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Numerical characterization and computation of dynamic
instabilities for frictional contact problems

Michel Raous, Serge Barbarin, Didier Vola?

Laboratoire de Mécanique et d’Acoustique, CNRS, Marseille, France

Abstract. This chapter focuses on the numerical aspects of the characterization of friction-
induced instabilities and their dynamic computation for linear and nonlinear problems. We
begin by presenting briefly basic formulations and several computational methods for solv-
ing unilateral frictional contact problems, in quasi-statics and dynamics, and in elasticity
and hyper-elasticity. The above specific dynamic formulations will be used to compute the
flutter solutions presented in the last sections. Numericalschemes are then given for com-
puting the various sufficient or necessary conditions for instability established together with
Professor J.A.C. Martins. Finally, the stability analysisand the computation of flutter solu-
tions are carried out for two examples : the sliding of a Polyurethane block on a plane and
the squeal of a rubber waist seal sliding on a car window.

In Section 1, a variational inequality formulation and numerical methods for solving
quasistatic problems in elasticity are briefly recalled. Details can be found in a previous
CISM course volume (see Raous (1999)).

This approach is extended to dynamic problems in Section 2. The formulation is written
in terms of differential measures in order to deal with the non-smooth character of the
solutions. It is an extension of those developed by J.J. Moreau and M. Jean.

In Section 3, the above formulations are extended to hyper-elastic problems and a
method for computing directly the steady sliding solution is given.

Numerical analysis of the stability of quasistatic solutions in the context of linear elas-
ticity is carried out in Section 4. The example of the slidingof a Polyurethane block is
studied.

In Section 5, the stability analysis is carried out for a steady sliding solution in the
context of hyper-elasticity and used to characterize the squeal of a waist seal sliding on a
car window.

? This work has been conducted within an International Program of Scientific Collaboration (PICS) be-
tween CNRS and JNICT with Professor J.A.C. Martins (IST - Lisbon) involving the theses of S. Barbarin,
D. Vola in Marseille and the one of A. Pinto da Costa in Lisbon.The study on the waist seal presented in
sections 3 and 5 has been supported by Renault.



1 Formulation and numerical methods for solving quasistatic frictional
unilateral problems in small deformations

In this section, we briefly recall the formulation of unilateral contact problems involving Coulomb
friction. The variational formulation is given in terms of implicit variational inequalities and vari-
ous solvers are presented. Details can be found in Raous (1999), where an extensive bibliography
is also given.

1.1 The Signorini problem with Coulomb friction
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Figure 1. Contact with a rigid obstacle.

a - Unilateral conditions (Signorini problem)
The displacements and the stresses exerted on the part of theboundary where contact is expected
to occur are written as follows, wheren denotes the outwards normal to the solid :

u = uN n+ uT , (1)

r = rN n+ rT . (2)

The unilateral conditions are then written :

uN ≤ 0 ,
rN ≤ 0 ,
uN rN = 0 .



 (3)

We avoid the use of compliance models and penalty techniques(for the computations) in
order to obtain solutions which do not depend on mechanical or numerical parameters which
may influence the stability analysis. This is then a non smooth model (multivalued application).

b - The Coulomb friction

‖rT ‖ ≤ µ | rN | with :
if ‖rT ‖ < µ | rN | thenu̇T = 0 ,
if ‖rT ‖ = µ | rN | thenu̇T is colinear and opposite torT .



 (4)

It should be noted that :



– this law is not associated (no normality rule for the slidingdirection),
– it is a velocity formulation whereas the unilateral contacthas displacement formulation,
– the graph is also a multivalued application (see Fig. 2).
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Figure 2. Graphs of the contact and of the friction law.

c - The problem
Problem (PcPcPc) : Let φ1, φ2 be the given forces, find the displacementu, the strainε, the stressσ
and the contact stressr such that :





The kinematics, the elastic behaviour (whereK is the elasticity tensor) and the equilibrium
ε = grads u ,

σ = Kε ,
div σ = −Φ1



 in Ω,

σ.n = Φ2 onΓF ,
The boundary conditions
u = 0 onΓD,
The unilateral contact with friction
σ.n = r ,
uN ≤ 0 ,
rN ≤ 0 ,
uNrN = 0 ,
‖rT ‖ ≤ µ | rN | with :
if ‖rT ‖ < µ | rN | thenu̇T = 0 ,
if ‖rT ‖ = µ | rN | then∃λ > 0 such thatu̇T = −λrT





onΓC .

In what follows, the ”static” frictional problem will be obtained by replacinġu by u in Prob-
lem (PcPcPc). This makes sense only in some very specific cases, but it will be helpful when used as
an intermediate problem with some solvers.

1.2 Various formulations

Various types of formulation are briefly outlined below (seealso Raous (2001)). The first two
types will be used in the present study.



a - Variational inequalities, fixed point and minimization under constraints
Cocu-Pratt-Raous (1996) have shown that, by eliminating the contact stresses, a system of two
variational inequalities (one of which is implicit) can be obtained (see Problem(PPP )). After per-
forming a time discretization (ti+1 = ti + ∆t), an incremental form(Pinc1Pinc1Pinc1) is obtained and
the problem is reduced to a single implicit variational inequality (Pinc2Pinc2Pinc2). At each time step, we
have to solve a ”static” problem including extra terms depending on the previous history of the
solution. By using a fixed point method on the sliding limit, the problem is set as a sequence of
problems consisting in a minimization under constraints(Popt1Popt1Popt1).

The variational problem (PPP ) : Findu(t) ∈ K such that :




a(u(t), v − u̇(t)) + J1(u(t), v)− J1(u(t), u̇(t)) ≥ L(v − u̇(t))
+ < rN (u(t)), vN − u̇N (t) > ∀v ∈ V ,

< rN (u(t)), zN − uN(t)) > ≥ 0 ∀z ∈ K .

(5)

where :
- a(u, v) is a bilinear form associated with the elasticity mapping,
- J1(u, v) =

∫
ΓC

−µ rN(u) ‖vT ‖ ds,
- K = {v ∈ U/ vN ≤ 0 onΓC},
- L(v) is a linear form associated with the loadingφ1 andφ2,

The incremental problem (Pinc1Pinc1Pinc1) : Findui+1 ∈ K such that :




a

(
ui+1, v − ui+1 − ui

∆t

)
+ J1(u

i+1, v)− J1

(
ui+1,

ui+1 − ui

∆t

)
≥ Li+1

(
v − ui+1 − ui

∆t

)

+ < rN (ui+1), vN − uN
i+1 − uN

i

∆t
> ∀v ∈ V ,

< rN (ui+1), zN − uN
i+1 > ≥ 0 ∀z ∈ K .

(6)
Equivalence with the following problem has been established (see Cocu-Pratt-Raous (1996)) :

The reduced incremental problem (Pinc2Pinc2Pinc2) : Findui+1 ∈ K such that :

a(ui+1, w−ui+1)+J1(u
i+1, w−ui)−J1(ui+1, ui+1−ui) ≥ Li+1(w−ui+1)∀w ∈ K . (7)

A fixed point method is introduced on the sliding thresholdg in order to ensure that :
g = −µrN . At every fixed point iteration, a friction problem with a given thresholdg (Tresca
friction problem) has to be solved. In this case, the problemcan be written as a minimization
one. Either problem(Popt1Popt1Popt1) (set on the displacements) or problem(Popt2Popt2Popt2) (written on the dis-
placement increments) can be obtained :

The minimization problem (Popt1Popt1Popt1) : For a giveng, findugi+1 ∈ K such that

J(ug
i+1) ≤ J(v) ∀ v ∈ K , (8)

with:

J(v) =
1

2
a(v, v) + j(v − ui)− Li+1(v) , (9)



- j(v) =
∫
ΓC

g‖vT ‖ ds,
- the convex does not change,
- the termui contains the memory of the loading path.

The minimization problem (Popt2Popt2Popt2) : For a giveng, find∆ug
i+1 ∈ Ki such that

J(∆ug
i+1) ≤ J(v) ∀ v ∈ Ki , (10)

with :

J(v) =
1

2
a(v, v) + j(v) −∆Li+1(v)− ri(v) , (11)

- the convex depends on the previous step :Ki = {v ∈ U/ ui + vN ≤ 0 onΓC},
- the memory of the loading path is inri (contact stress of the previous step computed as
the defect of equilibrium).

b - A complementarity problem (discretized form)
The formulation is here given for a static problem after finite element discretization (in the fol-
lowing, vectors ofIRn associated to the discretization are denoted by bold characters). It can be
extended to a velocity formulation for solving quasi-static problems. The contact stresses are
kept as variables and new variables are introduced in order to discriminate left and right sliding
(see Klarbring (1999)) :
- λ1 andλ2 (respectively the positive and negative parts of the tangential displacements of the
contact nodes),
- Φ1 = −rT + µ rN andΦ2 = rT + µ rN .

The three inequationsΦ1 ≥ 0, Φ2 ≥ 0 and−rN ≥ 0 define the Coulomb cone.
A condensation is performed in order to eliminate the non contact variables and to reduce the

size of the finite element problem. It consists in a partial inversion of the linear parts. Details can
be found in Raous (1999). Then the complementarity problem is written as follows :

The complementary problem (PComplPComplPCompl) : Findr ∈ IR3Nc , u ∈ IR3Nc such that

M̂u = F̂ + r ,
ri ≤ 0, ui ≤ 0 i = 1 . . . 3Nc ,
ri ui = 0 i = 1 . . . 3Nc .



 (12)

- M̂ andF̂ are respectively a non symmetric matrix and a loading vectordeduced from the finite
element problem by condensation (taking also into account the change of variables associated to
the choice of new variables),
- r andu are the contact forces (rN ,Φ1 ,Φ2 ) and the contact displacements (uN , λ1 , λ2 )
- Nc is the number of contact particles.

This 2D formulation can be extended to 3D problems by performing a polyhedralization of
the Coulomb cone (see Klarbring (1999)).

c - Lagrange multipliers
Another alternative is based, as with the previous formulation, on keeping the contact forcesr



in the form of variables (Lagrange multipliers). This time,the unilateral conditions are kept in
the form (3), but the friction conditions are written under the Kuhn-Tucker conditions (which is
analogous to plasticity). This is written as problem(PLagrPLagrPLagr), whereK̂ is the condensed regular
finite element matrix (see Chabrand-Dubois-Raous (1998)).

The Lagrangian problem (PLagrPLagrPLagr) : Findr ∈ IR2Nc , ∆ξξ ∈ IRNc such that

K̂u = F̂ + r ,
uNj ≤ 0, rNj ≤ 0, uNjrNj = 0, j = 1 . . .Nc ,
fs ≤ 0, ∆uT = −∆ξξ ∂fs/∂rT , ∆ξξ ≥ 0, ∆ξξ fs = 0 ,
fs = ‖rT ‖ − µ|rN | .





(13)

1.3 Solvers

a - The minimization problem under constraints
Details about the following solvers can be found in Raous (1999).

To solve problem(Popt1Popt1Popt1) (or possibly(Popt2Popt2Popt2)), the following algorithms have been devel-
oped. The minimization problem under constraints (∀v ∈ K) of a non differentiable functional
can be solved using :
- Successive over-relaxation method (SSOR) with projection
An optimum relaxation parameter has to be determined using atrial procedure. This method is
very robust, but it turns out to be costly when one attempts toextend it to problems involving
nonlinear materials.
- Gauss-Seidel method accelerated with an Aitken procedure
No numerical parameters are required here. The method is a very robust and efficient one, spe-
cially with the recent computer processors very efficient onbasic computations.
- Conjugate gradient method with projection and regularization
A special procedure is used to preserve the conjugation relationship between the descent di-
rections (see Raous-Barbarin (1992)). To compute the gradients, a regularization of the friction
law is needed ; this introduces a numerical parameter. Specific pre-conditioning procedures have
been developed.

b - The complementarity problem
The complementarity problem (PComplPComplPCompl) can be solved using a mathematical programming me-
thod : the Lemke’s method. This is a direct method based on pivoting techniques which is similar
to Simplex methods. It is a very powerful method. No numerical parameter is required (see
Klarbring (1999), Raous (1999)).

c - Lagrangian formulation
The problem (PLagrPLagrPLagr) can be solved using the augmented Lagrangian method with radial return.
The augmented Lagrangian procedure introduces a penalty bydefining :

rN = (λλN − εNuN ) , (14)

∆rT = ∆λλT − εT (uT +∆ξξ ∂fs/∂rT ) . (15)



A Newton Raphson algorithm is associated with a radial return procedure. This method is similar
to procedures used in plasticity problems (even with finite deformations). It is a very powerful
method. The accuracy of this method (as well as the computational cost) depends on the choice
of εT , εN , and on the number of augmentations performed.

1.4 Application to a block sliding on a plane

A Polyurethane block is pressed (prescribed normal displacement) on an Araldite plane on which
a tangential displacement is prescribed. The vertical displacement is applied in order to prescribe
a constant normal force. The geometry is 80mm x 40mm. The elastic constants areE=5MPa and
ν=0.48. The velocity of the plate isv=0.103mm/s (see Zeghloul-Villechaise (1996)).

It can be noted from Fig. 6 and Fig. 7 that the evolution of the contact condition varies
significantly depending on the values ofµ.

Polyurethane

Prescribed displacement

Prescribed displacement and
tangential force measurement

and normal force measurement

Air Pad

L = 80 mm

Araldite

H = 40 mm

Figure 3. The model.
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Figure 4. Mesh with 21 contact nodes.
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Figure 5.Evolution of the total friction force versus time (the tangential
displacement speed is 0.103 mm/s,µ = 1.1).
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Figure 6. Evolution of the contact stressesrN (—– ) andrT /µ (- - -) along the contact zone withµ = 0.5
(sticking, sliding and separated zones).
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(sticking, sliding and separated zones).



2 Dynamics for frictional contact problems involving smalldeformations

In this section, dynamic problems involving unilateral contact and Coulomb friction will be
briefly discussed. Focusing on the discretized problem, a formulation and an algorithm cou-
pled with a mathematical programming method presented in Vola-Pratt-Jean-Raous (1998) are
described. This approach is based on previous studies by J.J. Moreau and M. Jean (see Jean-
Moreau (1987), Jean (1999), Moreau (1988a), Moreau (1988b), Moreau (1994)).

2.1 Viscoelastic contact problem with Coulomb friction in dynamics

The dynamic Signorini problem with Coulomb friction is written as follows, whereC is the

viscosity tensor andK the elasticity tensor. The general formulation is given here but in the ap-
plication the viscosity will not be considered.

Problem (PdynPdynPdyn) : LetΦ1 andΦ2 be given, findu, σ andr such that:

ρ ü(t) = div σ(u(t)) + Φ1(t) , in Ω (16)

σ(u(t)) = K.ε(u(t)) + C.ε̇(u(t)) , in Ω (17)

ε(u(t)) = 1
2

(
∇x(u(t)) +∇T

x (u(t))
)
, in Ω (18)

u̇(t) = u̇D , onΓD (19)

σ(u(t)).n = Φ2 , onΓF (20)

σ(u(t)).n = r(t) , onΓC (21)

uN (t) ≤ 0 , rN (t) ≤ 0 and rN (t)uN (t) = 0 , onΓC (22)

‖rT (t)‖ ≤ µ|rN (t)| and (23){
if ‖rT (t)‖ < µ|rN (t)| thenu̇T (t) = 0 ,
if ‖rT (t)‖ = µ|rN (t)| then∃λ > 0 such thatu̇T (t) = −λrT (t) . (24)

2.2 The discrete problem (finite element discretization)

In order to take impacts into account correctly, the formulation is given in terms of differential
measures.

Problem (PhPhPh): Findu such that∀t ∈ [0, T ], u(t) ∈ Vh, u(0) = u0, u̇(0) = v0 and :

M.du̇ + K.u+ C.u̇ = Φ + rdν , (25)

and for the contact nodes,j = 1 . . .Nc (Nc is the number of contact nodes) :

uNj(t) ≤ 0 , rNj(t) ≤ 0 andrNj(t)uNj(t) = 0 ,

‖rTj(t)‖ ≤ µ|rNj(t)| and

{
if ‖rTj(t)‖ < µ|rNj(t)| thenu̇Tj(t) = 0 ,
if ‖rTj(t)‖ = µ|rNj(t)| then∃λ > 0 , such thatu̇Tj(t) = −λrTj(t) ,



where :
- du̇ is a differential measure standing for the discretized acceleration

∫

]a,b]

du̇ = u̇
+(b)− u̇

+(a) , (26)

with right continuity : we shall seṫu = u̇
+ in the following,

- dν is a non-negative real measure with respect to whichdu̇ possesses a density function.

2.3 Time discretization and algorithms

The Newmark method and its variants are generally used to solve classical smooth problems
(usual differential equations). In this section, for solving the non smooth problem (PhPhPh), a time
discretization of (25) is introduced andθ-methods will be used.

The system of differential measures (25) can be written in the following equivalent form :
∀t ∈ [0, T ]

M(u̇(t)− u̇(0)) =

∫ t

0

(Φ −K.u− C.u̇)ds +

∫

[0,t]

rdν , (27)

u(t) = u(0) +

∫ t

0

u̇ds , (28)

whereds is a Lebesgue measure.
A time discretization of (27), withi = 0...N andti = i.h, yields :

M(u̇(ti+1)− u̇(ti)) =

∫ ti+1

ti

(Φ −K.u− C.u̇)ds +

∫

]ti,ti+1]

rdν , (29)

r̄
i+1 =

1

h

∫

]ti,ti+1]

rdν . (30)

To complete the time discretization, the two following Lebesgue integrals must be approxi-
mated : ∫ ti+1

ti

(Φ −K.u− C.u̇)ds , (31)

∫ ti+1

ti

u̇ds . (32)

The choice of integration methods is influenced by the fact that the velocity is discontinuous.
The three following methods have been implemented and tested :

θ-Method : both integrals (31) and (32) are approximated by the classical θ-method

∫ ti+1

ti

fds ≈ h(θf(ti+1) + (1− θ)f(ti)) , (33)



θ-Euler-Method : the first integral is approximated by theθ-method and the second one by the
implicit Euler method,

modified θ-Method : both integrals are approximated by theθ-method, but in the contact re-
lations, the displacementu(ti+1) is replaced bŷu(ti+1) = u(ti+1) + h(1− θ)u̇(ti+1).

These three methods have been compared to the Newmark methodand to the exact solution
in a simple test, and we will comment on their respective advantages.

2.4 Formulation in terms of complementarity

Complementarity formulations for the frictional contact problem and mathematical programming
algorithms can be found, for quasistatic problems, in Klarbring (1999) and Raous (1999).

Let us focus here on the extension of the complementarity formulation to the dynamic prob-
lem in order to combine the Lemke method with the previous integration methods.

As described in the previous section, we introduce the new variables :

– λ1 andλ2 (respectively, the positive and negative part of the tangential velocity),
– φ1 = −rT + µrN ,
– φ2 = +rT + µrN .

The problem can be then written :

Problem (PDynCompPDynCompPDynComp) : Find u̇i+1 ∈ Vh such that :

M̃ u̇
i+1 = h Φ̃i+1 + h ri+1 , (34)

and for the contact nodes,j = 1 . . .Nc :

rNj
i+1 ≤ 0 , u̇i+1

Nj − G̃i
j ≤ 0 , rNj

i+1.(u̇i+1
Nj − G̃i

j) = 0 , (35)

φ1j
i+1 ≤ 0 , λ1j

i+1 ≤ 0 , φ1j
i+1.λ1j

i+1 = 0 , (36)

φ2j
i+1 ≤ 0 , λ2j

i+1 ≤ 0 , φ2j
i+1.λ2j

i+1 = 0 . (37)

The matrixM̃ and the vectors̃Φi+1 andG̃i depend on the integration method adopted. For
example :

– for theθ-method,M̃ =M + hθC + h2θ2K,
– whereas for theθ-Euler-method,̃M =M + hθC + h2θK.

2.5 Numerical example

The classical benchmark of the impact of two bars is briefly presented. Fig. 9 gives the time
evolution of the normal velocity of a central node of the contact zone, computed with the various
integration methods (and the Lemke method). It can be observed that theθ-Euler-method and the
modified-θ-method give much better results than the classical Newmarkmethod. Oscillations
can be observed with the Newmark method (see Fig. 9 where the exact solution is plotted as a
dotted line).
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3 Dynamics for frictional contact problems in hyper-elasticity

The dynamic formulation presented in the previous section is now extended to finite deformations
in the case of hyper-elastic problems (see Vola-Raous-Martins (1999)). Here, we outline the main
points, as follows:

– the variational formulation in the current configuration,
– the discrete formulation in terms of differential measures,
– the nonlinear complementarity problem,
– the linearization : Newton-Raphson method, linear complementarity problem and Lemke

solver.

3.1 Formulation of the problem

Γu

t
Vobs

τϕ

n ϕ (τ

τΓ

Reference configuration

Current configuration

ϕ ( Ω)

Γ )cΓc

Γs
N

Ω
g

Figure 10.Contact of a deformable body with a flat obstacle.

a - The problem

Equilibrium equations and frictional contact
The equilibrium equations given below are based either on the reference configuration or on the
current one.

ρ0ϕ̈− Div(FS) = fv in Ω ,
(FS)NΓ = fs on Γs ,
ϕ = ϕprescribed on Γu ,
(FS)NΓ = R on Γc ,

ρẍ− div σ = f τ
v in ϕτ (Ω) ,

σnϕ(Γ ) = f τ
s on ϕτ (Γs) ,

x = xprescribed on ϕτ (Γu) ,
σnϕ(Γ ) = r on ϕτ (Γc) ,

where :S is the second Piola-Kirchoff tensor,ϕ the kinematic mapping,F=gradϕ, J = detF ,
C = F.F̄ is the Cauchy-Green strain tensor andσ the Cauchy stress tensor.

Unilateral contact and Coulomb friction in the current confi guration

rn ≥ 0 and ∀r∗n ≥ 0 , (r∗n − rn)ωn ≥ 0 , (38)

|rt| ≤ µrn and ∀r∗t |r∗t | ≤ µrn , (r∗t − rt)ω̇t ≥ 0 , (39)



whereωn is the gap anḋωt is the relative sliding velocity (n denotes now the outwards normal
to the obstacle).

Behaviour of rubber-like materials (hyper-elasticity)
A Mooney-Rivlin behaviour is used :

W̃
(
Ĩ1, Ĩ2

)
= a1(Ĩ1 − 3) + a2(Ĩ2 − 3) . (40)

The constitutive law is written as follows in the reference configuration :

S : Ė =
∂W

∂E
: Ė −→ S = 2

∂W

∂C
. (41)

The volumic deformation and the associated pressure are expressed with the two auxiliary
fieldsθ andp (see Simo-Taylor (1991)).

Πint =

∫

Ω

(
W̃

(
Ĩ1, Ĩ2

)
+ U(θ) + p(J − θ)

)
dV , (42)

denotes an augmented potential of the internal forces, where :

– U(θ) is a penalty function associated to the volumic deformation(κ is the bulk modulus)

U(θ) =
1

2
κ
(
θ2 − 1

)
− ln(θ) , (43)

– p is the pressure (Lagrange multiplier).

This is completed with the initial conditions and the mass conservation equation.

b - Variational formulation
The problem can be written in form of the coupling between a differential inclusion related to the
motion and the friction, two variational equalities related to the auxiliary fields and a variational
inequality related to the unilateral contact conditions.

In the reference configuration, the differential inclusionis written :

−Π,ϕ(ϕτ , θ, p, Rn)−Finertial ∈ ∂2D(Rn, ϕ̇τ − Φ) , (44)

where :

– the potentialΠ is composed of three parts (internal stresses, external loading, normal contact
force),

Π(ϕτ , θ, p, Rn) = Πint(ϕτ , θ, p)−Πext(ϕτ )−
∫

Γc

RnWn(ϕτ ) dΓ , (45)

with (ϕτ , θ, p, Rn) ∈ W × V2 × Cn, where :
• W is the set of admissible configurations

W = {ϕτ : Ω −→ IR2 such thatϕτ (X) = ϕprescribed ∀X ∈ Γu}. (46)



• V is the set of admissible hydrostatic pressures and volume changes

V = {θ∗ : Ω −→ IR} (47)

• Cn is the set of admissible normal contact stresses

Cn = {R∗
n : Γc −→ IR such thatR∗

n ≥ 0}. (48)

– D is the pseudo-potential associated with the friction dissipation (in the case of a plane
obstacle),

D(Rn, ϕ̇τ − Φ) =

∫

Γc

µRn|(ϕ̇τ − Φ).t| dΓ , (49)

– andFinertial are the inertial forces.

This is equivalent to the following variational form of the elasto-dynamic problem with frictional
contact written now in the current configuration at the timeτ .

Problem (PDynPDynPDyn) : Find(ϕτ , ϕ̇τ , ϕ̈τ , θ, p, rn, rt) ∈ W3×V2×C τ
n ×C τ

t (rn) such that we have :

Equation of motion

∀ητ ∈ T τW ,

∫

ϕτ (Ω)

ρϕ̈τη
τdv +

∫

ϕτ (Ω)

σ̄ : ∇S
xη

τdv −
∫

ϕτ (Ω)

f τ
V η

τdv

−
∫

ϕτ (ΓS)

f τ
S η

τ dΓ−
∫

ϕτ (Γc)

(rnn+ rtt).η
τ dΓ = 0 ,

(50)

Incompressibility (with the two auxiliary fields (θ, p))

∀θ∗ ∈ V ,
∫

ϕτ (Ω)

1

J
(Ú(θ)− p)θ∗ dv = 0 , (51)

∀p∗ ∈ V ,
∫

ϕτ (Ω)

(J − θ)
p∗

J
dv = 0 , (52)

Unilateral contact

∀r∗n ∈ Cτ
n ,

∫

ϕτ (Γc)

(r∗n − rn)ωn dΓ ≥ 0 , (53)

Frictional contact (maximum dissipation principle)

∀r∗t ∈ C τ
t (rn) ,

∫

ϕτ (Γc)

(r∗t − rt)ω̇t dΓ ≥ 0 , (54)

whereT τW is the set of admissible variations

T τW = {η τ : ϕτ (Ω) −→ IR2 such that η τ (ϕτ (X)) = 0 ∀X ∈ Γu}, (55)

andC τ
n andC τ

t (rn) are the sets of admissible normal and tangential contact reactions

C τ
n = {r∗n : ϕτ (Γc) −→ IR such that r∗n ≥ 0} (56)

C τ
t (rn) = {r∗t : ϕτ (Γc) −→ IR such that |r∗t | ≤ µrn} (57)

The present formulation with seven unknown fields is reducedto a three fields formulation
in the case of the discrete problem.



3.2 The discrete problem

a - Space discretization
Auxiliary fields p andθ are eliminated at the finite element level. We useQ4P0 elements with

four nodes for the displacements and one node forp andθ. We have :

θhe = Vol
(
ϕτ (Ω

h
e )
)
/Vol(Ωh

e ) , phe = U ′(θhe ) . (58)

After finite element discretization, the problem can be written as follows :

Problem (P h
DynP h
DynP h
Dyn) :

M ü+ Fint(u) − Fext(u) = HT
r , (59)

∀r∗n ∈ Ch
n (r∗n − rn)

T (Hnu+G) ≥ 0 , (60)

∀r∗t ∈ Ch
t (rn) (r∗t − rt)

T (Htu̇− vobs) ≥ 0 , (61)

whereH is the matrix which associates the local displacement vector (normal-tangential com-
ponents(n, t)) with the global displacement vector :

[
r1
r2

]

i

=

[
n1 t1
n2 t2

]

︸ ︷︷ ︸
HT

i

[
rn
rt

]

i

, (62)

and where
Ch
n = {rn ∈ IRNc such thatrni

≥ 0 ∀i = 1, .., Nc}, (63)

Ch
t (rn) = {rt ∈ IRNc such that|rti | ≤ µrni

∀i = 1, .., Nc}. (64)

b - Time discretization
As in the previous section, a formulation in terms of differential measures is used in order to take
into account the velocity discontinuities induced by the impacts.

Equation of motion (50) is then written as follows (Pandit-Deo (1982)) :

∀τ ∈ [0, T ] , Mdu̇+ Fint(u)dτ − Fext(u)dτ −HT
r̄dν = 0 . (65)

This nonlinear problem is a generalization of the dynamic problem set in linear elasticity in
the previous section.

The previous differential equation (65) is approximated byusing three differentθ-methods
(Vola-Pratt-Jean-Raous (1998)) and the gapω and the impulse term will be approximated by an
implicit Euler method in order to prevent numerical oscillations after impact.

– Method 1 :θ-method for the equation of motion and for the displacement.
– Method 2 : Implicit Euler method for the equation of motion and the displacement.
– Method 3 :θ-method for the equation of motion and implicit Euler methodfor the displace-

ment



In the following, method 1 will be used (with a singleθ).
Now, at each time step, we have to solve the non-linear complementarity problem written

with the contact velocities and the contact forces.

Problem (P h
mP
h
mP
h
m) : Find u̇m+1 ∈ IRndl , r̄m+1

n ∈ Ch
n andr̄m+1

t ∈ Ch
t (r̄

m+1
n ) such that :

M u̇
m+1 +∆τθFint(l(u̇

m+1)) = ∆τθFm+1
ext +∆τFm

res +∆τ r̄m+1 , (66)

∀r̄∗n ∈ Ch
n (r̄∗n − r̄

m+1
n )T (Hnu̇

m+1 + G̃
m) ≥ 0 , (67)

∀r̄∗t ∈ Ch
t (r̄

m+1
n ) (r̄∗t − r̄

m+1
t )T (Htu̇

m+1 − vobs) ≥ 0 , (68)

with :

l(u̇m+1) = 1/(θ∆τ) (um+1 − u
m)− (1− θ)/θ ˙um , (69)

F
m
res = 1/∆τ M u̇

m + (1− θ) [Fm
ext − Fint(l(u̇

m))] . (70)

c - Solvers
The nonlinear problem(P h

mP
h
mP
h
m) is linearized (see Josephy (1979)) and a Newton-Raphson method

is used. At each Newton iterate, the following linearized complementarity problem will be solved
with the Lemke solver.

Problem (PlinearizedPlinearizedPlinearized): Let (u̇, r̄n, r̄t)
mthe solution previously computed up to and including

the timeτm, find (u̇, r̄n, r̄t)
m+1, the limit of the sequence(u̇k+1, r̄nk+1

, r̄tk+1
) ∈ IRndl × Ch

n ×
Ch
t (r̄nk

) where :

HK̂Tk
HTHdu̇k+1 = HF

m
Res − 1

∆τ
HM u̇k + θH [Fext − Fint(l(u̇k))] + r̄k+1 , (71)

∀r̄∗n ∈ Ch
n (r̄∗n − r̄nk+1

)T (Hnu̇k + G̃
m +Hndu̇k+1) ≥ 0 , (72)

∀r̄∗t ∈ Ch
t (r̄nk+1

) (r̄∗t − r̄tk+1
)T (Htu̇k +Htdu̇k+1 − vobs) ≥ 0 , (73)

whereK̂Tk
is the tangent stiffness matrix andk denotes the Newton iterate.

This form of the dynamic problem leads to a sequence of problems very similar to those
obtained for a static problem but including some extra termsrelated to the solution at the previous
time step. This is very important for the solvers.

These problems are solved using the Lemke method presented in the first section.

3.3 The quasistatic problem : a particular case of the dynamic problem

For the quasistatic problem, the acceleration terms are neglected. It is then easy to adapt the for-
mulations and the solvers presented in the previous sectionfor solving the quasistatic problem.

Problem (PQuasistaticPQuasistaticPQuasistatic) : Find (ϕτ , ϕ̇τ , θ, p, rn, rt) ∈ W2 × V2 × C τ
n × C τ

t (rn) such that :

∀ητ ∈ T τW ,

∫

ϕτ (Ω)

σ̄ : ∇S
xη

τdv −
∫

ϕτ (Ω)

f τ
V η

τdv −
∫

ϕτ (ΓS)

f τ
S η

τ dΓ

−
∫

ϕτ (Γc)

(rnn+ rtt).η
τ dΓ = 0 ,

(74)



∀ψ ∈ V ,
∫

ϕτ (Ω)

1

J
(Ú(θ)− p)ψ dv = 0 , (75)

∀q ∈ V ,
∫

ϕτ (Ω)

(J − θ)
q

J
dv = 0 , (76)

∀r∗n ∈ Cτ
n ,

∫

ϕτ (Γc)

(r∗n − rn)ωn dΓ ≥ 0 , (77)

∀r∗t ∈ C τ
t (rn) ,

∫

ϕτ(Γc)

(r∗t − rt)ω̇t dΓ ≥ 0 . (78)

After time and space discretization and linearization, thediscrete quasistatic problem can be
written in the following linear form (79).

Problem (PQuasistatic−LinearizedPQuasistatic−LinearizedPQuasistatic−Linearized) : Let (u, r̄n, r̄t)
mthe quasistatic solution is known up to time

τm, find(u, r̄n, r̄t)
m+1 limit of the sequence(uk+1, r̄nk+1

, r̄tk+1
) ∈ IRndl×Ch

n×Ch
t (r̄nk

)where :

HK̂Tk
HTHduk+1 = HFext −HFint(uk)) + r̄k+1 , (79)

r̄nk+1
∈ Ch

n and ∀r̄∗n ∈ Ch
n(r̄

∗
n − r̄nk+1

)T (Hnuk +Hnduk+1 +G
m) ≥ 0 , (80)

r̄tk+1
∈ Ch

t (r̄nk+1
) and ∀r̄∗t ∈ Ch

t (r̄nk+1
)(r̄∗t − r̄tk+1

)T (Ht∆uk +Htduk+1) ≥ 0 , (81)

with duk+1 = ∆uk+1 −∆uk, where∆uk is the displacement increment between the previous
step and the iteratek of the Newton-Raphson algorithm.

3.4 Steady sliding solution for a set of values of the friction coefficient

The steady sliding problem is more simple because the particles candidate for contact are either
separated, or sliding with relative velocity opposite to that of the obstacle (vobs). The Coulomb
law is then simply written as follows :

rt = µ sgn(vobs)rn . (82)

The discrete steady sliding problem is therefore written asfollows :

Problem (PSteady−SlidingPSteady−SlidingPSteady−Sliding) : Findu ∈ IRndl andrn ∈ Ch
n such that :

Fint(u) = HT
n rn + µ sgn(vobs)H

T
t rn , (83)

∀r∗n ∈ Ch
n (r∗n − rn)

T (G +Hnu) ≥ 0 , (84)

and a fixed point procedure can be used onrt.
When stability analysis of steady sliding solutions will beconducted , the influence of the

friction coefficient will be of great relevance. The following algorithm is therefore used to com-
pute directly the steady sliding solutions with a set of various friction coefficient values. Each
solution is then used as an initial condition for solving thenext problem.



Algorithm

– Incrementation of the friction coefficient.
– The problem is solved by using a fixed point method on the friction force :

(u0, r0n), .., (u
l−1, r l−1

n ) being known, findu l ∈ IRndl andr l
n ∈ Ch

n such that :

Fint(u
l) = HT

n r
l
n +HT

t r
l−1
t , (85)

∀r∗n ∈ Ch
n (r∗n − r

l
n)

T (Gm +Hu) ≥ 0 , (86)

with r
l−1
t = µ sgn(vobs)H

T
t r

l−1
n .

– Initial condition : the previous steady sliding solution obtained with the previous value of the
friction coefficient.

The validity of the algorithm has been confirmed by computingthe complete quasistatic solution
until the the steady sliding solution was obtained (see Section 3.6).

3.5 Validation on test examples

a - Quasistatic computation of the compression of a cylinder
This benchmark was described by Simo-Taylor (1991), Sussman-Bathe (1987) and Liu-Hofstetter-
Mang (1994). The following computations were conducted by Didier Vola (Vola (1998)). Re-
sults obtained for frictionless and frictional (µ = 0.2) cases are presented in Fig. 11, 12 and
13. The results show an excellent agreement with those obtained by Sussman-Bathe (displace-
ment/hydrostatic pressure formulation) and Simo-Taylor.

U=0.32m

U=0.25m

U=0.2m

Figure 11.Deformations in the frictionless case.
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Figure 12.Total contact forces atµ =0.
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Figure 13.Total contact forces atµ =0.2.

b - Dynamic impact of a cylinder into an angle
This benchmark was proposed by Wriggers-Vu Van-Stein (1990). The model is given in Fig. 15.
Results obtained with various friction coefficient values are presented in Fig. 16. The velocitiy
oscillations presented in Fig. 14 characterize the vibrations of the cylinder when it jumps back
out from the angle (except forµ = 0.5, where it remains stuck).
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Figure 14.Evolution of the tangential velocity of node 1 withµ =0,µ =0.1,µ =0.3 andµ =0.5.



initial velocity
1.5m/ s

40 deg

r=9m
mR=10mm

node 1

Figure 15.The model.

=0.3 =0.5

Frictionless case =0.1

Figure 16.Deformations and contact forces withµ =0,µ =0.1,µ =0.3 andµ =0.5 at t=0.085s.



3.6 Efficiency of the algorithm when computing the steady sliding solution

In this example, which is a simplified waist seal geometry, the steady sliding solution was com-
puted either using the direct algorithm presented in Section 3.4 or as the asymptotic solution of
the quasistatic problem, when the algorithm presented in Section 3.3 was used. Comparisons on
the accuracy given on Fig. 19 and Fig. 20 and on the CPU times given on Table 2 (whereε is
the value for the convergence test on the fixed point iterations on the friction forces), show that
the direct method for computing the steady sliding solutionis the most efficient. It is worth men-
tioning that the steady sliding solutions were computed taking various friction coefficient values,
whereas the quasistatic solution was computed with only onevalue of the friction coefficient.

Ucomp

U
entr

r=
9mm

R=10mm

Figure 17.The model. Figure 18.Steady sliding solution forµ =0.8.

First Mooney-Rivlin coefficient 0.293 MPa
Second Mooney-Rivlin coefficient0.177 MPa
Compressibility modulus 1200 MPa
Volume variation tolerance 0.01%

Plane strain hypothesis

Table 1.Material characteristics.

Method Number of displacementNumber of steady sliding CPU time
increments of the windowsolutions (variousµ)

Quasistatic (reference) 1920 of0.1 10−2mm 1 756.7 sec.
Quasistatic 10 of0.3mm 1 31.6 sec.

Direct ε = 10−3 10 with∆µ = 0.08 37.2 sec.
Direct ε = 10−5 10 with∆µ = 0.08 63 sec.
Direct ε = 10−5 320 with∆µ = 0.25 10−2 574,5 sec.

Table 2.Comparison between the computational times required by thetwo methods
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Figure 19.Error between the steady sliding solution and a reference asymptotic
quasistatic one ( 1920 increments) : normal reactions.
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Figure 20. Error on the mean value of the Von Mises stresses by elements,
influence of the number of increments

3.7 The steady sliding solution for the waist seal

In this section, the steady sliding solution of two kinds of waist seals sliding on a glass is pre-
sented. The stability of these solutions will be analyzed inthe last section. The Mooney-Rivlin
constitutive parameters area1 = 0.293MPa,a2 = 0.177MPa andκ = 1200MPa. For small
deformation, in linear elasticity, it corresponds toE = 4.58MPa andν = 0.4995. The behaviour
is quasi-incompressible (the volumic deformation will be under0.01% with this value ofκ ). The



volumic mass isρ = 1200Kg/m3 and the velocity of the glass isVglass = 80mm/s. The meshes
of the two models of waist seals are given in Fig. 21 and Fig. 22. The steady sliding solutions for
the glass moving up and the glass moving down are given in Fig.23 for geometry1, and in Fig.
24 for geometry2.

Contact zone

Boundary conditions

Figure 21.Mesh of the waist seal no1 and zoom
of the contact zone.

Contact zone

Boundary conditions

Figure 22.Mesh of the waist seal no2 and zoom
of the contact zone.

Figure 23. Steady sliding solution and contact
forces, geometry 1 withµ =0.4.

Figure 24. Steady sliding solution and contact
forces, geometry 2 withµ =0.4.



4 Numerical analysis of the stability for quasistatic solutions of frictional
contact problems in linear elasticity

4.1 Condition for dynamic growth in the neighborhood of quasi-static paths

a - Introduction
First, we recall the main results established in Martins et al (1999) and Barbarin (1997), for
finite dimensional problems, on the stability of quasistatic solutions of linear elastic problems
involving frictional contact. We will focus here on the computation of the various stability con-
ditions and on their application to the example of a Polyurethane block sliding on a plane given
in Section 1.

In general, a quasistatic evolution is not a solution of the dynamic problem, except if the
velocity u̇0(t) is constant.

We now consider straight portions of quasistatic evolutions. Thus, we assume that the varia-
tion of the applied forces is linear (see (87)), and that the quasistatic evolution(u0(t), r0(t)) has
the linear variation given by (88) and (89) in some time interval [τ, τ +∆0τ [ :

f(t) = f(τ) + ḟ(τ)(t − τ) , for t ≥ τ , (87)

u
0(t) = u

0(τ) + u̇
0+(τ)(t − τ) , (88)

r
0(t) = r

0(τ) + ṙ
0+(τ)(t − τ) . (89)

As commented in Martins et al (1999) (Remark 4.5) the following results apply then also to
steady sliding solutions.

In some right neighborhood[τ, τ + ∆τ [ of τ , with 0 < ∆τ ≤ ∆0τ , we look for dynamic
solutions having the form

u(t) = u
0(t) + α(t)A , r(t) = r

0(t) + β(t)B , (90)

with

A ∈ Kü(u
0(τ), r0(τ), u̇0+(τ), ṙ0+(τ)) , (91)

B ∈ Kr̈(u
0(τ), r0(τ), u̇0+(τ), ṙ0+(τ),A) , (92)

whereKü andKr̈ are defined by (97) and (98), and :

– α is a twice continuously differentiable function such thatα and α̇ are non-negative and
non-decreasing in the interval defined above,

– β is continuous, non-negative and non-decreasing in the sameinterval,
– the initial valuesα(τ) ≥ 0, α̇(τ) ≥ 0 are arbitrarily small.

b - Admissible directions
The admissible directions, in which the perturbed solutioncan possibly evolve, are defined by
the following sets (see Martins et al (1999) where details onthe notations will be found):



– for the displacements and the contact forces :

Vu

def
=

{
u ∈ IRN : ui = 0, for all i ∈ SD

}
,

Vr

def
=

{
r ∈ IRN : ri = 0, for all i ∈ SF

}
,

(93)

Ku = {u ∈ Vu such thatuni
≥ 0 ∀i ∈ PC} ,

Kr(u) = {r ∈ Vr such thatrni
= rti = 0 ∀i ∈ Pf (u )

rni
≤ 0 and|rti | ≤ µrni

∀i ∈ Pc(u )} ,
(94)

where :

• SD andSF are respectively the set of degrees of freedom with prescribed displacement
and the one of free displacement,

• PC = Pf (u) ∪ Pc(u) is the set of contact particles,
• Pc(u ) = {i ∈ PC : uni

= 0} is the set of particles currently in contact,
• Pf (u ) = {i ∈ PC : uni

> 0} is the set of particles currently separated,

– for the velocities and the contact force rates :

Ku̇(u, r) = { v ∈ Vu such that
vni

≥ 0 ∀i ∈ Pz(u, r)
vni

= vti = 0 ∀i ∈ Pd(u, r)
vni

= 0,−sgn(rti)vti ≥ 0 ∀i ∈ Ps(u, r)} ,
(95)

Kṙ(u, r,v) = { w ∈ Vr such that
wni

≥ 0 wni
vni

= 0 wti ∈ µwni
σ(vti ) ∀i ∈ Pz(u, r)

wni
= wti = 0 ∀i ∈ Pf (u )

−wtisgn(rti) + µwni
≥ 0,

(−wtisgn(rti) + µwni
)sgn(rti)vti = 0 ∀i ∈ Ps(u, r)} .

(96)

where :

• Pz(u, r) = {i ∈ Pc(u ) : rni
= rti = 0} is the set of particles in contact with zero

reaction,
• Pd(u, r) = {i ∈ Pc(u ) : rni

< 0 and|rti | < −µrni
} is the set of particles in contact

currently stuck,
• Ps(u, r) = {i ∈ Pc(u ) : rni

< 0 and|rti | = −µrni
} is the set of particles in contact

currently sliding,

– for the accelerations and the second-order contact force rates :

Kü(u, r,v,w) = { a ∈ Vu : aNp ≤ 0, for p ∈ Pzz ;
aNp = 0, for p ∈ Pd ∪ Ps ∪ Pzs ∪ Pzd ;
aTp σ(rTp) ≤ 0, for p ∈ Pss ∩ P0 ;
aTp σ(wTp) ≤ 0, for p ∈ Pzs ∩ P0 ;
aTp = 0, for p ∈ Pd ∪ Psd ∪ Pzd } ,

(97)



Kr̈(u, r,v,w , a) = {b ∈ Vr : bNp ≤ 0, bNpaNp = 0, for p ∈ Pzz ;
bNp = 0, for p ∈ Pf ∪ Pzf ;
bTp σ(rTp) + µ bNp ≤ 0, [bTp σ(rTp) + µ bNp] [aTpσ(rTp)] = 0, for p ∈ Pss ∩ P0 ;
bTp σ(wTp) + µ bNp ≤ 0, [bTp σ(wTp) + µ bNp] [aTpσ(wTp)] = 0, for p ∈ Pzs ∩ P0 ;
bTp ∈ µ bNp σ(aTp), for p ∈ Pzz ∩ P0 ;
bTp = µ bNp σ(vTp), for p ∈ Pv ;
bTp = 0, for p ∈ Pf ∪ Pzf } ,

(98)

where

– P0 = P0(u
0(τ), u̇0+(τ)) andPv = Pv(u

0(τ), u̇0+(τ)) are the two complementary sets
of particles in contact with zero normal velocity.P0 is the set of particles with tangential
velocity equal to 0 andPv the set of particle with non-vanishing tangential velocity,

– Pzz, Pzd, Pzs, andPzf are the set of particles in grazing contact (vanishing contact forces)
that are respectively the one staying in the same situation,the one evolving to stuck situation,
the one beginning to slide and the one going to be separated inthe next future,

– Pss andPsd are the sets of sliding particles that are respectively remaining so and evolving
to stuck situation.

Hereafter, the above sets of admissibility will be denoted by Kü(· · ·) andKr̈(· · · ,A) for sim-
plicity’s sake.

c - Conditions for growth of dynamic solutions or instability
Let us summarize here the results established in Martins et al (1999) where the various proofs
can be found.

For each(A,v) ∈ Kü(· · ·)×Kü(· · ·), we use the notations :

m∗∗(A,v)
def
= MA.v −

∑

p∈Pv

µσ(u̇0+Tp(τ))[MA]NpvTp −
∑

p∈P0

µ[MA]Np|vTp| , (99)

a∗∗(A,v)
def
= KA.v −

∑

p∈Pv

µσ(u̇0+Tp(τ))[KA]NpvTp −
∑

p∈P0

µ[KA]Np|vTp| . (100)

where

σ(x)
def
=

{
x/|x| , if x 6= 0,
[−1, 1] , if x = 0.

and whereM andK denote respectively the mass and stiffness matrices.
The following result has been given in (Martins et al (1999)):

Proposition 1.

If ∃λ ≥ 0 andA ∈ Kü(· · ·) , A 6= 0 ,

such that



(λ2M +K)A ∈ Kr̈(· · · ,A) , (101)

i.e., such that

λ2[m∗∗(A,v) −m∗∗(A,v)] + [a∗∗(A,A)− a∗∗(A,A)] ≥ 0 , ∀v ∈ Kü(· · ·) , (102)

then there exists a dynamic solution of the form (90) in[τ, τ +∆τ [, with

B = (λ2M +K)A , (103)

β(t) = α(t) =




α(τ) cosh [λ(t− τ)] +

[
α̇(τ)

λ

]
sinh [λ(t− τ)] , if λ > 0 ,

α(τ) + α̇(τ) (t − τ) , if λ = 0 ,
(104)

with ∆τ ≤ ∆0τ , positive and sufficiently small, for all arbitrary, sufficiently smallα(τ) ≥ 0,
α̇(τ) ≥ 0.

We now assume that the following restriction holds (detailson the exact sets definitions can
be found in Martins et al (1999))

Pzz ∪ [(Pzs ∪ Pss) ∩ P0] = ∅ , (105)

which means that :

– particles in grazing contact could not stay in the same situation (Pzz = ∅),
– particles in contact for which the current or the near futurereactions do not vanish, and are

on the boundary of the Coulomb friction cone, could not have avanishing tangential velocity
(Pzs ∪ Pss) ∩ P0 = ∅.

Consequently, no inequality restriction remains on the second-order displacement and reac-
tion rates in bothKü(· · ·) andKr̈(· · · ,A) that become subspaces ofIRN . In this situation, we
now seek for growing dynamic solutions in the neighborhood of the quasistatic path in the form :

u(t) = u
0(t) +Re[α(t)A] , r(t) = r

0(t) +Re[β(t)B] , (106)

with
A ∈ V lC

ü
, B ∈ V lC

r̈
, (107)

whereV lC
ü

andV lC
r̈

are subspaces of admissible complex second order displacement and reaction
rates.

For each(A,v) ∈ V lC
ü

× V lC
ü

, we define the following sesquilinear forms :

m](A,v)
def
= MA.v −

∑

p∈Pzs∪Pss

µσ(u̇0+Tp(τ))[MA]Npv̄Tp (108)

a](A,v)
def
= KA.v −

∑

p∈Pzs∪Pss

µσ(u̇0+Tp(τ))[KA]Npv̄Tp , (109)

wherePzs ∪ Pss are particles in contact with a non-vanishing tangential velocity and a non-
vanishing reaction on the friction cone, or a vanishing reaction and a non-vanishing reaction rate
on the friction cone.

In these definitions, the termA.v defines the inner product of complex vectors.
Then, we have the following result :



Proposition 2. If (105) holds and if∃λ ∈ lC with Re(λ) > 0 such that one of the following
equivalent conditions holds :

(i) ∃A ∈ V lC
ü
, A 6= 0 , such that (λ2M +K)A ∈ V lC

r̈
; (110)

(ii) ∃A ∈ V lC
ü
,A 6= 0 , such that λ2m](A,A) + a](A,A) = 0 , ∀A ∈ V lC

ü
;(111)

then, there exists a dynamic solution of the form (106) in[τ, τ +∆τ [, with

B = (λ2M +K)A , (112)

β(t) = α(t) = α(τ) cosh [λ(t− τ)] +

[
α̇(τ)

λ

]
sinh [λ(t− τ)] , (113)

with ∆τ ≤ ∆0τ , positive and sufficiently small, for all arbitrary, sufficiently small|α(τ)| > 0
and|α̇(τ)| > 0.

The statements of Propositions1 and2 are not interpreted as instability results because they
only refer to a portion of a quasistatic evolution that is also a dynamic solution in some possibly
finite time interval[τ, τ + ∆0τ [. An extra hypothesis is then necessary to obtain the following
stability result.

Proposition 3. If
(
u0(t), r0(t)

)
given by (88-89) solves the quasistatic problem and conse-

quently the dynamic problem for allt ∈ [τ,+∞[ and, if the assumptions of Proposition 1 and 2
hold, then the solution

(
u0(t), r0(t)

)
, t ≥ τ is dynamically unstable. IfIm(λ) = 0, we have a

divergence and ifIm(λ) 6= 0 we have flutter.

d - Construction of the mass and stiffness matrices involvedin the stability analysis

We will now interpret the above necessary and sufficient conditions for divergence instabili-
ties in terms of the properties of mass and stiffness matrices introduced before.

In practice because of the space and time discretization involved in the numerical resolution
of the quasistatic problem and because of the finite digit accuracy, condition (105) holds and the
following sets of particles are empty :

– the setPz(u
0(τ), u̇0+(τ)) of particles in contact with a zero reaction (grazing contact),

– the set of particles in contact with non-zero reaction on the friction cone and zero tangential
velocity.

In that case there is no distinction betweenm∗∗ andm] and betweena∗∗ anda]. Then the
analysis needs the construction of matricesM∗ andK∗ associated to these bilinear forms and
defined below.

We have now three remaining sets of contact particles :

– contact particles currently free (separated)Sf ,
– contact particles currently in contact with reactions strictly inside the friction cone (stuck)
Pd,



– contact particles currently in contact with non-vanishing reactions on the friction cone and a
non-vanishing tangential velocity (sliding)Pss.

In order to constructM∗ andK∗, we start by eliminating the non active degrees of freedom,
which are :

– both degrees of freedom of the nodes with prescribed displacements (componenti ∈ SD),
– both degrees of freedom of the contact nodes that are stuck,
– the normal degree of freedom of the contact nodes that are sliding.

Let us denote byS∗ the set of degrees of freedom that may be right active and byN∗ the
corresponding total number of degrees of freedom. The matricesM∗ andK∗ are then defined
by :

For all j ∈ S∗ :

– M∗
i,j = Mi,j andK∗

i,j = Ki,j for all degrees of freedomi ∈ S∗ that are not tangential
degrees of freedom of particlesp in Pss,

– and for all particlesp in Pss (set of the sliding particles) :

M∗
Tp,j =MTp,j − µσ(u̇0+Tp(τ))MNp,j , K∗

Tp,j = KTp,j − µσ(u̇0+Tp(τ))KNp,j .(114)

The symmetrized matricesM∗
S andK∗

S will be useful for the necessary condition. They are given
by :

M∗
S =

1

2
(M∗ +M∗T ) , K∗

S =
1

2
(K∗ +K∗T ) . (115)

e - The various conditions for dynamic growth : the generalized eigenvalue problem
The conditions given in Propositions 1, 2 and 3 will now be interpreted in terms of properties of
matricesM∗,K∗,M∗

S andK∗
S . Details about the establishment of the above propositionscan be

found in Martins et al (1999).

Proposition 4. Necessary condition for divergence

If M∗
S is positive semi-definite, and (116)

if K∗
S is positive definite, (117)

then growing perturbed dynamic solution of the form (90)) cannot occur.

Proposition 5. Sufficient condition for divergence

If ∃λ ≥ 0 and V
∗ ∈ K∗

ü
(· · ·) , V ∗ 6= 0 ,

such that (λ2M∗ +K∗)V ∗ = 0 , (118)

then (101) holds with the same value ofλ and

V =





VD

Vd

VsN

V
∗





=





0
0
0
V

∗





. (119)



In the above proposition, the componentsVD, Vd andVsN are respectively the components
of SD, both components of particles inPd, and the normal component of particles inPss that
have been suppressed in the construction ofM∗ andK∗.

Proposition 6.
If (105) holds and if∃λ ∈ lC with Re(λ) > 0 the condition :

(iii) ∃A∗ ∈ lCN∗

, A∗ 6= 0 , such that[λ2M∗ +K∗]A∗ = 0 ; (120)

is equivalent to conditions (i) and (ii) of proposition 2.

f - Analysis of the various conditions for dynamic growth/instability

– Divergence

• Necessary condition
When the masses are concentrated,M is diagonal andM∗

S = M∗ is positive defi-
nite. The analysis of the conditions given in Proposition 4 reduces to the analysis of the
eigenvalues ofK∗

S . The existence of a negative eigenvalue ofK∗
S is a necessary (but not

sufficient) condition for divergence.
• Sufficient condition

Proposition 5 shows that the existence of a positive real eigenvalue of the generalized
eigenvalue problem(λ2M∗ +K∗)V ∗ = 0 is a sufficient condition for divergence.

With both conditions, we have to check the compatibility of the associated eigenvectorV
∗.

In the present simplified context, it reduces to check the sign of the active tangential compo-
nents :

σ(V ∗
Tp) = −σ(r0Tp) for all p ∈ Pss . (121)

– Flutter
The existence of complex eigenvaluesΛ of the generalized eigenvalue problem
K∗

A
∗ = ΛM∗

A
∗ obviously implies the existence of a complex valueλ with a positive

real part (sinceλ2 = −Λ) i.e. implies flutter. The analysis will focus on the modes ofthe
structure that may be excited for the corresponding eigenvalueλ (complex with a real part
positive).

Note.
For divergence, the sufficient condition cannot be fulfilledbefore the necessary condition be-
cause :

– the smallest eigenvalue ofK∗
S is lower than or equal to the smallest real part of any eigen-

value ofK∗,
– the smallest real part of any eigenvalue ofK∗ is lower than or equal to any real eigenvalue

of K∗ corresponding to a real compatible eigenvectorV
∗.



4.2 Computation of the conditions and analysis

a - Construction of the matrices
To check the stability along the quasistatic evolution, matricesM∗,K∗,M∗

S ,K
∗
S have to be

constructed at any change in the contact status.
MatricesM∗ andK∗ are constructed from the mass matrixM and the stiffness matrixK as

previously shown (4.1.c) by removing specific equations andperforming modifications (114) on
specific tangential components.

MatricesK∗ andM∗ are therefore non symmetrical and depend onµ.

b - Computation of the lowest eigenvalue ofK∗

S
(necessary condition for divergence)

In order to check the necessary condition for divergence, wehave to check whetherK∗
S is no

longer definite positive. This is done by three different methods. Note that the same methods can
be used to check ifM∗

S is positive when the mass matrixM is consistent.
All methods give the same results :

1. minimizing the bilinear forma∗(v,v) under constraints (121) and‖v‖ = 1 and checking
that the minimum is negative,

2. applying Cholesky’s method toK∗
S and when it fails,K∗

S is no longer positive definite,
3. computing the smallest eigenvalue ofK∗

S, checking its sign and the compatibility (121) of
the corresponding eigenvector.

Method 2 is a direct one and therefore the fastest and should be prefered when used for checking
if M∗

S is positive. Nevertheless, we use mostly the last method because it gives the eigenvector
ofK∗

S corresponding to the smallest eigenvalue. This method consists in computing the smallest
eigenvalue ofK∗

S (and not the one with smallest modulus, as usually done) :

– using the Power Method, we first compute the eigenvalueΛL ofK∗
S with the largest modulus,

– if ΛL is negative, we have the desired result,
– if ΛL > 0, we shift all the eigenvalues towards the negative axis by constructing the mod-

ified matrixK∗
S − ΛLI (whereI denotes the matrix identity) and using the Power Method

again, we compute the eigenvalueΛM with the largest modulus of this modified matrix. The
smallest eigenvalueΛm of K∗

S is then obtained asΛm = ΛM + ΛL and we check its sign.

c - Computation of the generalized eigenvalue problem (sufficient condition for divergence,
flutter)
In order to check the sufficient condition for divergence or for flutter, we have to determine all
the eigenvalues of the generalized eigenvalue problem

K∗
V

∗ = ΛM∗
V

∗ (Λ = −λ2) . (122)

A Lanczos algorithm (Rajakumar-Rogers (1991)) is used along with the double QR algorithm
Ralston-Rabinowicz (1978).

The usual Lanczos method can be extended to non symmetric matrices (with real coefficients)
and to generalized eigenvalue problems. It progressively constructs a non symmetrical Rayleigh
matrix (tri-diagonal matrix), the order of which increasesat every iterate. It is then possible to



compute only a part of the spectrum in a given range (the eigenvalues with the smallest mod-
ulus in our case). The double QR method is then used for computing the eigenmodes and the
eigenvectors of the tri-diagonal matrix .

Most of these computations were performed with the consistent mass matrixM∗. In order to
speed up some of the computations for the most refined meshes,a diagonal mass matrixM was
used, which also leads to a diagonal matrixM∗.

d - Synthesis of the analysis of the dynamic growth/instability conditions
Let us now summarize how to check the various conditions given in this section.

– Necessary condition for divergence
Here, we only have to check whether matrixK∗

S (symmetric) has a negative eigenvalue.
– Sufficient condition for divergence

We just have to check whether the generalized eigenvalue problem (122) has any real nega-
tive eigenvalueΛ which corresponds to realλ = ±

√
−Λ. With the problems studied so far,

we have never observed this situation.
– Sufficient condition for flutter

Unless all the eigenvaluesΛ of the generalized eigenvalue problem (122) are real, a complex
λ with a positive real part always exists (keeping in mind thatΛ = −λ2). It is likely that
significant consequences will arise only when some lower mode is affected by flutter and
when the growth rate (the real part of the complex eigenvalue) is large enough.

Moreover, it can be noted that :

– with the necessary condition for divergence, the compatibility condition (121) has always
been satisfied by the computed eigenvectors,

– matricesM∗ andM∗
S were never found to be singular (M∗

S was always positive definite) in
all the computations involving finite element discretizations performed in the course of this
study.

4.3 Application to the block sliding on a plane

In this section, stability analysis is conducted on the example of a block of Polyurethane slid-
ing on an Araldite plane. The quasistatic solution of this problem was given in Section 1. The
following computations were conducted by S. Barbarin (see Barbarin (1997) and Martins et
al (1999)). Experiments performed by T. Zeghloul and B. Villechaise (see Zeghloul-Villechaise
(1996)) showed that jumps occur in both the tangential displacement and the friction force during
the sliding. Stress waves were also observed experimentally when jumps occurred. In Section 1,
a model of the experiment was presented and the various stepsof the quasistatic solution were
given. In the present section, the analysis of the stabilityis conducted along these various steps
of the solution in order to check the possible occurrence of an instability.

a - Analysis of the eigenvalues
We examine the solution (on the mesh of Fig. 4 when the prescribed tangential displacementUT

gradually increases (see Fig. 3). Construction of all matrices and computation of the eigenvalues
ofK∗

S andM∗−1K∗ are performed only when a change occurs in the contact condition (sticking,



sliding or separate nodes). In Table 3, at each value of the prescribed tangential displacementUT

(the applied velocity is constant and equal to0.103mm/s, a first period of 15s is dedicated to
the normal loading), the total number of stick, slip or no-contact nodes is given together with the
minimum real eigenvalues ofK∗

S andM∗−1K∗ and the lowest mode number corresponding to
a complex eigenvector ofM∗−1K∗.

The results given in Table 3 show that :

– the necessary condition for divergenceis first satisfied atUT=-1.35mm when a second
node begins to slide,

– the sufficient condition for divergenceis never satisfied,
– flutter occurs first for very high modes. Flutter occurs for a low order mode (the 3rd mode)

exactly when the necessary condition for divergence is firstsatisfied at
UT =-1.35mm. In other examples, it was found to occur nearly at the same time or a little
earlier. Table 3 also shows that the steady sliding state reached at the end of the theoretical
quasistatic solution is still unstable by flutter (see the last row in the relevant table).

Time UT Contact Nodes Min Real E.V. of Flutter Experimental
(s.) (mm) Stick Slip Separ. K∗

S M∗−1K∗ (Mode) data
23.4 -0.87 20 1 0 0.076 8.19106 57 —
25.2 -1.05 19 1 1 0.071 7.91106 11 —
26.6 -1.20 18 1 2 0.068 7.69106 10 —
28.1 -1.35 17 2 2 -0.130 7.43106 3 —
29.1 -1.45 16 2 3 -0.106 7.09106 3 —
31.0 -1.65 14 4 3 -0.502 6.26106 3 —
32.0 -1.75 12 6 3 -0.676 5.47106 3 —
32.3 -1.78 10 8 3 -0.760 6.76106 3 —
32.7 -1.82 7 11 3 -0.821 5.37106 3 —
34.4 -2.00 4 14 3 -0.851 3.34106 3
36.4 -2.20 3 15 3 -0.858 3.08106 3 1st small jump
38.8 -2.45 2 16 3 -0.864 2.78106 3 —
41.3 -2.71 2 16 3 -0.864 2.78106 3 2nd jump
41.7 -2.75 2 15 4 -0.859 2.68106 5 —
48.0 -3.40 1 16 4 -0.868 2.30106 5 —
75.2 -6.20 0 17 4 -0.974 1.23106 5 —

Table 3.Results of the stability analysis and comparison with experimental measurements.

b - Analysis of the eigenmode shapes
In this section, we plot the shape of the eigenvectors associated with the various fulfilled condi-
tions shown in Table 3.

Modes associated with the negative real eigenvalue ofK∗
S

The eigenvectors associated with this negative eigenvalueofK∗
S are plotted in Fig. 25. They give

a direction in which an unstable evolution would be energetically admissible, i.e. an evolution
with loss of energy into some external sink. These mode shapes are distinctly reminiscent of the



UT = −0.87mm UT = −1.35mm

UT = −1.55mm UT = −1.78mm

Figure 25.Eigenvector associated with the smallest eigenvalue ofK∗

S for various values ofUT .

waves observed experimentally in the Polyurethane block when a jump occurs. However, as can
be seen in Table 3, the sufficient condition that would guarantee the occurrence of a divergence
growth of the dynamic solution (a negative eigenvalue ofM∗−1K∗) is in fact never satisfied.

Modes associated with the flutter
In Fig. 26, we have plotted the shapes of the eigenvectors associated with the lowest mode which
can be excited by flutter, and that at various values of the prescribed displacement of the sup-
port. The deformation of the mesh represents the real part ofthe direction of the eigenvector and
the arrows, the real part of its derivative (the directions were computed withM∗−1K∗), for two
values of UT : -0.87mm (high mode, 57) and -1.4mm (low mode, 3).



Mode 57 (forUT = −0.87mm)

Mode 3 (forUT = −1.4mm)

Figure 26.Eigenmode corresponding to the lowest flutter frequency forvarious values ofUT .

c - Influence of the mass on the stability
Fig. 27 gives the evolution of the lowest eigenvalue ofM∗−1K∗ when the displacement pre-
scribed on the plate increases. The sufficient condition fordivergence instability is thatΛmin

becomes negative. In this case, the criterion is never fulfilled, but the sharp decrease inΛmin is
worth noting. In Fig. 27, the analysis is conducted on the three following cases :

– case 1 :M∗ is taken to denote the identity matrix (criterion then basedonly on the stiffness
matrix),

– case 2 : diagonalization of the mass matrix by concentratingof the consistent mass matrix,
– case 3 : consistent mass matrix.

As it could be expected, the various choices have no significant influence on the evolution of
Λmin, and actually, they have no influence on the transition to instability atΛmin = 0. We can
therefore use either case 1 or case 2, where the computationsare easier (diagonal matrix).

When dealing with the sufficient condition for flutter, we considered two cases : the diagonal
mass matrix and the consistent mass matrix. In Fig. 28, the evolution of the modes excited by
flutter when the prescribed displacement of the plate increases is given in both cases. In Fig. 29,
the spectrum of the flutter eigenvalues is given at a given step of the loading in both cases. It can
be observed that the choice of the mass matrix has an effect onthe high frequency modes. When
performing the flutter analysis, we are interested in the lowfrequency modes and the use of a
diagonal mass matrix is therefore again recommended.
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Figure 27. Comparison between the sufficient condition for divergence(the
lowest eigenvalue ofM∗−1K∗) with three choices of mass matrix.
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Figure 29.Effect of mass on the first 25 flutter modes.

d - Effects of the mesh
The various criteria were computed for the various meshes presented in Fig. 30.

Effects of the mesh on the necessary and on the sufficient condition for divergence
The evolution of the lowest eigenvalue ofK∗

S is given in Fig. 31. The evolution of the frequency
of the the first flutter mode (eigenvalue ofM∗−1K∗) is given in Fig. 32. These results show
that with a given shape of the mesh, the refinement has no effect, but that a slight change in the
eigenvalues is observed when the finite element shape is changed.

Effects of the mesh on the sufficient condition for flutter
Fig. 33 gives, with the various meshes, the number of the lowest flutter mode which can be ex-
cited when the loading increases. Fig. 34 gives the total spectrum for two meshes (15 and 25
contact nodes) at a given loading step. It can be seen that themesh refinement influences the cap-
ture of the modes and that the mesh acts more or less as a filter.It can be seen from Fig. 33, that
the mode 5 is caught sooner when the mesh is more refined. In Fig. 34, when the mesh has been
refined (15 and 25 contact nodes), it can be seen that the frequencies of the lowest flutter mode
(mode 3) are the same, although a difference occurs in the growth rate, and, on the contrary, the
higher modes are different. That means that the mesh has to besufficiently refined in order to
catch the lowest modes associated with the frequencies involved in the mechanical phenomena
under investigation.
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Figure 30.The various meshes.
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e - Comparison with experimental results
In Fig. 35, the changes with respect to time in both the experimental and theoretical tangential
forces are plotted. On the theoretical curve, the dot indicates the time at which the necessary con-
dition for divergence instability and the sufficient condition for growing flutter-type oscillations
are first satisfied.

These conditions are satisfied earlier than the first experimental jumps observed : both condi-
tions are satisfied atUT=-1.35mm, while the first experimental small jump is observed atUT =-
2.2mm, and a second jump is observed atUT =-2.71mm (see also Table 3). In the following
section, we present a preliminary study on the possible effects of viscous damping on the stabil-
ity analysis.

Figure 35. Variations with respect to time of the experimental and theoretical
total tangential forces.

f - Effects of viscous damping
As seen above, flutter occurs too early in the model in comparison with the experiment. A simpli-
fied way of introducing viscous damping effects into the problem is to consider a damping matrix
of the Rayleigh typeαM + βK in the dynamic equations of motion and the dynamic stability
analysis. In this manner, it is possible to delay the flutter occurrence (and even to eliminate it
with a sufficiently strong damping effect).

The frequencies of the first 18 natural modes of the structurerange between 454 Hz and
1530 Hz in the initial phase of elastic behaviour, i.e., whenall the nodes are stuck. The damping

ratio ξ is defined as
−Re(λ)
|Im(λ)| , whereλ is the eigenvalue solution of (123), when all the contact

nodes are stuck. It depends on the frequencies and is known tobe decreasing in that range in
the case of Polyurethane. We therefore compute several values ofα andβ (see Clough-Penzien
(1975)) so as to obtain the various decreasing evolutions ofthe damping ratio given in Fig. 36.
Stability has been studied with six of these different damping levels (characterized by the value
of ξ at 454 Hz given in Fig. 36). The eigenvalues are now computed from :

(λ2M∗ + λ(αM∗ + βK∗) +K∗)V ∗ = 0 . (123)



The values of the imposed tangential displacementUT at which flutter occurs are given on
Fig. 37 for the six damping levels. The sudden change inUT occurring between the values of
ξ=0.1475 andξ=0.15 on Fig. 37 is due to the change in the excited mode.

The first value corresponds to mode 3 and the second one to mode5. This means that when
the damping is strong enough, mode 3 is no longer excited by flutter.

It can therefore be seen from Fig. 37 that the occurrence of instability is greatly delayed by
the introduction of viscous damping. Flutter mode 3 appearsatUT=-1.35mm in the no-viscosity
case and only atUT=-6.2mm with the maximum damping level considered here. To assess the
occurrence of flutter more exactly when viscosity is taken into account, it would be necessary to
measure exactly the loss angle of the material in the appropriate frequency range.

600 800 1000 1200 1400
f (Hertz)

0.05

0.10

0.15

D
am

pi
ng

ra
tio

Figure 36.Frequency dependence of the damp-
ing ratios obtained for the six values ofα andβ
considered.

0.0 0.05 0.1 0.15
Damping ratio (for 454Hz)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

U
T

(m
m

)

Figure 37. Prescribed tangential displacement
at which a low order flutter mode occurs for the
various damping levels given in Fig. 36.

g - Conclusions on the analysis of the block sliding on a plane
The steady sliding solution of the block is found to be unstable by flutter. During the tangential
quasistatic loading process, we observe that :

– the necessary condition for divergence is satisfied but it occurs earlier than the first experi-
mental jump, and the corresponding eigenmode suggests the onset of the waves experimen-
tally observed,

– the sufficient condition for divergence is never satisfied,
– growing flutter-type oscillations occur here for the lower order modes at the same time as

the necessary condition for divergence is satisfied,
– introducing damping into the stability analysis delays theoccurrence of flutter and may give

better agreement with the experimental results. A hyper-visco-elastic model is suggested for
the behaviour of the Polyurethane.



5 Stability analysis of a steady sliding solution in finite deformations

We will first recall the main results of the stability analysis for hyperelastic finite dimensional
problems given in Vola-Raous-Martins (1999), Martins-Pinto da Costa (2000) and Vola-Pinto da
Costa-Barbarin-Martins-Raous (1999). Here, we will focuson the numerical discretization and
the computation of the various conditions as well as the flutter solutions. An application to the
industrial problem of a waist seal sliding on a car window will be presented.

As in the previous section, the results given here are based on a property which looks like
that of Liapunov, stating that instability of the linearized system implies that of the nonlinear
one. But, in the present problem, such a property had to be proved because the problem is not
differentiable, and Liapunov’s results no longer applies.

It should be noted that it is more simple to study the instability of steady sliding than to inves-
tigate the one of the complete quasistatic solutions (see Martins-Pinto da Costa (2000)) : in the
present case, the nodes are either sliding or separate and the friction force isrT = µ rN sgn(vT ).

5.1 The discrete dynamics problem

As described above in Section 3, the discrete dynamic problem can be written as :

M̃ ˜̈u+ F̃int (u ) = F̃ext + r , (124)

∀r∗n ∈ Ch
n (r∗n − rn)

Tωωn(u ) ≥ 0 , (125)

∀r∗t ∈ Ch
t (rn) (r∗t − rt)

T ω̇ωt(u̇ ) ≥ 0 , (126)

where :

– M̃ = HMHT , F̃int = HFint, F̃ext = HFext, ˜̈u = Hü and ũ = Hu ,
– ωωn(u) is the current gap and,ω̇ωt(u̇) andω̇ni

(v ) = Hni
v are the current relative tangential

and normal velocity (G is the initial distance in the reference configuration) :

ωni
(u) = Hni

u+Gi , ω̇ti(u̇) = Htiu̇− vobs ∀i ∈ 1, .., nc , (127)

– and whereH , Ch
n andCh

t (rn) are defined by Eq. (62) and Eq. (64) of Section 3.2

5.2 Instability of the steady sliding solution

a - Notations
In the case of a steady sliding solution, the problem is simpler. The contact nodes are :

– either in sliding contact (r0ni
> 0, u0ni

+Gi = 0, r0ti = µsgn(vobs)r
0
ni

andu̇0ti 6= vobs),
– or strictly separated (r0ti = r0ni

= 0 andu0ni
+Gi > 0),

where20 denotes the value of2 in the steady sliding equilibrium configuration.
Linearization assumption : we assume that it is possible to find perturbed dynamic solu-

tions in the neighborhood of this steady sliding state, suchthat the contact state of each con-
tact candidate node is preserved ; i.e. each node in sliding contact remains in sliding contact
(uni

+ Gi = u̇ni
= 0, rti = µ sgn(r0ti)rni

and u̇ti 6= vobs), and each node not in contact



6

-

rT

u̇T

µrNu

u

-�

-�

Figure 38. Linearization assumption presented on the
graph of the Coulomb law (case wherevobs = 0).

remains so with (rti = rni
= 0 anduni

+ Gi > 0) (see Fig. 38). We use the subscriptf (free)
to denote the degrees of freedom corresponding to the displacement components of nodes which
are not concerned by the contact or contact nodes not currently in contact. The subscriptsn (re-
spectivelyt) denote those that correspond to normal (respectively tangential) displacements of
sliding nodes. The dynamical problem can be then written :



Mff Mfn Mft

Mnf Mnn Mnt

Mtf Mtn Mtt





üf

0
üt


 +



Fintf (uf ,ut)
Fintn(uf ,ut)
Fintt(uf ,ut)


 =



0
rn

µsrn


 , (128)

wheres = sgn(vobs).
Using the equations of motion corresponding to the normal degrees of freedom of the sliding

nodes (n) to eliminate the non vanishing reactions, the equations that govern the smooth dynamic
evolution of the structure in the neighborhood are :

[
Mff Mft

M∗
tf M∗

tt

]

︸ ︷︷ ︸
M∗

[
üf

üt

]
+

[
Fintf (uf ,ut)
F

∗
intt

(uf ,ut)

]
=

[
0

0

]
, (129)

whereF∗
intt

= Fintt − µsFintn andM∗
t2 = Mt2 − µsMn2. If the matrixM∗ is non-singular,

the second order differential system (129) is regular and the normal displacements of the free
contact candidate nodes, as well as the tangential velocities and the normal reactions of the nodes
in sliding contact, will depend continuously on the initialconditions and on time. Consequently,
in a sufficiently small neighborhood of the steady sliding state, the solution of (129) and (128)
for perturbed initial conditions arbitrarily close tou0

f ,u
0
t andu̇0

f = u̇
0
t = 0 leads to a “smooth”

solution of the general system (130) to (133).

Mdu̇+ Fint(u)dτ − Fextdτ −HT
rdν = 0 , (130)

∫

]a,b]

du̇ = u̇
+(b)− u̇

+(a) , (131)



∀r∗n ∈ Ch
n (r∗n − rn)

T (Hnu+G) ≥ 0 , (132)

∀r∗t ∈ Ch
t (rn) (r∗t − rt)

T (Htu̇− vobs) ≥ 0 . (133)

The equations of motion (129) are linearized :

M∗δü∗(t) +K∗δu∗(t) = 0 , (134)

where :

– δu∗(t) denotes a small increment in the active displacements,
– K∗ is a non-symmetric matrix with dimensionN∗(≤ N) constructed from the stiffness

matrix in the same way asM∗ (see 129).K∗ depends on the friction coefficient.

b - Stability analysis
The important point is that if the steady sliding equilibrium state is dynamically unstable for the
linearized system (134), it will also be unstable for the non-linear system (129).

The analysis of the dynamic stability of the system (134) leads, as it was shown in Section 4,
to the generalized eigenvalue problem :

(λ2M∗ +K∗)V ∗ = 0. (135)

The occurrence of a non-trivial eigenvectorV ∗ for someλ with a strictly positive real part
implies the instability of the steady sliding state. It willbe :

– adivergence instability if Im(λ) = 0 (non-oscillatory),
– aflutter instability if Im(λ) 6= 0 (oscillatory).

c - Computation of the eigenvalue spectrum
As previously noted,M∗ andK∗ are non symmetric. Their dimensionN∗ is large (only a few
equations were eliminated in (129)). We therefore have to compute the whole spectrum of the
complex eigenvalues of the generalized eigenvalue problem(135). This problem is solved using
the Lanczos algorithm (see Rajakumar-Rogers (1991)) alongwith the double QR method.

5.3 Discussion of the stability analysis on a simplified waist seal geometry (presented in
Section 3.6)

In this section, the stability analysis is conducted on the simplified waist seal geometry presented
in Section 3 (see Fig. 18) : on one hand, the eigenvalue spectrum characterizing the flutter in-
stabilities is computed, on the other hand, the flutter oscillations including normal shocks and
stick-slip are computed using the dynamic formulation given in Section 3. The influence of var-
ious parameters on the stability analysis will also be presented. The computations were carried
out by D. Vola (Vola (1998)).



a - General comments on the stability analysis
The analysis of the sufficient condition for instability is conducted on the eigenvalue spectrum.
As mentioned above, when the algorithm used to compute the steady sliding solution was pre-
sented, those solutions were computed and analyzed here fora set of friction coefficient values
because the friction coefficient plays a key role in the stability. The analysis of the sufficient
conditions is conducted as follows :

– Divergence instability
It would be characterized by the existence of a real positiveeigenvalue. In the various exam-
ples, divergence was never obtained.

– Flutter instability
Because of the form of the generalized eigenvalue problem (135) (and the formulation with
λ2), there always exists complex eigenvalues with a positive real part. The possibility of
flutter instability occurring is analyzed relatively to themodes and the eigenvalues. The
frequency of the flutter oscillations is given by the imaginary part of the eigenvalue, and
the growth rate by its real part. Flutter instability may occur if the mode and the frequency
are low enough (for energetic reasons) and if the growth rateis large enough. This will be
discussed on the various examples given below.

b - Analysis of the flutter instability on a simplified waist seal geometry (see Fig. 18)
The eigenvalue spectrum is given in Fig. 39 with friction coefficient values ranging from0 to
1.2. In order to analyze the problem more closely, the growth rate corresponding toµ = 0.5 and
µ = 0.9 are given in Fig. 40 and 41.

Considering the lowest mode, it can be noted that :

– at µ = 0.05, this mode is a high mode, with a frequency of approximatively 4000Hz and
with a small growth rate,

– at µ = 0.45 and0.5, the two lowest modes are again high modes, one corresponding to a
frequency of approximatively 6000Hz with a small growth rate (τ = 0.5), and the other one
to a frequency of approximatively 6500Hz with a larger growth rate (τ = 2.3) (see Fig. 40),

– betweenµ = 0.8 andµ = 1.2, the lowest mode is the mode4 with a frequency of 990Hz
and a growth rate ofτ = 2 (see Fig. 41).

In this case, it can be concluded that a flutter instability may occur whenµ is larger than0.8.
Mode4 may be excited with a frequency of 990Hz. This mode will be more easily excited than
the higher mode which occurs at 6000Hz withµ = 0.5 although the growth rates are similar in
both cases.
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Figure 39.Flutter frequencies,µ = [0, 1.2].
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Figure 40.Eigenvalues of(M∗)−1K∗, µ = 0.5.
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Figure 41.Eigenvalues of(M∗)−1K∗, µ = 0.9.

c - How do the eigenvalues evolve when the friction coefficient increases ?
As shown in Fig. 42, a flutter frequency results from the coalescence of two imaginary eigenval-
ues. In Fig. 42, the real (growth rate) and imaginary (frequency) parts of the eigenvalues found
around 1100Hz have been plotted when the friction coefficient increased from0.7 to 0.85. It can
be observed that two separate imaginary eigenvalues were obtained up toµ = 0.7505. These two
eigenvalues then coalesce, giving two conjugate complex eigenvalues. One of them (with posi-
tive growth rate) corresponds to the possibility of flutter instability noted in Fig. 39 forµ = 0.8
(in fact, we give here a more accurate evaluation of the friction limit value which may give the
instability :µ = 0.7505). In Fig. 42, the various steps are due to the successive lossof contact of
some nodes.
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Figure 42.Coalescence of two pure imaginary eigenvalues giving a flutter instability.

d - Effects of the mesh refinement
The mesh given in Fig. 17 has been refined by cutting each element into 4 and then into 9 parts.
The analysis of the sufficient conditions on the various meshes shows, as previously noted, that
the refinement mainly affects the high modes in the spectrum.The mesh acts mainly as a filter :
the finer it is, the higher the modes which are captured will be. Nevertheless, we are still working
on this point, which is a key one in the numerical approximations.

e - Effects of the compressibility
The influence of the compressibility tolerance is an important point which needs to be checked
because the stiffness matrix depends strongly on the value of coefficientκ, and this could affect
the instability analysis when the eigenvalues will be computed.

The analysis shows that the effects ofκ are small as long as the incompressibility is main-
tained :

– the effect can be seen to be small in Fig. 43 betweenκ = 200MPa andκ = 1200MPa, but
in these two cases, the values are sufficiently high to ensurethat the compressibility is lower
than0.01% without requiring any Lagrangian augmentations,

– its effects are again small in Fig. 44 betweenκ = 10MPa andκ = 1200MPa, but here,
it was necessary to perform Lagrangian augmentations forκ = 10MPa to maintain the
incompressibility,

– however, a difference can be noted in Fig. 45 betweenκ = 10MPa andκ = 1200MPa ;
here, no augmentations have been performed and incompressibility is not satisfied in the case
of the solutions indicated by a circle in Fig. 45.

In conclusion, the value ofκ itself is not very decisive, but the accuracy of the incompressibil-
ity is an important factor : either a large value ofκ must be taken, or a sufficiently large number
of Lagrangian augmentations must be carried out.
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Figure 43. Comparison between the flutter frequencies obtained withκ = 200MPa (circles)
andκ = 1200MPa (cross),µ = [0, 1.2].
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Figure 44. Comparison between the flutter frequencies obtained withκ = 10MPa with La-
grangian augmentations (circles) andκ = 1200MPa (cross),µ = [0, 1.2].
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Figure 45. Comparison between the flutter frequencies obtained withκ = 10MPa without
any Lagrangian augmentations (circles) and withκ = 1200MPa (cross),µ = [0, 1.2].



f - Computation of the flutter solution
The dynamic computation of the flutter is now carried out withthe algorithm presented in Section
3. When a sufficient condition for instability is fulfilled, we compute the dynamic evolution of
the solution when a small perturbation is prescribed. Due tothe non smooth characteristics of the
dynamics which may include normal shocks and stick-slip phenomena, the nonlinear problem is
solved by using the specific numerical approach given in Section 3.

Taking the steady sliding solution as initial condition andthe numerical round-off as initial
perturbation, we compute then the dynamic solution. The results given in Fig. 46 were obtained
with ∆t = 10−4s, T = 1s, θ = 0.55, µ = 0.9. In Fig. 46, the solutions are given for four differ-
ent initial perturbations. The first one is simply the round-off error. In the other three cases, the
perturbation is taken as follows :ε vobs∆t (Re(u∗)) for the displacements,ε vobs (Re(λ)Re(u∗))
for the velocities.

In two cases,U∗ is taken to be the eigenvector associated with the eigenvalue which char-
acterizes the instability with two different values ofε (0.01 and0.1). In the third case,u is a
random vector andε = 0.1.

In all the cases considered, increasing flutter was observed, with an oscillation frequency
equal to 990Hz, which was the value predicted by the sufficient condition analysis. The flutter
growth is limited by the numerical damping, depending on thechoice ofθ (the influence ofθ will
be discussed in the next section). It can be noted that the round-off error is sufficient for flutter
to occur. Other choices, and especially that where the perturbation follows the direction of the
eigenvector, will speed up the onset of the flutter, and save some computational time.
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Figure 46.Effects of the magnitude of the initial perturbation.



5.4 Analysis of a waist seal : comparison between two geometries

a - Analysis of the flutter sufficient condition
In this section, we propose to analyze the stability of the steady sliding solutions in the case of
two kinds of waist seal sliding on a glass car window (see Vola-Raous-Martins (1999)). These
steady sliding solutions were presented in Section 3.

In Fig. 47 and 48, the total spectrum (frequency and growth rate) is given forµ = 0.4 in
the case of the two geometries when the glass is moving down. In Fig. 49, 50, 51 and 52, the
sufficient condition for flutter instability is presented along with the evolution of the lowest mode
which can be excited, versus the friction coefficient values. The four figures relate geometry 1
and geometry 2, and glass moving up and glass moving down. These results show that :

– when the glass is moving up, the second geometry is more stable than the first one because
a low flutter mode occurs atµ ≥ 0.3 in the first case, and only atµ ≥ 0.45 in the second
one; in addition, this result is reinforced by the fact that the frequency is about2000Hz in
the first case and about6000Hz in the second one,

– when the glass is moving down, the conclusion is similar but more details have to be given.
As a matter of fact, from Fig. 51 and 52, it can be noted that a low flutter mode (at3250Hz
in the first case and at about3000Hz in the second one) is obtained in both cases at similar
values of the friction coefficient (µ ≥ 0.3 in the first case andµ ≥ 0.35 in the second one).
But, it can be checked from Fig. 47 and 48 that the corresponding growth rates differ between
these two cases : atµ = 0.4, the growth rate isτ = 2.4 with geometry1, andτ = 0.4 with
geometry2. Again, the second geometry is more stable.
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Figure 47. Eigenvalues ofM∗−1K∗, geometry1,
µ = 0.4.
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Figure 48. Eigenvalues ofM∗−1K∗, geometry2,
µ = 0.4.
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Figure 49.Flutter frequencies (geometry1, glass moving down,µ = [0, 0.45]).
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Figure 50.Flutter frequencies (geometry2, glass moving down,µ = [0, 0.45]).
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Figure 51.Flutter frequencies (geometry1, glass moving up,µ = [0, 0.45]).
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Figure 52.Flutter frequencies (geometry2, glass moving up,µ = [0, 0.45]).



b - Dynamic computation of the flutter
The dynamic computation of the flutter is now carried out using the dynamic formulation pre-
sented in Section 3. This enables us to confirm the results given by the sufficient conditions of
the stability analysis and to describe completely the behaviour of the structure during the flutter
(normal shocks and stick-slip).

In Fig. 53 and 54, flutter is computed in the case of the two geometries withµ = 0.4 when
the glass is moving down. In Fig. 53, the occurrence of flutteris confirmed and the predicted
frequency (3250Hz) is obtained. In Fig. 54, in line with our comment on the low value of the
growth rateτ = 0.4, no flutter was observed.

Fig. 55 and 56 illustrate the influence of the numerical damping. When the numerical damp-
ing increases (θ = 0.55 in Fig. 55, andθ = 0.60 in Fig. 56), the onset of flutter is slightly delayed
and the amplitude of the oscillations is reduced.
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Figure 53. Evolution of the contact forces
(geometry1, glass moving down,µ = 0.4,
θ = 0.55).
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Figure 54. Evolution of the contact forces
(geometry2, glass moving down,µ = 0.4,
θ = 0.55).
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Figure 55. Evolution of the contact forces
with µ = 0.8, θ1 = θ2 = 0.55.
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Figure 56. Evolution of the contact forces
with µ = 0.8, θ1 = θ2 = 0.60.



c - Analysis of the solution behaviour in the contact
In Fig. 57 to 59, the evolution of the normal and tangential displacements is plotted using the
phase plane representation (u, u̇). In both cases, the movement converged after a while to a limit
cycle.

The cycle associated with the tangential movement of node1 (Fig. 58) reflects a stick-slip
phenomenon : node 1 remains stuck during one period (the velocity of the glass is75mm/s) and
slides during another one.

Fig. 59, which gives the normal movement of node1, shows the loss of contact and the
presence of normal shocks including velocity discontinuities.

This analysis gives a good understanding of the source of thenoise : the tangential and normal
micro-shocks in the rubber/glass contact generate vibrations of the glass which acts as a loud
speaker membrane. Computations of the eigenmodes of the glass showed that in the acoustic
frequency range, the number of eigenmodes is large and therewill always exist a mode which
will be close enough to the excitation frequency to be triggered.

In Fig. 60, the tangential movements of all the9 contact nodes are given with respect to time.
This shows that the movement is not a global movement but thataccordion effects occur in the
contact : the nodes do not stick all at the same time.
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Figure 57. Tangential movement of node 1, time inter-
val : τ ∈ [0; 0.25].
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Figure 58. Limit cycle corresponding to
Fig. 57,τ ∈ [0.2; 0.25].
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Figure 59.Normal movement of node 1, time interval :τ ∈ [0; 0.25].
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Figure 60. Evolution of the tangential velocity of the contact nodes with τ ∈

[0.25s; 0.2505s], the window velocity is of 80mm/s.
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