicitly by
(t)
t= / exp(ans)ds, t>0.
0

6 Asymptotic behaviors.

6.1 The convergence of the size of a tagget individual.

Let
Awwz—/ (27 In(z), my)v(dm,)
My (R

denote the derivative of x at the Malthusian parameter py.

Proposition 5. Suppose that o > 0, that the support of v is not a discrete subgroup rZ for
any v > 0 and that 0 < k' (py) < co. Then for every y > 0

P, (tx(t) € ) = P(x(1) € ),

as t — oo, where P is a probability measure such that for every measurable function k :

R, - R,
E(k(x(1)%) = — BE(k(I)I™Y),

am
with I := [° exp(om,)ds and m := E(m).
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Proof. As —k'(po) is the mean of the step distribution of the random walk S,, (see Proposition
H), therefore s (po) > 0 imply that E(—n;) > 0 thus the assumption of Theorem 1 in the
article by Bertoin and Yor [6] is fulfilled by the self-similar Markov process x(t)~!, which

gives the result.
We could also see by direct calculation that F(—mn;) is equal to & (po).
U

Remark 2. e In the case k' (py) = 0 we can extend this proposition. More precisely if
fMp x”o\ In(x)|, ms)v(dms) < oo,

Y xv~ (|x, oo])dx
J= /1 1+ [ dy fyoo v=(] — oo, —2[)dz

< 00,

(with v~ is the image of U by the map u — —u where v is defined in Proposition [)) and
E (logJr fOTl e"7$ds> < oo (with T, := inf{t : —m > z}) hold then

1. Foranyy >0
P, (1 (t) € ) = Po(x(1) € -),

as t — oo, where Py is a probability measure.

2. For any bounded and continuous function k and for t > 0:
1 _
o (K(x(1)*)) = lim S B(I; k(1 /1),

where I = [;° exp(an, — As)ds.

The proof is the same as the previous one using Theorem 1 and Theorem 2 from the article
by Caballero and Chaumont [§] instead of [6].

o We could also try to use the same method as the one used in [{] Proposition 1.7. But
the problem is that in our case E({(xP, X (t))) is not necessarily finite when p is large, and
even if it was the case, its derivative is not completely monotone because k is not necessarily
positive when p 1s large. This explains why we have to use a different method.

6.2 Convergence of the mean measure and LP-convergence.

We encode the configuration of masses X (t) = {X;(t)} by the weighted empirical measure

O¢ —ZX tl/aX (t)

which has total mass M (t).
The associated mean measure o} is defined by the formula

/0 " k(2)or(dz) = E ( /0 h k(:)s)at(d:v))
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which is required to hold for all compactly supported continuous functions k. Since M (t) is
a martingale, o} is a probability measure.
Therefore, with Proposition Bl and Lemma ] we easily get:

Corollary 6. With the assumptions of Proposition [ we get:

1. The measures o converge weakly, as t — oo, to the probability measure P(x(1) € .)
i.e. for any measurable function k: R, — R, |, we have:

E ((a"k(t"/°2), X(1))) — E(k(x(1)).

t—o0
2. For all p. > p > py:
PR (o7, X (1)) — E((x(1))"™).

t—oo

We now formulate a more precise result concerning the convergence of the empirical
measure:

Theorem 7. Under the same assumptions as in Proposition[d we get that for every bounded
continuous function k:

0 . Moo
P —1lim [ k(z)oy(dr) = MuE(k(x(1))) = —=E(k(I)I"),
t—oo [ am
for some p > 1.
Remark 3. A slightly different version of Corollary[@ and Theorem [ exists also under the
assumptions in Remark [

See also Asmussen and Kaplan [T] and [2] for a closely related result.

Proof. We use the same method as Section 1.4. in [4] and in this direction we use Lemma
1.5 there: for (A(t))i>0 = (Mi(t),7 € N)i>0 a sequence of non-negative random variables such
that for fixed p > 1

sup E ((i )\i(t)> ) < oo and tIB?oE (i )xi(t)) =0,

20 i=1

and for (Y;(¢),7 € N) a sequence of random variables which are independent conditionally
on \(t), we assume that there exists a sequence (1_/1,2 € N) of i.i.d variables in L?(IP), which
is independent of A(t) for each fixed ¢, and such that |Y;(¢)| < Y; for all i € N and t > 0.

Then we know from Lemma 1.5 in [4] that

lim » Xi(t)(Yi(t) — E (Yi()[A(2))) = 0. (7)

1=1
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Now, let k be a continuous function bounded by 1 and let
Ay = (@Pk(tex), X (1)),

By application of the Markov property at time t for A;,, and the self-similarity property
of the process X we can rewrite A, as

Z Ai(t)Yi(t, s)
where \;(t) := X?°(t) and
Yi(t, s) = (@Pk((t + )X, (t)x), X, (5)),

with X , Xs , ... a sequence of i.i.d. copies of X which is independent of X (¢).

By Theorem [[] we get that
0 P
sup £ it < 00.
== ((5h0))

By the last corollary we also obtain that

- (Z Af(t)) ~ I (1)) 0,
i=1

as t — oo.
Moreover the variables Y;(¢, s) are uniformly bounded by

Yi = sup(a™, X;_(s)),

s>0

which are i.i.d. variables and also bounded in LP(PP) thanks to Doob’s inequality (as we have
that (z,,, X; (s)) is a martingale bounded in L?(P)).
Thus we may apply ([d), which reduces the study to that of the asymptotic behaviour of:

i AEM(E )X (0),
as ¢ tends to co. On the event {X;(t) =y}, we get
B(Vi(t, ) X(0)) = E ({a((t +5)//*yz), X(5))).
Then by Lemma Bt
B ((PR((t + 5)!/"ya), X, () = B (k (¢ + 9 9x())).

16



With Proposition B we obtain

lim E* (k (( +5)"/*yx(s))) = E (k (x(1))).

t—o0

Moreover recall from Corollary Bl that > .~ A;(t) converges to My in LP(P). Therefore we
finally get that when ¢ goes to infinity:

Z MOE(Yi(t, )X (8) ~E(k (x(1)) D Xilt) ~ E(k (x(1))) Mec.

i=1
Acknowledgements: 1 wish to thank J. Bertoin for his help and suggestions.
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