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UNILATERAL CONTACT, FRICTION AND 
ADHESION : 3D CRACKS IN COMPOSITE 
MATERIALS 

Michel Raous 
Laboratoire de Mecanique et d'Acoustique - CNRS 
Marseille - Jirance 

Yann Monerie 
Laboratoire de Mecanique et d'Acoustique - CNRS 
Marseille - Jirance 

The model coupling adhesion, unilateral contact and friction, devel­
oped by M. Raous, L. Cangemi and M. Cocou, is extended here for 
studying propagating cracks in fiber-reinforced composites. The brittle 
fracture of the bulk materials (fiber and matrix) is described by a time­
independent version of the model. In this case, jumps in the evolution of 
the solution may occur and a dynamic formulation has to be used. This 
is performed by adapting a dynamic formulation due to J.J. Moreau 
and M. Jean to this problem. Numerical simulations of 3D fracture of 
composite materials are then presented. 

1. Introduction 
The present work deals with interface problems where an initial ad­

hesion due to chemical or thermal treatments can disappear during the 
loading and be replaced by frictional sliding. A model taking into ac­
count adhesion, friction and unilateral contact was proposed by 
M. Raous, L. Cangemi and M. Cocou {the RCC model) with a quasi­
static formulation in Raous et al. {1997, 1999). It was used to simulate 
the micro-indentation of a fiber in a composite material. A comparison 
between this model and those developed by Tvergaard {1990), Allix et 
al. {1995, 1998), Ladeveze {1995), Michel and Suquet {1994), Michel et 
al. (1994) and Chaboche et al. (1997, 2001) was presented in Monerie 
et al. (1998). In the RCC ~odel, using the adhesion intensity vari-
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able introduced by Fremond {1987, 1988) and Trong Dinh Tien {1990), 
adhesion, friction and unilateral contact are described via an unilateral 
elastic behaviour of the interface which fulfills the non penetration con­
ditions and depends on the intensity of adhesion. Viscosity was taken 
into account in the evolution of the adhesion intensity. 

In the present work, the model is extended and a new formulation is 
proposed in order to describe the propagation of a crack in a composite 
material and to study the interactions occurring between the crack and 
the fiber-matrix interfaces. To study the crack propagation, a model 
without interface viscosity has to be used (and friction will be neglected). 
In this case, rapid changes in the evolution of the solution may occur 
and a dynamic formulation has to be used. We present here : 
- a new form of the RCC model introducing a new term which gives a 
better transition from adhesion to friction, 
- a dynamic formulation, which is an extension to the RCC model of the 
Non Smooth Contact Dynamics method (NSCD method) developed by 
Jean (1999) and Moreau (1988, 1999), 
- the simulation of 3D fracture in a composite material. 

2. The model coupling adhesion, friction and 
unilateral contact 

The model given by relations (1) to {3) differs from the standard RCC 
model (see Raous et al. {1999)) because of the term (1 - (3) in the fric­
tion law. This means that friction is not active when adhesion is still 
complete and that the friction threshold progressively increases as the 
adhesion decreases. In this model : 
- adhesion is characterized by the variable (3 (see Fremond (1987, 1988) 
and Trong Dinh Tien (1990) ), where 1 2:: (3 2:: 0, and (3 = 1 corresponds 
to total adhesion, and (3 = 0 to no adhesion; 
-unilateral stiffnesses (32CN (normal) and (32CT (tangential) of the inter­
face, depending on the adhesion intensity, ensure a continuous behaviour 
during the competition between friction and adhesion; 
- a viscosity b is included in the evolution of the adhesion intensity (3 
(this viscosity is neglected for modeling crack propagation and the for­
mulation and the numerical treatment will be adapted to this case in 
the following); 
-in (3), the Laplacian term kf:1(3 introduces a non local adhesion, but it 
will not be taken into account here. 

2



2.1 The model 
The behaviour of the interface is given by the following relations, 

where {1) characterizes the unilateral contact with adhesion, {2) the 
Coulomb friction with adhesion, and {3) the evolution of the adhesion 
intensity {3. 

-R~+{32eNuN~o, uN~o, (-R~+(32eNuN).uN=O, {1) 

R!;. = (32eT UT ' R~ = RN ' 
IIRT- R~ll ~ jj(1- {3) IRN- {32eN uNI, 

(2) 

with 

if IIRr- R~ll < jj(1- {3) IRN- {32eN uNI * uT= 0, 
if IIRT- R~ll = jj(1- {3) IRN- {32eN uNI * 3,\ ~ 0, uT= .X(RT- R!;.), 

(3) 

where RN and uN are the algebraic values of the normal components of 
the contact force and of the relative displacement between the two bodies 
(occupying the domains 0 1 and 0 2 ) defined on the contact boundary re, 
and Rr and uT are the tangential components of this contact force and of 
this relative displacement. The constitutive parameters of this interface 
law are as follows : 
- eN and eT are the initial StiffneSSeS Of the interface (when adhesion iS 
complete), 
- jj is the friction coefficient, 
- w is the decohesion energy, 
-pis a power coefficient (p = 1 in what follows), 
- k = 0 in what follows. 

Figure 1 gives the normal behaviour of the interface during loading 
and unloading (in Figure 1, u~ = JwjeN and R~ = ~) . It 
should be noted that strict unilateral conditions are enforced (Signorini 
conditions), and that neither penalization nor compliance are used for 
the unilateral contact (no extra parameters are needed). 

Figure 2 gives the tangential behaviour (in Figure 2, u~ = JwjeT 
and~= vwc:;). When the stresses and displacements are very small, 
the behaviour of the interface is elastic. When the local elastic energy 
reaches the threshold w (decohesion energy), the intensity of adhesion 
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begins to decrease, the apparent stiffnesses (32CN and (32CT also begin 
to decrease (softening) and the friction begins to act. When (3 tends to­
wards zero, classical Coulomb friction behaviour is obtained (the limit is 
asymptotic). This behaviour can be compared with that of the standard 
RCC model given in Figure 3, where the dotted line gives the evolution 
with infinitely small velocities. Figure 3 gives a clearer picture than 
Figure 2 of the energy exchanges. The interface energy is dissipated by 
viscosity, friction or adhesion (when the intensity of adhesion begins to 
decrease). A reversible elastic part is stored at the interface. 

·l +-:::-----1 ,._.. .. ~ --------·2 +-......;; ... :=-~-~·~~· ...,....., ......... ..-+ .......... -,.--.-~-+ 
~5 ...t ~]. -2 -1 0 1 2 :3 4- 5 - - ur.~ .. • .. 

Figure 1. Normal behaviour of the interface. 
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Figure 2. Tangential behaviour of the interface (present model). 
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Figure 3. Tangential behaviour of the interface (RCC model). 

2.2 Thermodynamic basis 

The interface is considered as a material surface and the following 
thermodynamic variables are introduced : the relative displacements 
( uN n,uT) and the adhesion intensity (3 are chosen as the state variables, 
and the contact force R and a decohesion force G, as the associated 
thermodynamic forces. The thermodynamic analysis given for the RCC 
model in Raous et al. {1999) can be extended to the present model in 
order to obtain the model given by relations {1) to {3). The following 
choices {4) and {5) are made for the free energy w(uN, uT, (3) and the 
potential of dissipation~ (uT,~) {in the case when k = 0). Because of 
the lack of differentiability or convexity of some terms, the state laws and 
the complementary laws have to be expressed as differential inclusions 
{see Moreau {1988), Raous {1999) ). In ( 4), the indicator function I K 
(where K = {v I v ~ 0} ) imposes the unilateral condition uN ~ 0 
and the indicator function lp (where P = {'y I 0 ~ 'Y ~ 1}) imposes 
the condition (3 E [0, 1]. In (5), the indicator function le-(~) {where 
c- = {7 17 ~ o}) imposes that~~ o: the adhesion can only decrease 
and cannot be regenerated (it is not reversible) in the present model. 
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3. The quasi-static problem 
The quasi-static formulation associated with the model including in­

terface viscosity can be set as two variational inequalities (one of which is 
implicit) and a differential equation (extension of the formulation given 
in Cocou et al. (1996) and Raous et al. (1999)). 

Problem (H) : Find (u, (:3) E W 1,2 (0, T; V) x W 1,2(0, T; H) such that 
u(O) = uo E K, (:3(0) = f:Jo E H n[o, 1[ and for \:ft E [0, T], u(t) E K, and 

a(u,v- ft) + j((:J,uN,vT)- j((:J,uN,uT) + 

I (:32 CTuT 0 (vT- uT)ds ~ (F, V- fi)- {RN, VN- uN) \:fv E V, 
re 

-(RN, z- uN) +I (:32 CNuN.(z- uN)ds ~ 0 \:fz E K, (6) 
re 

~ = -1/b [w- (CN U~ + CT lluTII2)(:3]- a.e. on re, (7) 

where: 
-u = (u1, u2 ) where u1 and u2 define the displacements in 0 1 and 0 2 , 

-V= (V1, V2), va = {va E [H1(0a:)] 3 ;va = 0 a.e. on ru}, a= 1,2 

(rlj are the parts of the boundaries where the displacements are pre­
scribed), 
- H = L 00 (rc), 
- K = {v = (v1,v2) E V1 X V 2;vN ~ Oa.e. onrc}, where re is the 
contact boundary between the two solids 0 1 and 0 2, 

- a(.,.) is the bilinear form classically associated to the elasticity map­
ping, 

- j((:J,uN,vT) = J ~-t(1- (:J)Ia(RN)- (:32CNuNI11vTIIds, where a(RN) is 
re 

a linear and compact mapping, a(.): n-112 (rc) ~ L2 (rc) (non local 
friction), 
- F = (F1, F 2) are the given force densities applied respectively to solid 
1 and to solid 2. 

In Raous et al. (1999), an incremental formulation was given and the 
problem was solved by associating minimization techniques and a fixed 
point method on the sliding threshold for the contact, and a 0-method 
for the differential equation. Details on the computational methods are 
presented extensively in Raous (1999). This quasi-static formulation was 
used to simulate the micro-indentation of a fiber in a SiC/SiC composite 
and identify the constitutive parameters of the fiber-matrix interface. 
This formulation has been extended to hyper-elastic bodies in Bretelle 
et al. (2001). 
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4. The model with no viscosity: dynamic 
formulation 

In some cases, there is no mechanical reason to introduce a viscous 
dissipation in the interface behaviour. This is the case when this model 
is used to describe the propagation of a crack in a brittle bulk material, 
as we will now do. In order to study the influence of the characteristics 
of the fiber-matrix interface on the propagation of a crack in a composite 
material, we will suppose that the plane of propagation of the crack is 
given (which is of course a restrictive assumption) and we will use the 
adhesive model (without friction and without viscosity) on that plane 
considered as an interface (matrix-matrix and fiber-fiber "interfaces" 
because the crack propagates in both materials). 

4.1 The adhesion model with no viscosity 
The quasi-static problem for an adhesive contact without friction, con­

sidering a rate-independent cohesive model (no viscosity), can be written 
as presented in Problem (P2). 

Problem (P2): Find u E K such that: 

a(u,v- U)- (F,v- u) + f R([U] ,,B). ([v]- [U])ds ~ 0 'v'v E K,(8) 
lrc 

.B = h([U]) a.e. onrc, (9} 

where: 
- [UJ is the relative displacement on r c, [UJ = uNn +uT 
- the contact force R ([U], .B) is given by : 

R([U] ,.B)= ,82(CNuNn + CTuT) (10} 

- h([U]) is a given function deduced from {3} and satisfying the condi­
tions 1 ~ .B ~ 0 and ~ ~ 0 ; with an incremental formulation associ­
ated to Problem ( P2), ,Bk+ 1 will be defined, at each time step tk+ 1, by 

,Bk+1 =M in [ 1, ,Bk, wf(CN(uNk+1)2 + CT{IIuTIIk+1)2)]. 

In Cocou et al. {1997} and Raous et al. {1999), we gave a condition for 
the existence of a solution of the incremental form associated to Problem 
(Pl) when a non local friction is considered. In Cocou and Rocca (2000}, 
a similar condition was obtained on the quasi-static Problem (Pl) itself 
(considering local friction). Here, for the frictionless problem with no 
viscosity for the adhesion evolution, existence is obtained and a condi­
tion ensuring uniqueness is established (Monerie {2000)}. 
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Theorem 
There exists a fixed point, k, for the application s : 
s: k ---+ 11 ([u(k)]) = R([u(k)], h([u(k)])) 
where u is the solution of : 

a(u, V - u) - (F, V- u) + r k. ([v] - [U]) ds ~ 0 \fv E K. (11) Jrc 
and 

where: 
- eo is the Lipschitz constant for the application 
R(.' .) : £2(rc)a---+ £2(rc)a, 
- l is the constant of coercivity of a(.,.), 
- ). is a constant related to the continuity of the injection from H 112(r c)3 

to L2(rc)3 and to the one of the trace mapping from H 1(0°)3 to 
H 112(r c)3 where a= 1, 2. 

The uniqueness condition (). l j c0 ~ 1) depends on the characteristics 
of the interface and on the elastic properties of the materials. An analysis 
of this condition on a simplified problem is given in Monerie {2000). 

Because of the softening character of the interface law, the quasi-static 
problem is ill-posed, and rapid changes in the evolution of the solution 
may occur. A dynamic formulation of the problem is needed. 

4.2 The 3D dynamic formulation 
In order to deal with the non-viscous model used to describe the 

fracture propagation, a dynamic formulation is developed on the basis 
on the Non Smooth Contact Dynamics method given by Jean (1999) 
and Moreau (1988, 1999) for granular media. To treat correctly the non­
smooth character of the contact law, the dynamic problem is written in 
terms of differential measures and adapted to the adhesive and frictional 
law. 

For the contact of a single solid with a rigid obstacle (q is the dis­
placement and r the contact force), the equation of motion 

M(q, t)ij = F(q, q, t)- r, 

is then written as : 

M(q, t)dq = F(q, q, t)dt- rdv, 

where dq is a differential measure associated to q(t) : 

[ t
2 dq = q(tt) - q(tl) \ft2 > h' 

tl 

(13) 

(14) 

(15) 
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and then: 

[ t2 [t2 1 M(q, t)dq = F(q, q, t)dt- rdv, 
h tt ]h,t2] 

(16) 

l h 
q(t2) = q(tt) + q(r)dr. 

tt 
(17) 

The formulation due to Jean (1999) and Moreau (1988, 1999) is ex­
tended here to the adhesive frictional model (Monerie (2000)). The non 
linear problem is then solved by using a generalization of a Newton­
Raphson algorithm to non-smooth functions due to Alart and Curnier 
(1991). The implementation is performed in the 3D finite element code 
LMGC (see Jean (1999) and Monerie and Acary (2001)). 

5. Fracture of composite material 

5.1 The problem 
When a crack propagates in a composite material, various mecha­

nisms can occur depending on the characteristics of the interface : crack 
trapping, crack bridging or fiber breaking as shown in Figure 4. Various 
contributions can be found in He et al. (1989), Leguillon et al. (2000), 
Mathur et al. (1996), Needlemann and Tvergaard (1998), Tvergaard 
(1990), Siegmund et al. (1997), and Xu et al. (1997, 1998). 

Figure 4. Crack trapping, crack bridging and fiber breaking. 

The following simulations show the influence of the interface charac­
teristics on the crack propagation. 

As presented in Figure 5, a cell composed of a single fiber surrounded 
by a matrix domain is considered. The boundary conditions are chosen 
in order to respect the symmetry and to approximate a semi-infinite 
domain. An increasing displacement is prescribed on the top of the cell 
and the crack is assumed to propagate along the symmetry plane at the 
bottom, both in the matrix and in the fiber. 
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Figure 5. Mesh of the fiber and the surrounding matrix (12246 ddl). 

5.2 Identification of the parameters 

The interface model with no friction and no viscosity is used to simu­
late the crack propagation in the matrix and in the fiber (matrix-matrix 
and fiber-fiber "interfaces"). The parameters e~ and et (eT = 0 be­
cause of the symmetry of the problem) and wm and wf for both materials 
(subscripts m and f relate respectively to the matrix and to the fiber) 
are evaluated by considering : 
-the stiffnesses of the materials {the Young moduli are Em = 350GPa 
for the matrix, and El= 200GPa for the fiber) and the maximum de­
formation before collapse, to identify the contact stiffnesses e: and et 
(e!{'" = 0.044Njp,m3 , et= 0.025N/p,m3), 

- the decohesive energy and the restitution energy, to identify the thresh­
olds wm and wf (wm = 4Jfm2 , wf = 20Jfm2 ). 

We introduce ii, which is the maximum stress supported by the in­
terfaces, defined by iJ = vc;;w. Thus, we have : jjl = 707 M Pa and 
jjm = 418M Pa. 

To simulate the fiber-matrix interface, the results presented here were 
based on the same model, with no interface viscosity and no friction. As 
shear is dominant for the present loading, the maximum stress iii for the 
fiber-matrix interface depends mainly on the sliding effect and therefore 

iii = V e~ wi. Various values of iii have been tested in the numerical 
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simulations in order to determine the influence of this parameter on the 
crack propagation process. 

5.3 The crack propagation 
In Figures 6 and 7, the propagation of the crack is presented for two 

kinds of interfaces : 
- a strong interface in Figure 6 where ai = 24 7 MP a, 
- a weak interface in Figure 7 where ai = 3.5M Pa. 

Figure 6 and 7 give the evolution of the reaction force on the top of the 
cell when the prescribed displacement increases. The inserted pictures 
show the solutions at different steps of the loading. The dark zones 
correspond to the parts where there is no more adhesion, i.e. where the 
crack is open or where the fiber slides along the matrix. 

In Figure 6 (strong interface), it can be noted that the composite be­
haves like a single material with variable characteristics (corresponding 
to those of the matrix and of the fiber) and it turns out to be rather 
brittle : both the matrix and the fiber are broken when the prescribed 
displacement is about O.lJ.tm. 

Figure 7 shows that a weak interface protects the fiber from breaking 
for a larger loading : part of the energy is dissipated into the fiber­
matrix interface and the total collapse of the cell occurs only when the 
prescribed displacement is about 0.4J.tm (i.e., when it is four times larger 
than in the previous case). 

In this work, the RCC model is extended for modeling crack propa­
gation in composite materials. A dynamic formulation is used because 
viscosity is not considered for the evolution of the adhesion intensity. 
The 3D simulations of the propagation of a crack taking into account 
the debonding on the fiber-matrix interfaces shows the dependence of 
the process on the properties of these interfaces. The results should help 
to improve the toughness of fiber-reinforced composites by choosing ap­
propriate characteristics of these interfaces. 
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