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Self-similar bran
hing Markov 
hainsNathalie KrellAugust 1, 2007Laboratoire de Probabilités et Modèles Aléatoires,Université Pierre et Marie Curie,175 rue du Chevaleret, 75013 Paris, Fran
e.Abstra
tThe main purpose of this work is to study self-similar bran
hing Markov 
hains.First we will 
onstru
t su
h a pro
ess. Then we will establish 
ertain Limit Theoremsusing the theory of self-similar Markov pro
esses.Key Words. Bran
hing pro
ess, Self-similar Markov pro
ess, Tree of generations, LimitTheorems.A.M.S. Classi�
ation. 60J80, 60G18, 60F25, 60J27.e-mail. krell�

r.jussieu.fr
1 Introdu
tion.This work is a 
ontribution to the study of a spe
ial type of bran
hing Markov 
hains. We will
onstru
t a 
ontinuous time bran
hing 
hain X whi
h has a self-similar property and whi
htakes its values in the spa
e of �nite point measures. This type of pro
ess is a generalisationof a self-similar fragmentation (see [4℄), whi
h applies to 
ases where the size modelises nonadditive quantities as e.g. surfa
e energy in aerosols. We will fo
us on the 
ase wherethe index of self-similarity α is non-negative, whi
h means that the bigger individuals willreprodu
e faster than the smaller ones. There is of 
ourse no lost of generality by 
onsideringthis model, as 1/X is then a self-similar pro
ess where the index of self-similarity equal to
−α (whi
h mean that the smaller individuals will reprodu
e faster than the bigger ones.)1



We extend the method used in [4℄ to deal with more general pro
esses where we allowan individual to have a mass bigger than that of its parent. First we will re
all someba
kground on trees and more spe
i�
ally on marked trees. Then, we will 
onstru
t su
ha pro
ess, indexed by generations (it is simply a random mark on the tree of generation,see Se
tion 2). Thanks to a martingale whi
h is asso
iated to the latter and the theory ofrandom stopping lines on a tree of generation, we will de�ne the pro
ess indexed by time.After having 
onstru
ted the pro
ess, we will study the evolution of the randomly 
hosenbran
h of the 
hain, from whi
h we shall dedu
e some Limit Theorems, relying on the theoryof self-similar Markov pro
esses.2 The marked tree.Let α ≥ 0 be an index of self-similarity and ν be some probability measure on
Mp(R

∗
+) :=

{
ms =

n∑

i=1

δsi
with n ∈ N and si > 0 for all 1 ≤ i ≤ n

}
,the spa
e of �nite point measures on R

∗
+. We also de�ne for f : R

∗
+ → R measurable fun
tionand ms ∈ Mp(R

∗
+)

〈f,ms〉 :=
∑

f(si),by taking the sum over the atoms of ms repeated a

ording to their multipli
ity and we willsometimes use the slight abuse of notation
〈f(x), ms〉 :=

∑
f(si)when f is de�ned as a fun
tion depending on the variable x. We endow the spa
e Mp(R

∗
+)with the topology of weak 
onvergen
e, whi
h means that mn 
onverge to m if and only if

〈f,mn〉 
onverge to 〈f,m〉 for all 
ontinuous bounded fun
tions f .The aim of this work is to 
onstru
t a bran
hing Markov 
hain X = ((
∑
δXi(t))t≥0) withvalues in Mp(R

∗
+), whi
h is self-similar with index α and has reprodu
tion law ν. The indexof self-similarity will play a part in the rate in whi
h an individual will reprodu
e and thereprodu
tion law ν will spe
ify the distribution of the o�spring. We stress that our settingin
ludes the 
ase when

ν(s1 > 1) > 0, (1)whi
h means that with a positive probability the size of a 
hild 
an ex
eed that of his mother.In order to do that, exa
tly as des
ribed in Chapter 1 se
tion 1.2.1 of [4℄, we will 
onstru
ta marked tree.First we will introdu
e some notions. We 
onsider the in�nite tree
U := ∪∞

n=0N
n,2



with the notation N = {1, 2, ...} and N
0 = {∅}. In the sequel the elements of U are 
allednodes (or sometimes also individuals) and the distinguished node ∅ the root. For ea
h u =

(u1, ..., un) ∈ U , we 
all n the generation of u and write g(u) = n, with the obvious 
onvention
g(∅) = 0. When n ≥ 0 u = (u1, ..., un) ∈ N

n and i ∈ N, we write ui = (u1, ..., un, i) ∈ N
n+1for the i-th 
hild of u. We also de�ne for u = (u1, ..., un) with n ≥ 2,

mu = (u1, ..., un−1)the mother of u, mu = ∅ if u ∈ N. If v = mnu for some n ≥ 0 we write v ≺ u and say that
u stems from v. Additionally for M a set of U , M ≺ v means that u ≺ v for some u ∈ M .Generally we write M ≺ L if for all x ∈ L stem from M .Here it will be 
onvient to identify the �nite sequen
e s = (s1, ..., sn) of positive realnumbers with the in�nite sequen
e (s1, ..., sn, 0, ...) obtained by aggregation of in�nitelymany 0's.In parti
ular we say that an in�nite sequen
e (ξi, i ∈ N) has the law ν, if there is a(random) index n su
h that ξi = 0 ⇔ i > n and the �nite point measure ∑n

i=1 δξi
has thelaw ν.De�nition 1. Let two independent families of i.i.d. variables be indexed by the nodes of thetree, (ξ̃u, u ∈ U) and (eu, u ∈ U), where for ea
h u ∈ U (ξ̃ui)i∈N is distributed a

ording tothe law ν, and (eui)i∈N is a sequen
e of i.i.d. exponential variables with parameter 1. Wede�ne for some �xed x > 0

ξ∅ := x, a∅ := 0, ζ∅ := x−α
e∅,and for u ∈ U and i ∈ N:

ξui := ξ̃uiξu, aui := au + ζu, ζui := ξ−α
ui eui.To ea
h node u of the tree U , we asso
iate the mark (ξu, au, ζu) where ξu is the size, au thebirth-time and ζu the lifetime of the individual with label u. We 
all

Tx = ((ξu, au, ζu)u∈U)a marked tree with root of size x, and the law asso
iated is denoted by Px. Let Ω̄ be the setof all the possible marked trees.The size of the individuals (ξu, u ∈ U) de�ne a so-
alled multipli
ative 
as
ade (see thereferen
es in Se
tion 3 of [5℄). But the latter would not be enough to 
onstru
t the pro
ess
X, in fa
t we also need the information given by ((au, ζu), u ∈ U).Another useful 
on
ept is that of stopping line, or, for short, line. L ⊂ U is a (stopping)line if u, v ∈ L, u ≺ v ⇒ u = v. The pre-L-sigma algebra is

HL := σ(ξ̃u, eu; ∃l ∈ L : u ≺ l).3



A random set of individuals
J : Ω̄ → P(U)is optional if {J ≺ L} ∈ HL for all L ⊂ U , where P(U) is the power set of U . An optionalline is a random stopping line whi
h is optional. For any optional set J we de�ne thepre-J -algebra by:

A ∈ HJ ⇔ ∀L line ⊂ U : A ∩ {J ≺ L} ∈ HL.See also the arti
le of Chauvin [9℄ for additional information about this 
on
ept.Lemma 1. The marked tree 
onstru
ted in De�nition 1 veri�es the strong Markov bran
hingproperty: for J an optional stopping line and ϕu : Ω̄ → [0, 1], u ∈ U , measurable fun
tions,we get that,
E1

(
∏

u∈J

ϕu ◦ T
(ξu)

∣∣∣∣∣HJ

)
=
∏

u∈J

Eξu(ϕu),where T (ξu) is the marked tree extra
ted from T1 at the node (ξu, au, ζu). More pre
isely
T (ξu) = ((ξuv, auv − au, ζuv)v∈U ).Proof. Thanks to the i.i.d properties of the random variables (ξ̃u, u ∈ U) and (eu, u ∈ U),the Markov property for stopping lines is of 
ourse easily 
he
ked. In order to get the resultfor a more general optional stopping line, we use Theorem 4.14 of [11℄. Indeed, the tree wehave 
onstru
ted is a spe
ial 
ase of the tree 
onstru
ted by Jagers in [11℄. In our 
ase thetype ρu of u ∈ U , is the mass of u: ξu, τu is here equal to ζu (be
ause here the mother dieswhen she gives birth to her 
hildren whose birth times are all the same), and the birth time

σu is au.3 Malthusian hypotheses and the intrinsi
 martingale.We start by introdu
ing some notation:
p := inf

{
p ∈ R :

∫

Mp(R∗
+)

〈xp, ms〉ν(dms) <∞

}
,and

p := inf

{
p > p :

∫

Mp(R∗
+)

〈xp, ms〉ν(dms) = ∞

}(with the 
onvention inf ∅ = ∞) and then for every p ∈]p, p[:
κ(p) :=

∫

Mp(R∗
+)

(1 − 〈xp, ms〉) ν(dms).4



Note that κ is a 
ontinuous and 
on
ave fun
tion (but not ne
essarily a stri
tly in
reasingfun
tion) on ]p, p[, as p→ ∫
Mp(R∗

+)
〈xp, ms〉ν(dms) is a 
onvex appli
ation. By 
on
avity, theequation κ(p) = 0 has at most two solutions on ]p, p[. When a solution exists, we denote by

p0 := inf{p ∈]p, p[: κ(p) = 0} the smallest, and 
all p0 the Malthusian exponent.We now make the fundamental:Malthusian Hypotheses. We suppose that the Maltusian exponent p0 exists, that p0 >
0, and that

κ(p) > 0 for some p > p0.Furthermore we suppose that the integral
∫

Mp(R∗
+)

(〈xp0, ms〉)
p ν(dms)is �nite for some p > 1.Throughout the rest of this arti
le, these hypotheses will always be taken forgranted.In this arti
le we will 
all extin
tion the event that for some n ∈ N, all nodes u at the

n-th generation have zero size, and non-extin
tion the 
omplementary event. We see thatthe probability of extin
tion is always stri
tly positive whenever ν(s1 = 0) > 0, and equalszero if and only if ν(s1 = 0) = 0.Theorem 1. The pro
ess
Mn :=

∑

g(u)=n

ξp0
u , n ∈ Nis a martingale whi
h is bounded in Lp(P) for some p > 1, and in parti
ular is uniformlyintegrable.Moreover, 
onditionally on non-extin
tion the terminal value M∞ is stri
tly positive a.s.Remark 1. • As κ is 
on
ave the equation κ(p) = 0 may have a se
ond root p+ := inf{p >

p0, κ(p) = 0}). This se
ond root will not interest us: even though
M+

n :=
∑

g(u)=n

ξp+
u , n ∈ N,is also a martingale, it is easy to 
he
k that for all p > 1 the p-variation of M+

n is in�nite.We 
an noti
e that for all p ∈]p0, p+[ (M
(p)
n )n∈N := (

∑
g(u)=n ξ

p
u)n∈N is a supermartingale.

• Using the bran
hing property we get the identity in law
M∞

(d)
=

∞∑

j=1

ξp0

j M
(j)
∞where ξ = (ξj , j ∈ N) follows the law ν(.), and M

(j)
∞ are independent 
opies of M∞, alsoindependent of ξ. 5



Proof. In the �rst point we will use the arti
le of Jagers [11℄ to show the uniform integrabilityofM(t). In the se
ond point we will use the fa
t that the empiri
al measure of the logarithmof the sizes of fragments
Z(n) :=

∑

g(u)=n

δlog ξu (2)
an be viewed as a bran
hing random walk (see the arti
le of Biggins [7℄). In the last pointwe will show the last part of the theorem.
• The aim of the �rst point is to show that the 
ondition of Malthusian population isful�lled in order to apply Theorem 5.1 of [11℄. We �rst introdu
e some notation. For r ∈ R+,let ϑr be the stru
tural probability:

ϑr(B) := Er(♯{u ∈ U : ξu ∈ B}) for B ⊂ B,where B is the Borel algebra on R+. Let the reprodu
tion measure µ be su
h that for every
r ≥ 0:

µ(r, du× ds) := rαe−rαuduϑr(ds)and for any λ ∈ R

µλ(r, du× ds) := e−λsµ(r, du× ds).The 
omposition operation ∗ denotes the Markov transition on the size spa
e R+ and 
on-volution on the time spa
e R+, so that: for all A ∈ B and B ∈ B,
µ∗2(s, A× B) = µ ∗ µ(s, A× B) =

∫

R+×R+

µ(r, A× (B − u))µ(s, dr× du).With the 
onvention that the ∗-power 0 is 1l{A×B}(s, 0) whi
h gives all the mass to (s, 0). Wede�ne the renewal measure as
ψλ :=

∞∑

0

µ∗n
λ .Let

α
′

:= inf{λ : ψλ(s,R+ × R+) <∞ for some s ∈ R+}.Moreover as
µλ(r,R+ × R+) =

{
rα/(rα + λ) if λ > −rα

∞ else,thus we get α′

= 0. For A ∈ B, let
π(A) := lim

n→∞
µ∗n(1, A× R+)whi
h is well de�ned as µ∗n(1, A× R+) is a de
reasing fun
tion in n and nonnegative. Let

h(s) := sp0 for all s ∈ R+ and β := 1. These obje
ts 
orrespond to those de�ned in [11℄. Thus6



by Theorem 5.1 in [11℄ applied for L = {u ∈ U : g(u) = n} and M = {u ∈ U : g(u) = m}with m ≥ n ≥ 0, we get that Mn is a martingale.Let ξ :=
∫

R+×R+
h(s)rαe−trα

dtϑ1(ds) =
∑

g(u)=1 ξ
p0
u and Eπ be the expe
tation with re-spe
t to ∫

R+
Ps(dw)π(ds). Therefore,

Eπ(ξ log+ ξ) =

∫

R+

Es

(∑
ξp0

i

(
log+

∑
ξp0

j

))
π(ds),and it follows readily from the Malthusian hypotheses and the fa
t that ∑g(u)=n ξ

pp0
u is asupermartingale, that this quantity is �nite. Therefore by Theorem 6.1 [11℄ we get theuniform Ps-integrability of the martingale.

• We will now show that we a
tually have the stronger 
onvergen
e by using Theorem1 of [7℄. In order to do that we �rst introdu
e some notation: re
all (2) and for θ > p, wede�ne
m(θ) := E

(∫
eθxZ(1)(dx)

)
= E



∑

g(u)=1

ξθ
u


 = 1 − κ(θ)and

W (n)(θ) := m(θ)−n

∫
eθxZ(n)(dx) = (1 − κ(p))−n

∑

g(u)=n

ξθ
u.We noti
e that Mn = W (n)(p0). Therefore in order to apply Theorem 1 of [7℄ and to get the
onvergen
e almost surely and in pth mean for some p > 1, it is enough to show that

E(W (1)(p0)
γ) <∞for some γ ∈ (1, 2] and

m(pp0)/|m(p0)|
p < 1for some p ∈ (1, γ]. The �rst 
ondition is a 
onsequen
e of the Malthusian assumption.Moreover the se
ond follows from the identities

m(pp0)/|m(p0)|
p = (1 − κ(pp0))/|1 − κ(p0)|

p = 1 − κ(pp0)whi
h, by the de�nition of p0, is smaller that 1 for p > 1 well 
hosen. 
ompletes the proof ofthe �rst part of the statement.
• Finally, let us now 
he
k that M∞ > 0 a.s. 
onditionally on non-extin
tion. De�ne

q = P(M∞ = 0), therefore as E(M∞) = 1 we get that q < 1. Moreover, an appli
ation of thebran
hing property yields
E(qZn) = q,where Zn is the number of individuals with positive size at the n-th generation. By the
onstru
tion of the marked tree and as ν is a probability measure: (Zn, n ∈ N) is of 
ourse aGalton-Watson pro
ess and it follows that q is its probability of extin
tion. Sin
e M∞ = 0
onditionally on the extin
tion, the two events 
oin
ide a.s.7



4 Evolution of the pro
ess in 
ontinuous time.We de�ne for u ∈ R+:
f(u) :=

∫

Mp(R∗
+)

u♯msν(dms)where ♯ms stands for the numbers of atoms of the point measure ms. We noti
e that f(u)is the generating fun
tion of the Galton-Watson pro
ess (Zn, n ≥ 0) = (♯{u ∈ U : ξu >
0 and g(u) = n}, n ≥ 0).From now on, we will suppose that for every ǫ > 0

∫ 1

1−ǫ

du

f(u) − u
= ∞. (3)When an individual labelled by u has a positive size, ξu > 0, let Iu := [au, au + ζu) bethe interval of times during whi
h this individual labelled by u is alive. Otherwise we de
idethat Iu = ∅ when ξu = 0.De�nition 2. We de�ne the pro
ess X = (X(t), t ≥ 0) with

X(t) =
∑

u∈U

1l{t∈Iu}δξu , t ≥ 0. (4)In parti
ular we denote for f : R+ → R measurable fun
tion
〈f,X(t)〉 =

∑

u∈U

f(ξu)1l{t∈Iu}.For every x ∈ R
∗
+ let Px be the law of the pro
ess X starting from a single individual withsize x. And for simpli�
ation, we denote P for P1, and let (Ft)t≥0 be the natural �ltrationof the pro
ess (X(t), t ≥ 0).Theorem 2. The pro
ess X takes its values in the set Mp(R

∗
+), is a Markov 
hain, and morepre
isely, enjoys the bran
hing property: for every ms =

∑
δsi

∈ Mp(R
∗
+) and every t ≥ 0,the distribution of X(t) given that X(0) = ms is the same as that of the sum ∑

X(i)(t) ofan independent random sequen
e where for ea
h index i, X(i)(t) is distributed as X(t) under
Psi

.The pro
ess X also has the s
aling property, namely for every c > 0, the distribution ofthe res
aled pro
ess (cX(cαt), t ≥ 0) under P1 is Pc.For every measurable fun
tion g : R+ → (0,∞), de�ne a multipli
ative fun
tional su
hthat for every ms =
∑
δsi

∈ Mp(R
∗
+):

exp(−〈g,ms〉) = exp(−
∑

g(si)).Then the generator G of the Markov pro
ess X(t) ful�lls for every my =
∑
δyi

∈ Mp(R
∗
+):

Ge−〈g,my〉 =
∑

yα
i e

−
∑

j 6=i g(yj)

∫

Mp(R∗
+)

(e−〈g(xyi),ms〉 − e−g(yi))ν(dms). (5)8



Proof. • First we will 
he
k that for all t ≥ 0, X(t) is a (random) �nite point measure. ByTheorem 1 and the Doob's Lp-inequality we get that for some p > 1:
sup
n∈N

∑

g(u)=n

ξp0
u ∈ Lp(P).As a 
onsequen
e:

sup
u∈U

ξp0
u ∈ Lp(P)and then by the de�nition of the pro
ess X, writing X1(t), ... for the (possibly in�nite)sequen
e of atoms of X(t)

sup
i

sup
t∈R+

Xi(t)
p0 ∈ Lp(P).Re
all that p0 > 0 by assumption. We �x some arbitrarily large m > 0. We now work
onditionally on the event that the size of all individuals is bounded by m, and we will showthat the number of the individuals alive at time t is �nite for all t ≥ 0.As we are 
onditioning on the event {supu∈U ξu ≤ m}, by the 
onstru
tion of the markedtree, we get that the life time of an individual 
an be sto
hasti
ally bounded from below by anexponential variable of parameter mα. Therefore we 
an bound the number of individualspresent at time t by the number of individuals of a 
ontinuous time bran
hing pro
essdenoted by GW in whi
h ea
h individual lives for a random time whose law is exponentialof parameter mα and the probability distribution of the o�spring is the law of ♯s ∨ 1 under

ν (we have taken the supremum with 1 in order to be sure that there is never any death).For the Markov bran
hing pro
ess GW , we are in the temporally homogeneous 
ase and, wenoti
e that ∫

Mp(R∗
+)

u(♯ms)∨1ν(dms) = (f(u) − u)ν(♯ms 6= 0) + u,therefore as we have supposed (3), we 
an use Theorem 1 p.105 of the book of Athreya andNey [3℄ (proved in Theorem 9 p.107 of the book of Harris [10℄) and get that we are in thenon-explosive 
ase for the GW . As the number of the individuals is bounded by that of GWwe get that the number of individuals at time t is �nite.Therefore 
onditioning on the event {supu∈U ξu ≤ m}, we have that for all t ≥ 0, thenumber of individuals at time t is �nite, i.e. X(t) is a �nite point measure.
• Se
ond we will show the Markov property. Fix s ∈ R+. Let τs be equal to {u ∈ U :

s ∈ Iu}. We noti
e that τs is an optional line. In fa
t for all lines L ⊂ U we have that
{τs ≺ L} = {s < au + ζu ∀u ∈ L} ∈ HL.By the de�nition of X, we have that the point measure

∑
1l{Xj(t+s)>0}δXj(t+s)is equal to ∑

u∈U

1l{t+s∈Iu}δξu .9



Let X(s) =
∑n

i=1 δxi
∈ Mp(R

∗
+) and 
onsider the nodes (ξv1 , ξv2, ..., ξvn) su
h that X(s) =∑n

i=1 δξvi
. De�ne for all i ≤ n

T̃i := ((ξviu, aviu − avi
, ζviu − 1l{u=∅}(s− avi

))u∈U) = ((ξ̃u, ãu, ζ̃u)u∈U),

Ĩu := [ãu, ãu + ζ̃u[ and
X(i)(t) =

∑

u∈U

1l{t∈Ĩu}
δξ̃u
.Then

X(t+ s) =

n∑

i=1

X(i)(t).By the la
k of memory of the exponential variable, we have that for u ∈ U , given s ∈ Iuthe law of the marked tree T̃i is the same as that of
T (ξvi ) := ((ξviu, aviu − avi

, ζviu)u∈U) = ((ξi
u, a

i
u, ζ

i
u)u∈U).Thus we have the equality in law:

∑

u∈U

1l{t∈Ĩu}
δξ̃u

d
=
∑

u∈U

1l{t∈Ii
u}
δξi

u
,with I i

u := [ai
u, a

i
u + ζ i

u[.Let τ i
s := {viu ∈ U : s ∈ I i

u}. Moreover for all lines L ∈ U we have that
{τ i

s ≺ L} = {s < aviu + ζviu ∀viu ∈ L} ∈ HL.Therefore τ i
s is an optional line and by applying Lemma 1 for the optional stopping line τ i

s,we have that the point measure ∑

u∈U

1l{t+s∈Ii
u}
δξi

u
onditionally on Hτs is distributed as X(t) under Pxi
. Therefore (X(1), X(2), ..., X(n)) is asequen
e of independent random pro
esses, where for ea
h i X(i)(t) is distributed as X(t)under Pxi

. We then have proven the Markovian property and the bran
hing property.
• The s
aling property is an easily 
onsequen
e of the de�nition of the tree Tx.The intrinsi
 martingale Mn is indexed by the generations; it will also be 
onvenient to
onsider its analogue in 
ontinuous time, i.e

M(t) := 〈xp0 , X(t)〉 =
∑

u∈U

1l{t∈Iu}ξ
p0
u .It is straightforward to 
he
k that (M(t), t ≥ 0) is again a martingale in the natural �ltration

(Ft)t≥0 of the pro
ess (X(t), t ≥ 0); and more pre
isely, the argument Proposition 1.5 in [4℄gives: 10



Corollary 3. The pro
ess (M(t), t ≥ 0) is a martingale, and more pre
isely
M(t) = E(M∞|Ft),where M∞ is the terminal value of the intrinsi
 martingale (Mn, n ∈ N). In parti
ular M(t)
onverges in Lp(P) to M∞ for some p > 1.Proof. We know that Mn 
onverges in Lp(P) to M∞ as n tends to ∞, so

E(M∞|Ft) = lim
n→∞

E(Mn|Ft).By Theorem 1 as we have
sup
u∈U

ξp0
u ∈ Lp(P),we �x m > 0. We now work on the event Bm := {supu∈U ξu ≤ m}.By applying the Markov property at time t we easily get that

E(Mn|Ft) =
∑

Xp0

i (t)1l{G(Xi(t))≤n} +
∑

g(u)=n

ξp0
u 1l{au+ζu<t} (6)where G(ξv) stands for the generation of the individual v (i.e. G(ξv) = g(v)), and au + ζuis the instant when the individual 
orresponding to the node u reprodu
es. We 
an rewritethe latter as

au + ζu = ξ−α
mg(u)u

e0 + ξ−α
mg(u)−1u

e1 + ... + ξ−α
u eg(u)where e0,... is a sequen
e of independent exponential variables with parameter 1, whi
h isalso independent of ξu. We 
an remark that in the �rst term of sum (6) we sum over thesize of the individuals whi
h belong to the n-th generation and are alive at time t, and inthe se
ond term we sum over those belonging to the n-th generation and are dead at time t.As α is non negative, and as we are working on the event Bm: ξ−α

miu ≥ m−α we have thatfor ea
h �xed node u ∈ U , au +ζu is bounded from below by the sum of g(u)+1 independentexponential variables with parameter mα whi
h are independent of ξu. Thus
lim

n→∞
E



∑

g(u)=n

ξp0
u 1l{au+ζu<t}1l{Bm}


 = 0,and therefore by (6) on the event {Bm}, we get that for all m > 0: E(M∞|Ft)1l{Bm} =

M(t)1l{Bm}, and then by letting m tend to ∞ we get the result.5 A randomly tagged leaf.We will here (as in [4℄) de�ne what a tagged individual is by using a tagged leaf.11



We 
all leaf of the marked tree U an in�nite sequen
e of integers l = (u1, ...). Forea
h n, we asso
iate to l its an
estor ln := (u1, ..., un) at the generation n. We enri
h theprobabilisti
 stru
ture by adding the information about a so 
alled tagged leaf, 
hosen atrandom as follows. Let Hn be the spa
e of bounded fun
tionals Φ whi
h depend on the mark
M and of the leaf l on the n-th �rst generation, i.e. su
h that Φ(M, l) = Φ(M

′

, l
′

) if ln = l
′

nand M(u) = M
′

(u) whenever g(u) ≤ n. For su
h fun
tionals, we use the slightly abusingnotation Φ(M, l) = Φ(M, ln). As in [4℄ for a pair (M,λ) where M : U → [0, 1]×R+×R+ is arandom mark on the marked tree and λ is a random leaf of U , the joint distribution denotedby P
∗ (and by P

∗
x if the size of the �rst mark is x instead of 1) 
an be de�ned unambiguouslyby

E
∗(Φ(M,λ)) = E



∑

g(u)=n

Φ(M,u)ξp0
u


 , Φ ∈ Hn.Moreover sin
e the intrinsi
 martingale (Mn, n ∈ Z+) is uniformly integrable (
f. Theorem 1),the �rst marginal of P

∗ is absolutely 
ontinuous with respe
t to the law of the random mark
M under P, with density M∞.Let λn be the node of the tagged leaf at the n-th generation. We denote χn := ξλn forthe size of the individual 
orresponding to the node λn and χ(t) for the size of the taggedindividual alive at time t, viz.

χ(t) := χn if aλn ≤ t < aλn + ζλn ,be
ause in the 
ase 
onsidered supn∈N aλn = ∞. Exa
tly as in [4℄ Lemma 1.4 there be
omes:Lemma 2. Let k : R+ → R+ be a measurable fun
tion su
h that k(0) = 0. Then we havefor every n ∈ N

E
∗(k(χn)) = E




∑

g(u)=n

ξp0
u k(ξu)



 ,and for every t ≥ 0
E
∗(k(χ(t))) = E (〈xp0k(x), X(t)〉) .Proposition 1.6 of [4℄ be
omes:Proposition 4. Under P

∗,
Sn := lnχn, n ∈ Z+is a random walk on R with step distribution

P(lnχn − lnχn+1 ∈ dy) = ν̃(dy),where the probability measure ν̃ is de�ned by
∫

]0,∞[

k(y)ν̃(dy) =

∫

Mp(R∗
+)

〈xp0k(ln(x)), ms〉ν(dms).12



Equivalently, the Lapla
e transform of the step distribution is given by
E
∗(epS1) = E

∗(χp
1) = 1 − κ(p+ p0), p ≥ 0.Moreover, 
onditionally on (χn, n ∈ Z+) the sequen
e of the lifetimes (ζλ0 , ζλ1, ...) alongthe tagged leaf is a sequen
e of independent exponential variables with respe
tive parameters

χα
0 , χ

α
1 , ...We now see that we 
an use this proposition to obtain the des
ription of χn by a Lampertitransformation. Let

ηt := S ◦Nt, t ≥ 0,with N a Poisson pro
ess with parameter 1 whi
h is independent of the random walk S;for probabilities and expe
tations related to η we use the notation P and E. The pro
ess
(χ(t), t ≥ 0) is Markovian and enjoys a s
aling property. More pre
isely under P

∗
x we getthat

χ(t) = exp(ητ(tx−α)), t ≥ 0,where η is the 
ompound Poisson de�ned above and τ the time-
hange de�ned impli
itly by
t =

∫ τ(t)

0

exp(αηs)ds, t ≥ 0.6 Asymptoti
 behaviors.6.1 The 
onvergen
e of the size of a tagget individual.Let
κ

′

(p0) = −

∫

Mp(R∗
+)

〈xp0 ln(x), ms〉ν(dms)denote the derivative of κ at the Malthusian parameter p0.Proposition 5. Suppose that α > 0, that the support of ν is not a dis
rete subgroup rZ forany r > 0 and that 0 < κ
′

(p0) <∞. Then for every y > 0

P
∗
y(t

1/αχ(t) ∈ ·) ⇒ P(χ(1) ∈ ·),as t → ∞, where P is a probability measure su
h that for every measurable fun
tion k :
R+ → R+

E(k(χ(1)α)) =
1

αm
E(k(I)I−1),with I :=

∫∞

0
exp(αηs)ds and m := E(η1). 13



Proof. As −κ′

(p0) is the mean of the step distribution of the random walk Sn (see Proposition4), therefore κ′

(p0) > 0 imply that E(−η1) > 0 thus the assumption of Theorem 1 in thearti
le by Bertoin and Yor [6℄ is ful�lled by the self-similar Markov pro
ess χ(t)−1, whi
hgives the result.We 
ould also see by dire
t 
al
ulation that E(−η1) is equal to κ′

(p0).Remark 2. • In the 
ase κ′

(p0) = 0 we 
an extend this proposition. More pre
isely if∫
Mp(R∗

+)
〈xp0| ln(x)|, ms〉ν(dms) <∞,

J :=

∫ ∞

1

xν−(]x,∞[)dx

1 +
∫ x

0
dy
∫∞

y
ν−(] −∞,−z[)dz

<∞,(with ν− is the image of ν̃ by the map u → −u where ν̃ is de�ned in Proposition 4) and
E
(
log+

∫ T1

0
e−ηsds

)
<∞ (with Tz := inf{t : −ηt ≥ z}) hold then1. For any y > 0

P
∗
y(t

1/αχ(t) ∈ ·) ⇒ P0(χ(1) ∈ ·),as t→ ∞, where P0 is a probability measure.2. For any bounded and 
ontinuous fun
tion k and for t > 0:
E0(k(χ(t)α)) = lim

λ→0

1

λ
E(I−1

λ k(Iλ/t)),where Iλ =
∫∞

0
exp(αηs − λs)ds.The proof is the same as the previous one using Theorem 1 and Theorem 2 from the arti
leby Caballero and Chaumont [8℄ instead of [6℄.

• We 
ould also try to use the same method as the one used in [4℄ Proposition 1.7. Butthe problem is that in our 
ase E(〈xp, X(t)〉) is not ne
essarily �nite when p is large, andeven if it was the 
ase, its derivative is not 
ompletely monotone be
ause κ is not ne
essarilypositive when p is large. This explains why we have to use a di�erent method.6.2 Convergen
e of the mean measure and Lp-
onvergen
e.We en
ode the 
on�guration of masses X(t) = {Xi(t)} by the weighted empiri
al measure
σt :=

∑
Xp0

i (t)δt1/αXi(t)whi
h has total mass M(t).The asso
iated mean measure σ∗
t is de�ned by the formula

∫ ∞

0

k(x)σ∗
t (dx) = E

(∫ ∞

0

k(x)σt(dx)

)14



whi
h is required to hold for all 
ompa
tly supported 
ontinuous fun
tions k. Sin
e M(t) isa martingale, σ∗
t is a probability measure.Therefore, with Proposition 5 and Lemma 2, we easily get:Corollary 6. With the assumptions of Proposition 5 we get:1. The measures σ∗

t 
onverge weakly, as t → ∞, to the probability measure P(χ(1) ∈ .)i.e. for any measurable fun
tion k : R+ → R+ , we have:
E
(
〈xp0k(t1/αx), X(t)〉

)
→

t→∞
E(k(χ(1))).2. For all p+ > p > p0:

t(p−p0)/α
E (〈xp, X(t)〉) →

t→∞
E((χ(1))p−p0).We now formulate a more pre
ise result 
on
erning the 
onvergen
e of the empiri
almeasure:Theorem 7. Under the same assumptions as in Proposition 5 we get that for every bounded
ontinuous fun
tion k:

Lp − lim
t→∞

∫ ∞

0

k(x)σt(dx) = M∞E(k(χ(1))) =
M∞

αm
E(k(I)I−1),for some p > 1.Remark 3. A slightly di�erent version of Corollary 6 and Theorem 7 exists also under theassumptions in Remark 2.See also Asmussen and Kaplan [1℄ and [2℄ for a 
losely related result.Proof. We use the same method as Se
tion 1.4. in [4℄ and in this dire
tion we use Lemma1.5 there: for (λ(t))t≥0 = (λi(t), i ∈ N)t≥0 a sequen
e of non-negative random variables su
hthat for �xed p > 1

sup
t≥0

E

((
∞∑

i=1

λi(t)

)p)
<∞ and lim

t→∞
E

(
∞∑

i=1

λi(t)

)
= 0,and for (Yi(t), i ∈ N) a sequen
e of random variables whi
h are independent 
onditionallyon λ(t), we assume that there exists a sequen
e (

−

Yi, i ∈ N) of i.i.d variables in Lp(P), whi
his independent of λ(t) for ea
h �xed t, and su
h that |Yi(t)| ≤
−

Y i for all i ∈ N and t ≥ 0.Then we know from Lemma 1.5 in [4℄ that
lim
t→∞

∞∑

i=1

λi(t)(Yi(t) − E (Yi(t)|λ(t))) = 0. (7)15



Now, let k be a 
ontinuous fun
tion bounded by 1 and let
At := 〈xp0k(t1/αx), X(t)〉.By appli
ation of the Markov property at time t for At+s and the self-similarity propertyof the pro
ess X we 
an rewrite At+s as

∞∑

i=1

λi(t)Yi(t, s)where λi(t) := Xp0

i (t) and
Yi(t, s) := 〈xp0k((t+ s)1/αXi(t)x), Xi,.(s)〉,with X1,., X2,., ... a sequen
e of i.i.d. 
opies of X whi
h is independent of X(t).By Theorem 1 we get that

sup
t≥0

E

((
∞∑

i=1

λi(t)

)p)
<∞.By the last 
orollary we also obtain that

E

(
∞∑

i=1

λp
i (t)

)
∼ t−(p−1)p0E(χ(p−1)p0(1)) → 0,as t→ ∞.Moreover the variables Yi(t, s) are uniformly bounded by

Yi = sup
s≥0

〈xp0 , Xi,.(s)〉,whi
h are i.i.d. variables and also bounded in Lp(P) thanks to Doob's inequality (as we havethat 〈xp0 , Xi,.(s)〉 is a martingale bounded in Lp(P)).Thus we may apply (7), whi
h redu
es the study to that of the asymptoti
 behaviour of:
∞∑

i=1

λi(t)E(Yi(t, s)|X(t)),as t tends to ∞. On the event {Xi(t) = y}, we get
E(Yi(t, s)|X(t)) = E

(
〈xp0k((t+ s)1/αyx), X(s)〉

)
.Then by Lemma 2:

E
(
〈xp0k((t+ s)1/αyx), Xi,.(s)〉

)
= E

∗
(
k
(
(t+ s)1/αyχ(s)

))
.16



With Proposition 5, we obtain
lim
t→∞

E
∗
(
k
(
(t+ s)1/αyχ(s)

))
= E (k (χ(1))) .Moreover re
all from Corollary 3 that ∑∞

i=1 λi(t) 
onverges to M∞ in Lp(P). Therefore we�nally get that when t goes to in�nity:
∞∑

i=1

λi(t)E(Yi(t, s)|X(t)) ∼ E (k (χ(1)))
∞∑

i=1

λi(t) ∼ E (k (χ(1)))M∞.
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