N

N

Numerical characterization and computation of dynamic
instabilities for frictional contact problems
Michel Raous, Serge Barbarin, Didier Vola

» To cite this version:

Michel Raous, Serge Barbarin, Didier Vola. Numerical characterization and computation of dynamic
instabilities for frictional contact problems. J.A.C. Martins and M. Raous. CISM Course: Friction
and instabilities, Coll. CISM Courses and Lectures n457, Springer Verlag, pp.233-292, 2002, 457.
hal-00166137

HAL Id: hal-00166137
https://hal.science/hal-00166137
Submitted on 3 Dec 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00166137
https://hal.archives-ouvertes.fr

Reference :
M. RAOUS, S. BARBARIN, D.VOLA, Numerical characterizatioand computation of dynamic insta-
bilities for frictional contact problems, in "Friction andinstabilities”, J.A.C. Martins- M. Raous (Eds),
CISM Courses and Lectures, n 457, Springer Verlag, Wien-N¥erk, 2002, pp.233-292.



Numerical characterization and computation of dynamic
instabilities for frictional contact problems

Michel Raous, Serge Barbarin, Didier Vbla

Laboratoire de Mécanique et d’Acoustique, CNRS, Marsghrance

Abstract. This chapter focuses on the numerical aspects of the claimatton of friction-
induced instabilities and their dynamic computation faeklr and nonlinear problems. We
begin by presenting briefly basic formulations and severaiputational methods for solv-
ing unilateral frictional contact problems, in quasi-&mtand dynamics, and in elasticity
and hyper-elasticity. The above specific dynamic formareiwill be used to compute the
flutter solutions presented in the last sections. Numesichémes are then given for com-
puting the various sufficient or necessary conditions fetahility established together with
Professor J.A.C. Martins. Finally, the stability analyasigl the computation of flutter solu-
tions are carried out for two examples : the sliding of a Pathiene block on a plane and
the squeal of a rubber waist seal sliding on a car window.

In Section 1, a variational inequality formulation and nuite methods for solving
quasistatic problems in elasticity are briefly recalledtdils can be found in a previous
CISM course volume (see Raous (1999)).

This approach is extended to dynamic problems in Sectioh@ farmulation is written
in terms of differential measures in order to deal with th@-smooth character of the
solutions. It is an extension of those developed by J.J. Moend M. Jean.

In Section 3, the above formulations are extended to hyjastie problems and a
method for computing directly the steady sliding solutisgiven.

Numerical analysis of the stability of quasistatic solaion the context of linear elas-
ticity is carried out in Section 4. The example of the slidiofga Polyurethane block is
studied.

In Section 5, the stability analysis is carried out for a dyealiding solution in the
context of hyper-elasticity and used to characterize theaiof a waist seal sliding on a
car window.

* This work has been conducted within an International Progoé Scientific Collaboration (PICS) be-
tween CNRS and JNICT with Professor J.A.C. Martins (IST bbis) involving the theses of S. Barbarin,
D. Vola in Marseille and the one of A. Pinto da Costa in Lisbbhe study on the waist seal presented in
sections 3 and 5 has been supported by Renault.



1 Formulation and numerical methods for solving quasistatt frictional
unilateral problems in small deformations

In this section, we briefly recall the formulation of unilegbcontact problems involving Coulomb
friction. The variational formulation is given in terms afiplicit variational inequalities and vari-

ous solvers are presented. Details can be found in Raou8)M9ere an extensive bibliography
is also given.

1.1 The Signorini problem with Coulomb friction

Figure 1. Contact with a rigid obstacle.

a - Unilateral conditions (Signorini problem)

The displacements and the stresses exerted on the partlmfuhdary where contact is expected

to occur are written as follows, wheredenotes the outwards normal to the solid :
u=unn+ur, 1)
r=ryn-+rr. (2

The unilateral conditions are then written :

uN <0,
TN <0, (3)
UN’I’N:O.

We avoid the use of compliance models and penalty techniffaeshe computations) in
order to obtain solutions which do not depend on mechanicaumerical parameters which
may influence the stability analysis. This is then a non simawddel (multivalued application).

b - The Coulomb friction

llrrll < | rn | with:
if ||’I’T|| < W | TN | thenur = 0, (4)
if [|[rr|| = u |7y | thendr is colinear and opposite ta- .

It should be noted that :



— this law is not associated (no normality rule for the sliddigection),
— itis a velocity formulation whereas the unilateral contaas displacement formulation,
— the graph is also a multivalued application (see Fig. 2).

N rT

1T

Unilateral contact Coulomb friction
Figure 2. Graphs of the contact and of the friction law.
¢ - The problem

Problem (P,) : Let ¢1, ¢2 be the given forces, find the displacementhe straire, the stress
and the contact stregssuch that :

The kinematics, the elastic behaviour (whéfes the elasticity tensor) and the equilibrium
€ =grad, u ,
o = ?E y in Qa
dive = —P,
on = oy only,
The boundary conditions
u =0 onlp,
The unilateral contact with friction
on =r,
uy <0,
rn <0,
UNTN = 0 s on Fc.
lrrll < w | rn | with:
if ||’I’T|| < W | TN | thenur = 0,
if |rr|l = | ra | then3X > 0 such thatiy = —Arp

In what follows, the "static” frictional problem will be ohined by replacing by « in Prob-
lem (P,). This makes sense only in some very specific cases, butl bavhelpful when used as
an intermediate problem with some solvers.

1.2 Various formulations

Various types of formulation are briefly outlined below (sdgo Raous (2001)). The first two
types will be used in the present study.



a - Variational inequalities, fixed point and minimization under constraints
Cocu-Pratt-Raous (1996) have shown that, by eliminatiegctintact stresses, a system of two
variational inequalities (one of which is implicit) can betained (see ProbleP)). After per-
forming a time discretizationt{t! = ¢’ + At), an incremental fornfP;,.) is obtained and
the problem is reduced to a single implicit variational inality (P;,c2). At each time step, we
have to solve a "static” problem including extra terms defyeg on the previous history of the
solution. By using a fixed point method on the sliding limitetproblem is set as a sequence of
problems consisting in a minimization under constra{ifs,1).

The variational problem (P) : Findu(t) € K such that :

a(u(t), v —a(t)) + Ji(u(t),v) — Ji(u(t),u(t)) > L(v —u(t))
+<TN(u(t)),’UN—QlN(t)> Yvey,

)
<rn(u(t)),zy —un(t)) > >0 Vzek.
where :
- a(u,v) is a bilinear form associated with the elasticity mapping,
- Ji(u,v) = [, —prn(u) vzl ds,
-K={veld/vn <0onl¢},
- L(v) is alinear form associated with the loadingande.,
The incremental problem (Pipe:) : Findu®! € IC such that :
_ Wil gt ) Y S B ) witl gt
a <u1+1,v Y ) + Ji(uttt v) — <u1+1, — > > [+l (v BT >
. i+l i
+ < ry(utl), oy — un uN > YoveV,
At
<ry@), zy —unttt > >0 Vze K.
(6)

Equivalence with the following problem has been estabtifsee Cocu-Pratt-Raous (1996)) :

The reduced incremental problem Pine2) : Findu'*! € K such that :
a(u™ w—ut) + I (0w — ) — Ty (T e =) > L (w —u T Yw € K. (7)

A fixed point method is introduced on the sliding threshglin order to ensure that :
g = —ury. At every fixed point iteration, a friction problem with a giv threshold; (Tresca
friction problem) has to be solved. In this case, the probdam be written as a minimization
one. Either problen(Pop1) (set on the displacements) or probl€Ry,,.) (written on the dis-
placement increments) can be obtained :

The minimization problem (Pyp1) : For a givery, find u,**! € K such that
J(ug™) < J(v) VoelK, (8)

with: )
J(v) = 5a(v,0) + 50— ') = L (v), ©



i) = [, glvrll ds,
- the convex does not change,
- the termu? contains the memory of the loading path.

The minimization problem ( P,2) : For a givery, find Au,"* € K' such that
J(Au, ™ < Jw)  VeekKl, (10)

with : .
T(v) = 5a(v,0) + j(v) = AL (0) = 1'(v), (11)

- the convex depends on the previous st&p = {v € U/ u; + vy <0onlc},
- the memory of the loading path is ifi (contact stress of the previous step computed as
the defect of equilibrium).

b - A complementarity problem (discretized form)
The formulation is here given for a static problem after érétement discretization (in the fol-
lowing, vectors oR™ associated to the discretization are denoted by bold cteagclt can be
extended to a velocity formulation for solving quasi-stgiroblems. The contact stresses are
kept as variables and new variables are introduced in ooddistriminate left and right sliding
(see Klarbring (1999)) :
- A7 and ). (respectively the positive and negative parts of the tatiglesisplacements of the
contact nodes),
-®; =—-rr+puryand®s; =rr + ury.

The three inequation®; > 0, > > 0 and—ry > 0 define the Coulomb cone.

A condensation is performed in order to eliminate the nortairvariables and to reduce the
size of the finite element problem. It consists in a partie¢ision of the linear parts. Details can
be found in Raous (1999). Then the complementarity probgewriiten as follows :

The complementary problem Peomgpt) : Findr € R*Me, u € R* V< such that

ﬁu:f‘—i—r,
I‘iSO, uiSO izl...3Nc, (12)
riui:O Z:13NC

- M andF are respectively a non symmetric matrix and a loading vet#duced from the finite
element problem by condensation (taking also into accdwnthange of variables associated to
the choice of new variables),
- r andu are the contact forces(, ®;, #2) and the contact displacements({, A1, Az)
- N. is the number of contact particles.

This 2D formulation can be extended to 3D problems by perfiogra polyhedralization of
the Coulomb cone (see Klarbring (1999)).

¢ - Lagrange multipliers
Another alternative is based, as with the previous fornmaton keeping the contact forces



in the form of variables (Lagrange multipliers). This tintlee unilateral conditions are kept in
the form (3), but the friction conditions are written undee uhn-Tucker conditions (which is
analogous to plasticity). This is written as probléRy..4-), WwhereK is the condensed regular
finite element matrix (see Chabrand-Dubois-Raous (1998)).

The Lagrangian problem (Prqg,) : Findr € RV, A¢ € RV such that

IA(u:f‘—l-r,

lINjSO, N SO, uerszo, jzl...NC, (13)
fs <0, Aur = -A€ 9f;/0rr, AE >0, A€ fs=0,

fs = llrrll = plry]-

1.3 Solvers

a - The minimization problem under constraints
Details about the following solvers can be found in Raou®@)9

To solve problen(P,ps) (or possibly(P,pe2)), the following algorithms have been devel-
oped. The minimization problem under constraints® (¢ K) of a non differentiable functional
can be solved using :
- Successive over-relaxation method (SSOR) with projectio
An optimum relaxation parameter has to be determined usiniglgrocedure. This method is
very robust, but it turns out to be costly when one attempextend it to problems involving
nonlinear materials.
- Gauss-Seidel method accelerated with an Aitken procedure
No numerical parameters are required here. The method isyaafaust and efficient one, spe-
cially with the recent computer processors very efficienbasic computations.
- Conjugate gradient method with projection and regularization
A special procedure is used to preserve the conjugatiotiorthip between the descent di-
rections (see Raous-Barbarin (1992)). To compute the gméslia regularization of the friction
law is needed ; this introduces a numerical parameter. Sppog-conditioning procedures have
been developed.

b - The complementarity problem

The complementarity problenPtompr) Can be solved using a mathematical programming me-
thod : the Lemke’s method. This is a direct method based atipiytechniques which is similar

to Simplex methods. It is a very powerful method. No numénzrameter is required (see
Klarbring (1999), Raous (1999)).

¢ - Lagrangian formulation
The problem Prq4r-) can be solved using the augmented Lagrangian method vdihl return.
The augmented Lagrangian procedure introduces a penatigfining :

ry = (Ay —enun), (14)
Arp = ANy — eT(uT + A€ 8fs/6rT) . (15)



A Newton Raphson algorithm is associated with a radial rgwmocedure. This method is similar
to procedures used in plasticity problems (even with fingéotmations). It is a very powerful
method. The accuracy of this method (as well as the compugttost) depends on the choice
of er, ey, and on the number of augmentations performed.

1.4 Application to a block sliding on a plane

A Polyurethane block is pressed (prescribed normal digpi@nt) on an Araldite plane on which
a tangential displacement is prescribed. The verticalaigment is applied in order to prescribe
a constant normal force. The geometry is 80mm x 40mm. Théemstants aré&=5MPa and
v=0.48. The velocity of the plate is=0.103mm/s (see Zeghloul-Villechaise (1996)).

It can be noted from Fig. 6 and Fig. 7 that the evolution of tbatact condition varies
significantly depending on the valuesaf

Prescribed displacement
and normal force measurement

Polyurethane

H =40 mm

L =80 mm

l Araldi ‘ Prescribed displacement any
raldite AN tangential force measurement

75
WL/l
Air Pad

Figure 3. The model.
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Figure 4. Mesh with 21 contact nodes.
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Figure 5. Evolution of the total friction force versus time (the tangel
displacement speed is 0.103 mmiss= 1.1).
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Figure 6. Evolution of the contact stresses (—) andrr/u (- - -) along the contact zone wifla = 0.5
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Figure 7. Evolution of the contact stresses (— ) andrr/u (- - -) along the contact zone with = 1
(sticking, sliding and separated zones).



2 Dynamics for frictional contact problems involving smalldeformations

In this section, dynamic problems involving unilateral tasrt and Coulomb friction will be
briefly discussed. Focusing on the discretized problem rendtation and an algorithm cou-
pled with a mathematical programming method presented Ia-Moatt-Jean-Raous (1998) are
described. This approach is based on previous studies biyldréau and M. Jean (see Jean-
Moreau (1987), Jean (1999), Moreau (1988a), Moreau (1988&tmeau (1994)).

2.1 Viscoelastic contact problem with Coulomb friction in dynamics

The dynamic Signorini problem with Coulomb friction is veih as follows, wher€ is the

viscosity tensor and the elasticity tensor. The general formulation is givereHart in the ap-
plication the viscosity will not be considered.

Problem (Pgy,) : Let®; and®, be given, findu, o andr such that:

pi(t) =divo(u(t)) + d1(t), in 2 (16)

o(u(t)) = K.e(u(t)) + C.é(u(t)), in 2 17)

e(u(t)) = 2(Valult)) + VI (u(t)), in 2 (18)

u(t) =4p, onlp (29)

o(u(t)).n =Py, onlp (20)

o(u(t)).n =r(t), onlc (21)

un(t) <0, rn(t) <0 and ry(t) un(t) =0, onl¢ (22)

lre()l] < plra ()] and (23)

{?f 7 (Ol < ulry ()] thenar(t) =0, 24
if |rr(¢)|| = plra ()] then3\ > 0 such thatuy(t) = —Arp(t) .

2.2 The discrete problem (finite element discretization)

In order to take impacts into account correctly, the forrtiatais given in terms of differential
measures.

Problem (P): Find u such that/t € [0, 7], u(t) € Vi, u(0) = ug, u(0) = vp and :

Mda+ Ku+ Cia = @ + rdv, (25)
and for the contact nodeg=1... N, (V. is the number of contact nodes) :
un;j(t) <0, ryj(t) <0andry;(t)un;(t) =0,

, , if [|rr; ()| < plr;(t)| thenar;(t) =0,
lez; (B)]] < plrw; ()] and {if ez (1)]] = plr, (£)] then3X > 0, such thatizr; (£) = —Arry (1),



where :
- du is a differential measure standing for the discretized lacation

/ dit = it (b) — it (a), (26)
Ja.1

with right continuity : we shall seis = ™ in the following,
- dv is a non-negative real measure with respect to whiglpossesses a density function.

2.3 Time discretization and algorithms

The Newmark method and its variants are generally used te sphssical smooth problems
(usual differential equations). In this section, for solyithe non smooth problen®y), a time
discretization of (25) is introduced aflemethods will be used.

The system of differential measures (25) can be writtenérféiowing equivalent form :
Vit € [0,T]

M(a(t) — a(0)) = /0 (& — K.u— C.a)ds + /[0 , rdv, 27)

u(t) = u(0) +/0 uds, (28)

whereds is a Lebesgue measure.
A time discretization of (27), with = 0...N andt; = i.h, yields :

M(ia(tisy) — (t)) = / (@ Kou— Cads + / rdv, (29)

ti Jtistita]

- 1
ritl = —/ rdv. (30)
h Ttistita]

To complete the time discretization, the two following Lebae integrals must be approxi-
mated :

tit1
/ (® — K.u—C.ia)ds, (31)
t

tit1
/ ids . (32)
t

The choice of integration methods is influenced by the faattiie velocity is discontinuous.
The three following methods have been implemented anditeste

f-Method : both integrals (31) and (32) are approximated by the clakgimethod

ti+1
/ fds ~ h(Of (tir) + (1— 0)F (). (33)

t;



f-Euler-Method : the first integral is approximated by themethod and the second one by the
implicit Euler method,

modified 6-Method : both integrals are approximated by thenethod, but in the contact re-
lations, the displacementt;1) is replaced byi(t;+1) = u(tiy1) + h(1 — 0)a(tiy1).

These three methods have been compared to the Newmark neettiad the exact solution
in a simple test, and we will comment on their respective athges.

2.4 Formulation in terms of complementarity

Complementarity formulations for the frictional contaobplem and mathematical programming
algorithms can be found, for quasistatic problems, in Kiiagp(1999) and Raous (1999).

Let us focus here on the extension of the complementaritpdidation to the dynamic prob-
lem in order to combine the Lemke method with the previousgrdation methods.

As described in the previous section, we introduce the neialbizs :

— A1 and s (respectively, the positive and negative part of the tatigevelocity),
- ¢1 = —rp+pry,
= ¢2 = +rp + pry.

The problem can be then written :
Problem (Ppyncomp) : Find u’t! € V), such that :
Mt = & 4 hritt (34)

and for the contactnodes=1... N, :

ey <0, A =G <0, ey - G =0, (35)
d1; <0, AT <0, o TN =0, (36)
hoi TH <0, AT <0, o TN T =0 (37)

The matrixM and the vector®i*! and G¢ depend on the integration method adopted. For
example :

— for theh-method M = M + hoC + h26°K,
— whereas for thé-Euler-method)M = M + h6C + h?0K.

2.5 Numerical example

The classical benchmark of the impact of two bars is briefgspnted. Fig. 9 gives the time
evolution of the normal velocity of a central node of the @mtzone, computed with the various
integration methods (and the Lemke method). It can be obdéhat the-Euler-method and the
modified9-method give much better results than the classical Newmmeathod. Oscillations
can be observed with the Newmark method (see Fig. 9 wherexdst solution is plotted as a
dotted line).
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Figure 9. Normal velocity at the center of the contact zone.



3 Dynamics for frictional contact problems in hyper-elastcity

The dynamic formulation presented in the previous sectimow extended to finite deformations
in the case of hyper-elastic problems (see Vola-Raousivia1999)). Here, we outline the main
points, as follows:

— the variational formulation in the current configuration,

— the discrete formulation in terms of differential measure

the nonlinear complementarity problem,

the linearization : Newton-Raphson method, linear complatarity problem and Lemke
solver.

3.1 Formulation of the problem

“-.____»Reference configuration

Current configuration

Vobs

Figure 10. Contact of a deformable body with a flat obstacle.

a - The problem

Equilibrium equations and frictional contact
The equilibrium equations given below are based either emdference configuration or on the

current one.

pop —DIV(FS)=f, in 2, pi—divo = fT in ¢ (02),
(FS)Np = fs on I, ongry = f§ 0 on o (1),
©Y = Pprescribed onl,, T = Zprescribed ON Or (Fu) )
(FS)Nr = R onIl,, Ongry =T on ¢.(I,),

where .S is the second Piola-Kirchoff tensap,the kinematic mapping;'=grady, J = detF,
C = F.F is the Cauchy-Green strain tensor anthe Cauchy stress tensor.

Unilateral contact and Coulomb friction in the current confi guration

rn >0 andVrl >0, (rf —ry)w, >0, (38)
|re| < prp, and Vry |rf| < pr,, (rF —r)we >0, (39)



wherew,, is the gap and, is the relative sliding velocityr( denotes now the outwards normal
to the obstacle).

Behaviour of rubber-like materials (hyper-elasticity)
A Mooney-Rivlin behaviour is used :

W (1) = ai(l = 3) + as(T - 3). (40)

The constitutive law is written as follows in the referenoafiguration :

. ow . oW
§:E=—5 B — S=2-5. (41)

The volumic deformation and the associated pressure aressgd with the two auxiliary
fieldsd andp (see Simo-Taylor (1991)).

Moy = /Q (W (E,B) FU®O) +p(J — 9)) v, (42)

denotes an augmented potential of the internal forces,avher
— U(#) is a penalty function associated to the volumic deformaiois the bulk modulus)

U6) = %,{ (62— 1) —In(6), (43)

— pis the pressure (Lagrange multiplier).

This is completed with the initial conditions and the masssawvation equation.

b - Variational formulation
The problem can be written in form of the coupling betweerffedintial inclusion related to the
motion and the friction, two variational equalities rethte the auxiliary fields and a variational
inequality related to the unilateral contact conditions.

In the reference configuration, the differential inclusiemritten :

_H,Lp(‘prv o,p, Rn) - Jrinertial S aQD(Rna ‘;0.7' - QS) ) (44)
where :

— the potentiall is composed of three parts (internal stresses, exterrdiliganormal contact
force),

H(QOT, o,p, Rn) = Hint(‘ﬁrv 9,p) - Hezt(‘ﬁr) - / Ran(QOT) dF, (45)
I

with (o, 0,p, R,) € W x V2 x C,,, where :
e W is the set of admissible configurations

W = {¢, : 2 — R? suchthaty, (X) = @prescrived VX € I} (46)



e Vs the set of admissible hydrostatic pressures and volumeges

YV ={6":2— R} (47)
e C, is the set of admissible normal contact stresses
C, = {R} : I. — R suchthatR; > 0}. (48)
— D is the pseudo-potential associated with the friction gson (in the case of a plane
obstacle),
D(Rosr =) = [ nRal(g; = Bt]ar (49)

— andF;,.rtiq are the inertial forces.

This is equivalent to the following variational form of thiasto-dynamic problem with frictional
contact written now in the current configuration at the time

Problem (Ppy») : Find (o+, 67, Gr, 0,0, 70, 1) € W3 x V2 CT x C[ (ry,) such that we have :

Equation of motion

vnTeT™W, / pornT dv +/ o: meTdv — / fondv
pr(2) pr(£2) er($2) (50)
- andl— (ran 4+ ret).n™dl = 0,
wr(I's) or(Iec)
Incompressibility (with the two auxiliary field8,())
1
vo* eV, / —(U10) —p)d*dv = 0, (51)
or(2)
Vp* eV, / J-0Z dv = 0, (52)
e (2) J
Unilateral contact
vrr e Cr, / (rr —rp)wn dl >0, (53)
‘PT(FC)
Frictional contact (maximum dissipation principle)
VT;: S CtT (Tn) y / (T;k — Tt)d]t dar’ Z O, (54)
pr(Iec)
whereT "WV is the set of admissible variations
T™W = {n" : ¢, (2) — R* suchthatn ™ (¢, (X)) =0 VX € I}, (55)
andC,” andC/ (r,,) are the sets of admissible normal and tangential contactioes
C, = {r:v:(I'.) — R suchthatr; >0} (56)
C/ (rn) = {r{ : o-(I:) — R such that |r}| < pr,} (57)

The present formulation with seven unknown fields is reduoeaithree fields formulation
in the case of the discrete problem.



3.2 The discrete problem

a - Space discretization
Auxiliary fields p andf are eliminated at the finite element level. We 4sgP, elements with
four nodes for the displacements and one node famd6d. We have :

0: = Vol (p-(20)) /Nol(2L)), pl=U'(02). (58)

After finite element discretization, the problem can betentas follows :

Problem (P,,,) :

Mii+ Fipi(u) — Fopt(u) = H'r, (59)
vrrec! (rf—r,)T(H,u+ G) >0, (60)
Vry € CMry,) (rf —r)T (Hyt — vops) >0, (61)

where H is the matrix which associates the local displacement vgotirmal-tangential com-
ponentgn, t)) with the global displacement vector :

| |niti| |ra
LQL_ {TL? tJ L’tl’ (62)
N—_——
HY
and where
c" = {r, € RV suchthat,, > 0Vi=1,.., N.}, (63)
CMry) = {r; € RN such thatr;,| < pry,, Vi =1,..,N.}. (64)

b - Time discretization
As in the previous section, a formulation in terms of diffetiel measures is used in order to take
into account the velocity discontinuities induced by thpauts.

Equation of motion (50) is then written as follows (Pand&dY1982)) :

Vr € [0,T], Mdi+ Fi,(u)dr — Fep(u)dr — H Fdv = 0. (65)

This nonlinear problem is a generalization of the dynamabfem set in linear elasticity in
the previous section.

The previous differential equation (65) is approximatedusing three differenf-methods
(Vola-Pratt-Jean-Raous (1998)) and the gegind the impulse term will be approximated by an
implicit Euler method in order to prevent numerical ostitlas after impact.

— Method 1 :#-method for the equation of motion and for the displacement.

— Method 2 : Implicit Euler method for the equation of motiordahe displacement.

— Method 3 :#-method for the equation of motion and implicit Euler mettiodthe displace-
ment



In the following, method 1 will be used (with a singlg
Now, at each time step, we have to solve the non-linear camgiarity problem written
with the contact velocities and the contact forces.

Problem (Ph) : Find " *+! € R™ r+1 ¢ Cch andr"t! € CJ(r"+1) such that :

Mt + ATOF;, (I(a™ ) = ATOF™T Y + ATF™ 4+ Arpmt! (66)
VErecCh (& — YT (H,u™ ! + G™) >0, (67)
vrp e Cr(rptt) (7 — i T (Ham T — vips) 2 0, (68)
with :
(™t =1/(0 Ar) (u™t —u™) — (1 -6)/0 um, (69)
F, =1/Ar Mi™ + (1 — 0) [F™, — Fine(1(i™))] . (70)
c - Solvers

The nonlinear probleriP?) is linearized (see Josephy (1979)) and a Newton-Raphsdmoahet
is used. At each Newton iterate, the following linearizethptementarity problem will be solved
with the Lemke solver.

Problem (Piinearizea): L€t (11, Ty, ;) "' the solution previously computed up to and including
the timer™, find (i1, 7, 7)™, the limit of the sequenc@it1, In,., ., It,,,) € R™ x Ch x
Cl(ry, ) where :
HKp H"Hdiyyy = HFR  — = HMiy, + 0H[Fey — Fine(1(i))] + g1, (71)
ViR el (B = Tupy)T (Hoty + G™ + Hoditg1) > 0, (72)
VF; € Ci{l(i‘nwﬂ) (i.: - Ftk+1 )T(Htuk + thilkJrl - VObS) > 07 (73)
Wheref(Tk is the tangent stiffness matrix akddenotes the Newton iterate.
This form of the dynamic problem leads to a sequence of pnobleery similar to those
obtained for a static problem but including some extra tertated to the solution at the previous

time step. This is very important for the solvers.
These problems are solved using the Lemke method preserttee! first section.

3.3 The quasistatic problem : a particular case of the dynand problem

For the quasistatic problem, the acceleration terms arectegl. It is then easy to adapt the for-
mulations and the solvers presented in the previous seftia@olving the quasistatic problem.

Problem (Pguasistatic) : Find (¢, ¢, 0, p, 7, m¢) € W2 x V2 x CT x C[(ry,) such that :
vnTeT™W, G VsnTdv — / fonTdv — / gn"dl’
or(2) r(I's)

e (£2)
—/ (ron+mrit)y™dl’ = 0,
SOT(FC)

(74)



1

VeV, / L) - pypdv = 0, (75)
o)

Vgev, / J-0La = o0, (76)

e (2) J

viech, [ Gi-mendr 20, (77)
S"T(FC)

Vry € C (), / (rf —ry)wpdl > 0. (78)

(1)

After time and space discretization and linearization diserete quasistatic problem can be
written in the following linear form (79).

Problem (Pguasistatic—Linearized) : L€t (U, Iy, I+) " the quasistatic solution is known up to time
7™ find (u, £, 7)™ limit of the sequencéuy 1, Tngo1s Tty ) ERMXCEXCH(T,, ) Where

HEp HTHdugo1 = HF ey — HF () + Tt (79)
Tn,., €CHandvr; € Ch(ry — 1, )T (Hpuy, + Hodugg + G™) >0, (80)
i.tk+l € C[L(Fnk+1) and Vi.; € Cf(fnwr])(f: - i'thr])T(HtAuk + thuk+1) > Oa (81)

with dug1 = Augy1 — Aug, whereAuy is the displacement increment between the previous
step and the iteratke of the Newton-Raphson algorithm.

3.4 Steady sliding solution for a set of values of the frictio coefficient

The steady sliding problem is more simple because the peiandidate for contact are either
separated, or sliding with relative velocity opposite tattbf the obstacleuws). The Coulomb
law is then simply written as follows :

re = 1 SQN(Vobs ) I, - (82)

The discrete steady sliding problem is therefore writtefolisws :

Problem (Psteady—stiding) : Find u € R™ andr,, € C" such that :

Fint(u) = ngn +u Sgn(vobs)HErn ) (83)
Vit e Ch o (rp — 1) (G + Hou) 2 0, (84)

and a fixed point procedure can be used-gn

When stability analysis of steady sliding solutions will tenducted , the influence of the
friction coefficient will be of great relevance. The follavg algorithm is therefore used to com-
pute directly the steady sliding solutions with a set of @asi friction coefficient values. Each
solution is then used as an initial condition for solving tiext problem.



Algorithm

— Incrementation of the friction coefficient.
— The problem is solved by using a fixed point method on theidmictorce :
(u®,r?), .., (u'=1 r/~1) being known, findu! € R"# andr,! € C" such that :
Fin(u') = ngvi"'HtTrtl_lv (85)
vrrec! (rf—rH)T(G™+ Hu) >0, (86)

n

with r!~! = 1 sgn(veps)H 1}~ .
— Initial condition : the previous steady sliding solutiortained with the previous value of the
friction coefficient.

The validity of the algorithm has been confirmed by computivegcomplete quasistatic solution
until the the steady sliding solution was obtained (seei@e&t6).

3.5 Validation on test examples

a - Quasistatic computation of the compression of a cylinder

This benchmark was described by Simo-Taylor (1991), Susddathe (1987) and Liu-Hofstetter-
Mang (1994). The following computations were conducted ligi€» Vola (Vola (1998)). Re-
sults obtained for frictionless and frictional (= 0.2) cases are presented in Fig. 11, 12 and
13. The results show an excellent agreement with thoserdutdiy Sussman-Bathe (displace-
ment/hydrostatic pressure formulation) and Simo-Taylor.

iAU:O.Zm

iAU:O.ZSm

AU=0.32m

Figure 11. Deformations in the frictionless case.
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b - Dynamic impact of a cylinder into an angle
This benchmark was proposed by Wriggers-Vu Van-Stein (198t model is given in Fig. 15.

Results obtained with various friction coefficient values presented in Fig. 16. The velocitiy
oscillations presented in Fig. 14 characterize the vibretiof the cylinder when it jumps back
out from the angle (except far = 0.5, where it remains stuck).

Vertical velocity (mm/s)

- Rn frictional case|
— Rtfrictional case

Displacement (mm)

Figure 13. Total contact forces at =0.2.
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Figure 14. Evolution of the tangential velocity of node 1 with=0, x =0.1, x =0.3 andu, =0.5.



node 1

initial velocity
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Figure 15. The model.

Frictionless case 1=0.1

Figure 16. Deformations and contact forces wjth=0, 1 =0.1, x =0.3 andu =0.5 at t=0.085s.



3.6 Efficiency of the algorithm when computing the steady stiing solution

In this example, which is a simplified waist seal geometrg,dteady sliding solution was com-
puted either using the direct algorithm presented in Se@id or as the asymptotic solution of
the quasistatic problem, when the algorithm presented dti®@e3.3 was used. Comparisons on
the accuracy given on Fig. 19 and Fig. 20 and on the CPU timengin Table 2 (whereis
the value for the convergence test on the fixed point itematen the friction forces), show that
the direct method for computing the steady sliding soluisahe most efficient. It is worth men-
tioning that the steady sliding solutions were computedhtakarious friction coefficient values,
whereas the quasistatic solution was computed with onlyvahes of the friction coefficient.

AUgomp

TBAY

Figure 17. The model. Figure 18. Steady sliding solution for =0.8.

First Mooney-Rivlin coefficient {0.293 MPa
Second Mooney-Rivlin coefficief@.177 MPa
Compressibility modulus 1200 MP3g
Volume variation tolerance 0.01%
Plane strain hypothesis

Table 1. Material characteristics.

Method Number of displacementNumber of steady sliding CPU time
increments of the windoolutions (varioug:)

Quasistatic (reference) 1920 0f0.1 10 *mm 1 756.7 segq.

Quasistatic 10 of 0.3mm 1 31.6 sec.

Direct e=10"7 10 with Ay = 0.08 37.2 sec.

Direct e=10""° 10 with Ay = 0.08 63 sec.

Direct e=107° 320 with Ay, = 0.25 10~ 2|574,5 sed.

Table 2. Comparison between the computational times required biwtbenethods
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Figure 19.Error between the steady sliding solution and a referengaptetic
guasistatic one (1920 increments) : normal reactions.
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Figure 20. Error on the mean value of the Von Mises stresses by elements,
influence of the number of increments

3.7 The steady sliding solution for the waist seal

In this section, the steady sliding solution of two kinds @& ist seals sliding on a glass is pre-
sented. The stability of these solutions will be analyzethalast section. The Mooney-Rivlin
constitutive parameters arg = 0.293MPa,a>, = 0.177MPa andx = 1200MPa. For small
deformation, in linear elasticity, it correspondsio= 4.58MPa andv = 0.4995. The behaviour
is quasi-incompressible (the volumic deformation will melar0.01% with this value ofx ). The



volumic mass ig = 1200Kg/m? and the velocity of the glass I§,,,ss = 80mm/s. The meshes
of the two models of waist seals are given in Fig. 21 and FigTh2 steady sliding solutions for
the glass moving up and the glass moving down are given inZBidor geometryl, and in Fig.
24 for geometn.

Boundary conditions <« Boundary conditions

Contact zone Contact zone

A A A A A A A A XA 2

Figure 21.Mesh of the waist sealPii and zoom Figure 22. Mesh of the waist seaP2 and zoom
of the contact zone. of the contact zone.

Figure 23. Steady sliding solution and contact Figure 24. Steady sliding solution and contact
forces, geometry 1 with =0.4. forces, geometry 2 with =0.4.



4 Numerical analysis of the stability for quasistatic soluions of frictional
contact problems in linear elasticity

4.1 Condition for dynamic growth in the neighborhood of quas-static paths

a - Introduction
First, we recall the main results established in Martinsl€tL899) and Barbarin (1997), for
finite dimensional problems, on the stability of quasistatlutions of linear elastic problems
involving frictional contact. We will focus here on the couatgtion of the various stability con-
ditions and on their application to the example of a Polhaat block sliding on a plane given
in Section 1.

In general, a quasistatic evolution is not a solution of theasnic problem, except if the
velocity i1°(¢) is constant.

We now consider straight portions of quasistatic evolgidrhus, we assume that the varia-
tion of the applied forces is linear (see (87)), and that thesgptatic evolutioiu®(¢), r°(t)) has
the linear variation given by (88) and (89) in some time iwnaéfr, 7 + A% :

f@)=f(r)+ f(r)t—7), fort > 7, (87)
u’(t) = uO(7) + "t (7)(t — 1), (88)
') = ro(r) + 19 (1)t — 7). (89)

As commented in Martins et al (1999) (Remark 4.5) the folloywiesults apply then also to
steady sliding solutions.

In some right neighborhodd, 7 + Ar[ of 7, with 0 < A7 < A%, we look for dynamic
solutions having the form

u(t) = u’(t) + a(t)A, r(t) =r’(t) + B(t)B, (90)

with
A € Ky(d®(7), 0 (), a%F (), r0F (7)), (91)
B € Ki(u®(7), r0(7), i’ * (1), 717 (1), A), (92)

whereKy andiC; are defined by (97) and (98), and :

— «a is a twice continuously differentiable function such thaand & are non-negative and
non-decreasing in the interval defined above,

— [ is continuous, non-negative and non-decreasing in the gaereal,

— the initial valuesy(r) > 0, &(r) > 0 are arbitrarily small.

b - Admissible directions
The admissible directions, in which the perturbed solutian possibly evolve, are defined by
the following sets (see Martins et al (1999) where detailthemotations will be found):



— for the displacements and the contact forces :

Vucjéf{ueRN:ui:O, forall i e Sp } ,
Ve B re RN iy, =0, forallieSp}

(93)

Ky ={ueV,suchthatu,, >0 Vie Pc},

Kr(u) = {r € V, suchthatr,, =r, =0 Vi€ Ps(u) (94)
rn, < 0and|ry,| < prn,, Vi€ P.(u)},

where :
e Sp andSr are respectively the set of degrees of freedom with presdritisplacement
and the one of free displacement,
o Pc =Py(u) UP.(u) is the set of contact particles,
e P.(u)={i € Pc:uy =0} is the set of particles currently in contact,
o Pr(u) ={i € Pc : un, > 0} is the set of particles currently separated,
— for the velocities and the contact force rates :

Ku(u,r) = { v € V, such that
Up, >0 VieP,(ur)
Un, =v; =0 Vi€ Pg(u,r)

Un; = 0, —sgn(ry, vy, >0 Vi€ Ps(u,r)},

(95)

Ki(u,r,v) = { w €V, such that
Wn, >0 wWp,vp, =0 wy, € pwp,o(vy,) Vi€ P,(u,r)
Wy, =wy, =0 Vie Ps(u) (96)
—wy, sgn(ry,) + pwy, >0,
(_wtisgn(rti) + Hwni)sgn(rti)vti =0 Vie 735(11, I')} :

where :
o P,(ur) = {i € Pu):r, =mr, =0} is the set of particles in contact with zero
reaction,
o Py(u,r) = {i € P(u):r,, <0and|r,| < —ury,} is the set of particles in contact
currently stuck,
o Py(u,r) ={ie€Pu):r, <0andlr,|=—pur,,} is the set of particles in contact

currently sliding,
— for the accelerations and the second-order contact fotes ra

Ky(u,r,v,w)={aecVy: an, <0, forpeP,,;
anp =0, forpe PaUP;UP,s UP,q;
aTp O'(TTP) < 0, forp S PSS n 730 ; (97)
arp o(wry) <0, forp e Py NPy ;
arp =0, forpe PaUPsqUPa },



Ki(u,r,v,w,a) ={b eV, : byp <0,bypan, =0, forpe P,;
bnp =0, forpe Py UP.s;
brp O’(TTp) + ubnp <0, [pra'(TTp) + ,LLpr] [anU(TTp)] =0, forpe Pss NPy
brp o(wrp) + by < 0, [bry o(wryp) + by larpo(wry)] =0, forp € Pos N Poj;
brp € pbnpolary), forpe P.. NPy ;
brp = uwbnpo(vry), forp € Py ;
brp =0, forpe PrUP.; },
(98)

where

- Po = Po(ul(r),a%* (7)) andP, = P,(u’(7),u’ (7)) are the two complementary sets
of particles in contact with zero normal velocifiy is the set of particles with tangential
velocity equal to 0 an@®, the set of particle with non-vanishing tangential velocity

- P.., P.a, P.s, and P, are the set of particles in grazing contact (vanishing amritaces)
that are respectively the one staying in the same situdtiergne evolving to stuck situation,
the one beginning to slide and the one going to be separathd imext future,

— Pss andP,, are the sets of sliding particles that are respectively neimgso and evolving
to stuck situation.

Hereafter, the above sets of admissibility will be denotgdd(- - -) and i (- - -, A) for sim-
plicity’s sake.

¢ - Conditions for growth of dynamic solutions or instability
Let us summarize here the results established in Martins(@889) where the various proofs
can be found.

Foreach(A, v) € Ku(--+) x Ky(---), we use the notations :

ok d f
m (Av < Z ,LLO' qu MA]vaTp Z M[MA]NP|UTP| ) (99)
pEPy pEPo
a”(A,v) = = > no (i (r) K Alwpvry — > ulK Alnplvr| - (100)
PEPy PEPo
where

def [x/|x| , ifx#0,
”(I>_{[—1,1], if 2 = 0.

and wherel/ and K denote respectively the mass and stiffness matrices.
The following result has been given in (Martins et al (1999))

Proposition 1.

If Ix>0andA € Ly(--+), A#0,
such that



(MM +K)A € Ki(---,A), (101)
i.e., such that
N [m** (A, v) —m*™ (A, v)] + [a** (A, A) —a** (A, A)] >0, Vv eKu(--), (102)

then there exists a dynamic solution of the form (90)in + Ar], with

B=(NM+K)A, (103)
Blt) = at) = {a(T)cosh[)\(t—T a()\T sinh [A(t —7)] , ifA>0, (104)
a(r)+a(r)(t—71),ifA=0,

with A7 < A°7, positive and sufficiently small, for all arbitrary, sufficitly smalla(7) > 0,
a(r) > 0.

We now assume that the following restriction holds (detaiighe exact sets definitions can
be found in Martins et al (1999))

PZZ U [(PZS U Pss) N ,PO] = @7 (105)
which means that :

— particles in grazing contact could not stay in the same singP. ., = 0),

— particles in contact for which the current or the near futeactions do not vanish, and are
on the boundary of the Coulomb friction cone, could not havardshing tangential velocity
(st U PSS) NPy = 0.

Consequently, no inequality restriction remains on th@sdeorder displacement and reac-
tion rates in bothiCy(---) and (- - -, A) that become subspacesRY . In this situation, we
now seek for growing dynamic solutions in the neighborhddte quasistatic path in the form :

u(t) = u®(t) + Rela(t)A], r(t) = r'(t) + Re[8(t)B], (106)
with
AcVvy, Bev?, (107)

whereV¥ andV{ are subspaces of admissible complex second order dispist@md reaction
rates.
Foreach A, v) € V¥ x V¥, we define the following sesquilinear forms :

m* (A V) EMAV — Y po(alh(r)[M AN, (108)
PEP-sUPss

FAV)E KAV — S po(alh(n) K Alyyr, (109)
PEP2sUPss

whereP,, U P,, are particles in contact with a non-vanishing tangentiéacity and a non-
vanishing reaction on the friction cone, or a vanishing tieacand a non-vanishing reaction rate
on the friction cone.

In these definitions, the term.v defines the inner product of complex vectors.

Then, we have the following result :



Proposition 2. If (105) holds and 8\ € € with Rg\) > 0 such that one of the following
equivalent conditions holds :

() JAeVF, A#0,suchthat (\2M+K)AecV?; (110)

(i) 3AeVF A+#0,suchthat  XNmf(A A)+a(A,A) =0, VAcV?(111)
then, there exists a dynamic solution of the form (106}jm + Ar[, with

B=(NM+K)A, (112)

B(t) = a(t) = a(r) cosh [A\(t — 7)] + [d(;)} sinh [A(t —7)] , (113)

with AT < A°7, positive and sufficiently small, for all arbitrary, suficitly smallja(7)| > 0
and|a(r)| > 0.

The statements of Propositiohsind?2 are not interpreted as instability results because they
only refer to a portion of a quasistatic evolution that isasdynamic solution in some possibly
finite time interval[r, 7 + AY7[. An extra hypothesis is then necessary to obtain the fotigwi
stability result.

Proposition 3. If (u°(t),7°(¢)) given by (88-89) solves the quasistatic problem and conse-
quently the dynamic problem for dlle [r, 400 and, if the assumptions of Proposition 1 and 2
hold, then the solutiofu®(t),7°(t)), t > 7 is dynamically unstable. lfm()\) = 0, we have a
divergence and if m(\) # 0 we have flutter.

d - Construction of the mass and stiffness matrices involveth the stability analysis

We will now interpret the above necessary and sufficient itame for divergence instabili-
ties in terms of the properties of mass and stiffness matiiteoduced before.

In practice because of the space and time discretizatiahies in the numerical resolution
of the quasistatic problem and because of the finite digitieay, condition (105) holds and the
following sets of particles are empty :

— the setP, (u°(7), T (7)) of particles in contact with a zero reaction (grazing cot)tac
— the set of particles in contact with non-zero reaction @nfttction cone and zero tangential
velocity.

In that case there is no distinction betweet* andm* and between** andaf. Then the
analysis needs the construction of matridé$ and K* associated to these bilinear forms and
defined below.

We have now three remaining sets of contact particles :

— contact particles currently free (separat&d)
— contact particles currently in contact with reactiong#yr inside the friction cone (stuck)
Pa,



— contact particles currently in contact with non-vanighieactions on the friction cone and a
non-vanishing tangential velocity (slidin@).

In order to construcd/* and K*, we start by eliminating the non active degrees of freedom,
which are :

— both degrees of freedom of the nodes with prescribed dispiaats (componente Sp),
— both degrees of freedom of the contact nodes that are stuck,
— the normal degree of freedom of the contact nodes that aliagli

Let us denote by* the set of degrees of freedom that may be right active anty byhe
corresponding total number of degrees of freedom. The oeathi/* and K* are then defined
by :

Forallj € S*:

- M}, = M;; andK;, = K;; for all degrees of freedom € S* that are not tangential
degrees of freedom of particlesn P,
— and for all particleg in P, (set of the sliding particles) :

Mz, ;= Mryj — po(ughb () My, Kiy ;= Krpj — po (i) (1) Knp,;(114)
The symmetrized matricéd § and K% will be useful for the necessary condition. They are given
by :

1 1
Mg =5 (M" + My, Ki= (K" + KTy, (115)

e - The various conditions for dynamic growth : the generalied eigenvalue problem

The conditions given in Propositions 1, 2 and 3 will now beipteted in terms of properties of
matricesM*, K*, M andK§. Details about the establishment of the above propositiande
found in Martins et al (1999).

Proposition 4. Necessary condition for divergence
If M¢ is positive semi-definite, and (116)
if Kg is positive definite, (117)
then growing perturbed dynamic solution of the form (90))ruat occur.

Proposition 5. Sufficient condition for divergence

If 3IX>0 and V* € Ki(---), V" #0,
suchthat (\>M* + K*)V* =0, (118)
then (101) holds with the same value\odnd

Vo 0
Jva L] o
V=Yvin () 0

v v

(119)

*



In the above proposition, the componehis, V; andV,y are respectively the components
of Sp, both components of particles #;, and the normal component of particles/iy, that
have been suppressed in the constructioh/fand K *.

Proposition 6.
If (105) holds and if3\ € €' with Rg\) > 0 the condition :

(iii) 3A* e@N", A* #£0, suchthafA>M* + K*]A* =0 ; (120)

is equivalent to conditions (i) and (ii) of proposition 2.
f - Analysis of the various conditions for dynamic growth/instability

— Divergence

e Necessary condition
When the masses are concentratéflis diagonal and\/i = M™ is positive defi-
nite. The analysis of the conditions given in Propositioeduces to the analysis of the
eigenvalues of(’§. The existence of a negative eigenvaludf is a necessary (but not
sufficient) condition for divergence.

¢ Sufficient condition
Proposition 5 shows that the existence of a positive reareiglue of the generalized
eigenvalue probleh\2M* + K*)V* = 0 is a sufficient condition for divergence.

With both conditions, we have to check the compatibilitylod issociated eigenvectur*.
In the present simplified context, it reduces to check the sfghe active tangential compo-
nents :

a(Vi,) = —O'(T%p) forallp € Pss, . (121)

— Flutter
The existence of complex eigenvalues of the generalized eigenvalue problem
K*A* = AM*A* obviously implies the existence of a complex valuavith a positive
real part (since\? = —A) i.e. implies flutter. The analysis will focus on the modeghuf
structure that may be excited for the corresponding eigaava(complex with a real part
positive).

Note.
For divergence, the sufficient condition cannot be fulfilkfore the necessary condition be-
cause :

— the smallest eigenvalue &€} is lower than or equal to the smallest real part of any eigen-
value of K'*,

— the smallest real part of any eigenvaluefof is lower than or equal to any real eigenvalue
of K* corresponding to a real compatible eigenved{or.



4.2 Computation of the conditions and analysis

a - Construction of the matrices
To check the stability along the quasistatic evolution, ioas M *, K*, M, K§ have to be
constructed at any change in the contact status.

MatricesM* and K* are constructed from the mass matkikand the stiffness matrik” as
previously shown (4.1.c) by removing specific equationsgariorming modifications (114) on
specific tangential components.

MatricesK* and M * are therefore non symmetrical and depend:on

b - Computation of the lowest eigenvalue oK% (necessary condition for divergence)
In order to check the necessary condition for divergencehawe to check whethek’§ is no
longer definite positive. This is done by three differentinoets. Note that the same methods can
be used to check i#/{ is positive when the mass matd{ is consistent.

All methods give the same results :

1. minimizing the bilinear formu* (v, v) under constraints (121) ard-|| = 1 and checking
that the minimum is negative,

2. applying Cholesky’s method g and when it fails K% is no longer positive definite,

3. computing the smallest eigenvaluelgf, checking its sign and the compatibility (121) of
the corresponding eigenvector.

Method 2 is a direct one and therefore the fastest and sheydddfered when used for checking
if M¢ is positive. Nevertheless, we use mostly the last methodusecit gives the eigenvector
of K'§ corresponding to the smallest eigenvalue. This methodstsnia computing the smallest
eigenvalue ofX'§ (and not the one with smallest modulus, as usually done) :

— using the Power Method, we first compute the eigenvalyef £ with the largest modulus,

— if Ap is negative, we have the desired result,

— if Ar, > 0, we shift all the eigenvalues towards the negative axis mstracting the mod-
ified matrix Kz — A1 (wherel denotes the matrix identity) and using the Power Method
again, we compute the eigenvaldg; with the largest modulus of this modified matrix. The
smallest eigenvalug,,, of K% is then obtained ag,, = Ay + AL and we check its sign.

¢ - Computation of the generalized eigenvalue problem (suffient condition for divergence,
flutter)

In order to check the sufficient condition for divergencearffutter, we have to determine all
the eigenvalues of the generalized eigenvalue problem

K*V* = AM*V* (A=—-)?). (122)

A Lanczos algorithm (Rajakumar-Rogers (1991)) is usedgiaith the double QR algorithm
Ralston-Rabinowicz (1978).

The usual Lanczos method can be extended to non symmetriceasaiwith real coefficients)
and to generalized eigenvalue problems. It progressivaigitucts a non symmetrical Rayleigh
matrix (tri-diagonal matrix), the order of which increasgsvery iterate. It is then possible to



compute only a part of the spectrum in a given range (the eaees with the smallest mod-
ulus in our case). The double QR method is then used for canmptite eigenmodes and the
eigenvectors of the tri-diagonal matrix .

Most of these computations were performed with the consistass matrix\/*. In order to
speed up some of the computations for the most refined meskésgonal mass matrik/ was
used, which also leads to a diagonal matfvix.

d - Synthesis of the analysis of the dynamic growth/instahtly conditions
Let us now summarize how to check the various conditionsygiwéehis section.

— Necessary condition for divergence
Here, we only have to check whether matfiX (symmetric) has a negative eigenvalue.

— Sufficient condition for divergence
We just have to check whether the generalized eigenvalu#gmo(122) has any real nega-
tive eigenvaluel which corresponds to real= ++/—A. With the problems studied so far,
we have never observed this situation.

— Sufficient condition for flutter
Unless all the eigenvaluetof the generalized eigenvalue problem (122) are real, a tomp
A with a positive real part always exists (keeping in mind that —)2). It is likely that
significant consequences will arise only when some lowerarisdffected by flutter and
when the growth rate (the real part of the complex eigenyaduarge enough.

Moreover, it can be noted that :

— with the necessary condition for divergence, the comgdayiliondition (121) has always
been satisfied by the computed eigenvectors,

— matricesM ™ and M were never found to be singulab/g was always positive definite) in
all the computations involving finite element discretinas performed in the course of this
study.

4.3 Application to the block sliding on a plane

In this section, stability analysis is conducted on the gxanof a block of Polyurethane slid-
ing on an Araldite plane. The quasistatic solution of thisgem was given in Section 1. The
following computations were conducted by S. Barbarin (seebBrin (1997) and Martins et
al (1999)). Experiments performed by T. Zeghloul and B.&dhaise (see Zeghloul-Villechaise
(1996)) showed that jumps occur in both the tangential diggghent and the friction force during
the sliding. Stress waves were also observed experimgmtaéin jumps occurred. In Section 1,
a model of the experiment was presented and the various atépe quasistatic solution were
given. In the present section, the analysis of the stahfligonducted along these various steps
of the solution in order to check the possible occurrencanohstability.

a - Analysis of the eigenvalues

We examine the solution (on the mesh of Fig. 4 when the piesttiangential displacemelit-
gradually increases (see Fig. 3). Construction of all matrand computation of the eigenvalues
of K% andM*~! K* are performed only when a change occurs in the contact ¢ondéticking,



sliding or separate nodes). In Table 3, at each value of #scpbed tangential displacemént
(the applied velocity is constant and equaDt@03mm/s, a first period of 15s is dedicated to
the normal loading), the total number of stick, slip or novaet nodes is given together with the
minimum real eigenvalues df ; and M/*~! K* and the lowest mode number corresponding to

a complex eigenvector gff* 1 K*,

The results given in Table 3 show that :

— the necessary condition for divergencés first satisfied at/7=-1.35mm when a second

node begins to slide,
— the sufficient condition for divergenceis never satisfied,
— flutter occurs first for very high modes. Flutter occurs for a low omede (the 3rd mode)

exactly when

the necessary condition for
Ur =-1.35mm. In other examples, it was found to occur nearly atstime time or a little
earlier. Table 3 also shows that the steady sliding statshezhat the end of the theoretical
quasistatic solution is still unstable by flutter (see ttst faw in the relevant table).

divergence is fissdtisfied at

Time | Ur Contact Nodes | Min Real E.V. of | Flutter | Experimental
(s.) | (mm) | Stick| Slip | Separ.| K& [ M* "K* | (Mode) data
23.41-0.87| 20 1 0 0.076 | 8.1910° 57 —

252 -1.05| 19 1 1 0.071| 7.9110° 11 —

26.6 | -1.20| 18 1 2 0.068| 7.6910° 10 —
28.1|-1.35| 17 2 2 -0.130| 7.4310° 3 —
29.1|-145| 16 2 3 |-0.106| 7.0910° 3 —
31.0|-165| 14 4 3 [-0.502| 6.2610° 3 —
32.0|-1.75| 12 6 3 |-0.676| 5.4710° 3 —
32.3|-1.78| 10 8 3 |-0.760| 6.7610° 3 —
32.7|-182| 7 11 3 [-0.821] 5.3710° 3 —
34.4|-200| 4 14 3 |-0.851| 3.3410° 3

36.4|-2.20| 3 15 3 |-0.858| 3.0810° 3 1% small jump
38.8|-245| 2 16 3 |-0.864| 2.7810° 3 —

413 | -271| 2 16 3 |-0.864| 2.7810° 3 2 jump
41.7 | -2.75| 2 15 4 1-0.859| 2.6810° 5 —

48.0| -3.40| 1 16 4 ]-0.868| 2.3010° 5 —
75.2|-6.20| O 17 4 1-0.974| 1.2310° 5 —

Table 3.Results of the stability analysis and comparison with expental measurements.

b - Analysis of the eigenmode shapes
In this section, we plot the shape of the eigenvectors aatsativith the various fulfilled condi-
tions shown in Table 3.

Modes associated with the negative real eigenvalue &f}
The eigenvectors associated with this negative eigengdltg; are plotted in Fig. 25. They give
a direction in which an unstable evolution would be eneogdiii admissible, i.e. an evolution
with loss of energy into some external sink. These mode shagedistinctly reminiscent of the
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Figure 25. Eigenvector associated with the smallest eigenvalug $for various values of/r.

waves observed experimentally in the Polyurethane bloawehjump occurs. However, as can
be seen in Table 3, the sufficient condition that would gu@ethe occurrence of a divergence
growth of the dynamic solution (a negative eigenvalu@ff—' K*) is in fact never satisfied.

Modes associated with the flutter
In Fig. 26, we have plotted the shapes of the eigenvectoosiatsd with the lowest mode which

can be excited by flutter, and that at various values of thegpiteed displacement of the sup-
port. The deformation of the mesh represents the real pénedalirection of the eigenvector and
the arrows, the real part of its derivative (the directiomsevcomputed withd/*—* K*), for two
values of Y- : -0.87mm (high mode, 57) and -1.4mm (low mode, 3).
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Figure 26. Eigenmode corresponding to the lowest flutter frequencydoious values ot/ .

¢ - Influence of the mass on the stability

Fig. 27 gives the evolution of the lowest eigenvalueldf —! K* when the displacement pre-
scribed on the plate increases. The sufficient conditiordiegrgence instability is thatl,,;,,
becomes negative. In this case, the criterion is neverlédfibut the sharp decreasedn,;,, is
worth noting. In Fig. 27, the analysis is conducted on thedHollowing cases :

— case 1 :M* is taken to denote the identity matrix (criterion then bagely on the stiffness
matrix),

— case 2 : diagonalization of the mass matrix by concentratirige consistent mass matrix,

— case 3 : consistent mass matrix.

As it could be expected, the various choices have no significluence on the evolution of
Anmin, and actually, they have no influence on the transition tabibty at A,,,;, = 0. We can
therefore use either case 1 or case 2, where the computatioesasier (diagonal matrix).

When dealing with the sufficient condition for flutter, we safered two cases : the diagonal
mass matrix and the consistent mass matrix. In Fig. 28, tbligen of the modes excited by
flutter when the prescribed displacement of the plate isg®& given in both cases. In Fig. 29,
the spectrum of the flutter eigenvalues is given at a givematéhe loading in both cases. It can
be observed that the choice of the mass matrix has an effébedrigh frequency modes. When
performing the flutter analysis, we are interested in the fimguency modes and the use of a
diagonal mass matrix is therefore again recommended.
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Figure 29. Effect of mass on the first 25 flutter modes.

d - Effects of the mesh
The various criteria were computed for the various meshesgmted in Fig. 30.

Effects of the mesh on the necessary and on the sufficient catidn for divergence

The evolution of the lowest eigenvalue & is given in Fig. 31. The evolution of the frequency
of the the first flutter mode (eigenvalue 8f*~'K*) is given in Fig. 32. These results show
that with a given shape of the mesh, the refinement has na dfigcthat a slight change in the

eigenvalues is observed when the finite element shape igetlan

Effects of the mesh on the sufficient condition for flutter

Fig. 33 gives, with the various meshes, the number of thedoflgter mode which can be ex-
cited when the loading increases. Fig. 34 gives the totadtsp® for two meshes (15 and 25
contact nodes) at a given loading step. It can be seen thatekk refinement influences the cap-
ture of the modes and that the mesh acts more or less as dffitt@n be seen from Fig. 33, that
the mode 5 is caught sooner when the mesh is more refined. .I8&igrhen the mesh has been
refined (15 and 25 contact nodes), it can be seen that thecfineps of the lowest flutter mode
(mode 3) are the same, although a difference occurs in thetlgirate, and, on the contrary, the
higher modes are different. That means that the mesh hassuoffigently refined in order to
catch the lowest modes associated with the frequencies/etvdn the mechanical phenomena
under investigation.
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e - Comparison with experimental results

In Fig. 35, the changes with respect to time in both the expemial and theoretical tangential
forces are plotted. On the theoretical curve, the dot irid&cthe time at which the necessary con-
dition for divergence instability and the sufficient comatit for growing flutter-type oscillations
are first satisfied.

These conditions are satisfied earlier than the first expariahjumps observed : both condi-
tions are satisfied dfr=-1.35mm, while the first experimental small jump is obsdrad/; =-
2.2mm, and a second jump is observed/at =-2.71mm (see also Table 3). In the following
section, we present a preliminary study on the possiblefigf viscous damping on the stabil-
ity analysis.

T (N)
80

0&F

20 40 60 B0 100 120 140 160
H/L=0.5 Nd=-S5N V=10.3 107mm/s

Figure 35. Variations with respect to time of the experimental and tagcal
total tangential forces.

f - Effects of viscous damping

As seen above, flutter occurs too early in the model in corspanivith the experiment. A simpli-
fied way of introducing viscous damping effects into the peabis to consider a damping matrix
of the Rayleigh typexM + SK in the dynamic equations of motion and the dynamic stability
analysis. In this manner, it is possible to delay the fluterusrence (and even to eliminate it
with a sufficiently strong damping effect).

The frequencies of the first 18 natural modes of the struatamge between 454 Hz and
1530 Hz in the initial phase of elastic behaviour, i.e., whithe nodes are stuck. The damping
ratio ¢ is defined a —fe())

om0
nodes are stuck. It depends on the frequencies and is knola tiecreasing in that range in
the case of Polyurethane. We therefore compute severasala andj (see Clough-Penzien
(1975)) so as to obtain the various decreasing evolutiotiseoflamping ratio given in Fig. 36.
Stability has been studied with six of these different dargpevels (characterized by the value
of ¢ at 454 Hz given in Fig. 36). The eigenvalues are now computed f

, Where) is the eigenvalue solution of (123), when all the contact

(MM + NaM* + BK*)+ K*)V* =0. (123)



The values of the imposed tangential displaceniéntat which flutter occurs are given on
Fig. 37 for the six damping levels. The sudden chang&noccurring between the values of
£=0.1475 and=0.15 on Fig. 37 is due to the change in the excited mode.

The first value corresponds to mode 3 and the second one to Bnddhés means that when
the damping is strong enough, mode 3 is no longer excited bgrflu

It can therefore be seen from Fig. 37 that the occurrencestdliility is greatly delayed by
the introduction of viscous damping. Flutter mode 3 appatlits-=-1.35mm in the no-viscosity
case and only at/7=-6.2mm with the maximum damping level considered here.sSBess the
occurrence of flutter more exactly when viscosity is takda account, it would be necessary to
measure exactly the loss angle of the material in the apitedrequency range.
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Figure 36.Frequency dependence of the damp- Figure 37. Prescribed tangential displacement
ing ratios obtained for the six values @fand3 at which a low order flutter mode occurs for the
considered. various damping levels given in Fig. 36.

g - Conclusions on the analysis of the block sliding on a plane
The steady sliding solution of the block is found to be unistdly flutter. During the tangential
guasistatic loading process, we observe that :

— the necessary condition for divergence is satisfied butdtiecearlier than the first experi-
mental jump, and the corresponding eigenmode suggestsifet of the waves experimen-
tally observed,

— the sufficient condition for divergence is never satisfied,

— growing flutter-type oscillations occur here for the loweder modes at the same time as
the necessary condition for divergence is satisfied,

— introducing damping into the stability analysis delaysdbeurrence of flutter and may give
better agreement with the experimental results. A hypsteselastic model is suggested for
the behaviour of the Polyurethane.



5 Stability analysis of a steady sliding solution in finite déormations

We will first recall the main results of the stability anaky$or hyperelastic finite dimensional
problems given in Vola-Raous-Martins (1999), MartinstBida Costa (2000) and Vola-Pinto da
Costa-Barbarin-Martins-Raous (1999). Here, we will foounshe numerical discretization and
the computation of the various conditions as well as thesftigblutions. An application to the
industrial problem of a waist seal sliding on a car window wé presented.

As in the previous section, the results given here are basedpyoperty which looks like
that of Liapunov, stating that instability of the lineanizeystem implies that of the nonlinear
one. But, in the present problem, such a property had to beegdrbecause the problem is not
differentiable, and Liapunov’s results no longer applies.

It should be noted that it is more simple to study the insit3tnf steady sliding than to inves-
tigate the one of the complete quasistatic solutions (sesimMdaPinto da Costa (2000)) : in the
present case, the nodes are either sliding or separateafrettion force isrr = pry sgnpr).

5.1 The discrete dynamics problem

As described above in Section 3, the discrete dynamic pnobdn be written as :

Ma"'f‘int(u):ﬁ‘ezt‘Frv (124)
vriec! (rf—ry)Twa(u)>0, (125)
vr e Clry) (r)f —r)Twi(i1) >0, (126)

where :

— M =HMHT, Fint = HF;y4, Foyy = HF oy, u= Hia and a = Hu,
— wy(u) is the current gap andy (i) andw,,, (v ) = H,, v are the current relative tangential
and normal velocity  is the initial distance in the reference configuration) :

wn,(u) = Hy,u+ Gy, Wi, (1) = Hy, i1 — vops Viel, .., ne, (227)

— and wheref, C* andC}*(r,,) are defined by Eq. (62) and Eq. (64) of Section 3.2

5.2 Instability of the steady sliding solution

a - Notations
In the case of a steady sliding solution, the problem is s#mflhe contact nodes are :

— eitherin sliding contact{), > 0, u) + G; =0, 1), = psgn(veps)ry, andag, # vops),
— or strictly separated{ = r) = 0andul + G; > 0),

whered denotes the value @ in the steady sliding equilibrium configuration.

Linearization assumption : we assume that it is possiblent fierturbed dynamic solu-
tions in the neighborhood of this steady sliding state, shelt the contact state of each con-
tact candidate node is preserved ; i.e. each node in slidingact remains in sliding contact
(Un, + G; = Un, = 0,14, = sgn(r?i)rni andu;, # veps), and each node not in contact



rT

et ———— HTN

ur

Figure 38. Linearization assumption presented on the
graph of the Coulomb law (case wherg, = 0).

remains so withi«,, = r,, = 0 andu,,, + G; > 0) (see Fig. 38). We use the subscrjpffree)

to denote the degrees of freedom corresponding to the daplkant components of nodes which
are not concerned by the contact or contact nodes not clyrierontact. The subscripts (re-
spectivelyt) denote those that correspond to normal (respectivelyetatiag) displacements of
sliding nodes. The dynamical problem can be then written :

Mff an Mft flf Fmtf(uf,ut) 0
Mnf Mnn Mnt 0 + Fintn (Uf, ut) = Iy ; (128)
Mtf My, My n Fintt(ufa Ut) uSIn

wheres = sgn(vops).

Using the equations of motion corresponding to the normgiekss of freedom of the sliding
nodes ) to eliminate the non vanishing reactions, the equatiosiisgbvern the smooth dynamic
evolution of the structure in the neighborhood are :

] ) - [

Mtff Mi?;f u F:ntt(ufa ut) 0
M*
whereF;,, = Fini, — pusFin, andM;5 = Mo — psMy,o. If the matrix M* is non-singular,

the second order differential system (129) is regular aednibrmal displacements of the free
contact candidate nodes, as well as the tangential vadeeitid the normal reactions of the nodes
in sliding contact, will depend continuously on the inittainditions and on time. Consequently,
in a sufficiently small neighborhood of the steady slidinatest the solution of (129) and (128)
for perturbed initial conditions arbitrarily close t6}, u} andiuf} = i = 0 leads to a “smooth”
solution of the general system (130) to (133).

Mdi1+ Fip(u)dr — Fopdr — H rdv = 0, (130)

/ din = 't (b) — it (a), (131)
Ja.b)



vrre Ol (rf —r,)T(Hyu+ G) >0, (132)
vr; e CM(r,) (rf —r)T(Hyit— veps) > 0. (133)
The equations of motion (129) are linearized :
M*§u*(t) + K*ou*(t) =0, (134)
where :

— du*(t) denotes a small increment in the active displacements,
— K* is a non-symmetric matrix with dimensiaN*(< N) constructed from the stiffness
matrix in the same way a%/* (see 129)K* depends on the friction coefficient.

b - Stability analysis
The important point is that if the steady sliding equilibnistate is dynamically unstable for the
linearized system (134), it will also be unstable for the#iapar system (129).

The analysis of the dynamic stability of the system (134d¢eas it was shown in Section 4,
to the generalized eigenvalue problem :

(NM* + K*)V* = 0. (135)

The occurrence of a non-trivial eigenveciotr for some) with a strictly positive real part
implies the instability of the steady sliding state. It vl :

— adivergence instability if Im(\) = 0 (non-oscillatory),
— a flutter instability if I'm()\) # 0 (oscillatory).

¢ - Computation of the eigenvalue spectrum

As previously notedM* and K* are non symmetric. Their dimensigw* is large (only a few
equations were eliminated in (129)). We therefore have tomgde the whole spectrum of the
complex eigenvalues of the generalized eigenvalue prod&%). This problem is solved using
the Lanczos algorithm (see Rajakumar-Rogers (1991)) algtigthe double QR method.

5.3 Discussion of the stability analysis on a simplified waiseal geometry (presented in
Section 3.6)

In this section, the stability analysis is conducted on thmpéfied waist seal geometry presented
in Section 3 (see Fig. 18) : on one hand, the eigenvalue spacatharacterizing the flutter in-
stabilities is computed, on the other hand, the flutter imhs including normal shocks and
stick-slip are computed using the dynamic formulation gireSection 3. The influence of var-
ious parameters on the stability analysis will also be presk The computations were carried
out by D. Vola (Vola (1998)).



a - General comments on the stability analysis

The analysis of the sufficient condition for instability ism@lucted on the eigenvalue spectrum.
As mentioned above, when the algorithm used to compute #gaalgtsliding solution was pre-
sented, those solutions were computed and analyzed heaestdrof friction coefficient values
because the friction coefficient plays a key role in the $tgbirhe analysis of the sufficient
conditions is conducted as follows :

— Divergence instability
It would be characterized by the existence of a real pos#igenvalue. In the various exam-
ples, divergence was never obtained.

— Flutter instability
Because of the form of the generalized eigenvalue probl&®)(fand the formulation with
A2), there always exists complex eigenvalues with a positaad part. The possibility of
flutter instability occurring is analyzed relatively to theodes and the eigenvalues. The
frequency of the flutter oscillations is given by the imaginpart of the eigenvalue, and
the growth rate by its real part. Flutter instability may oct the mode and the frequency
are low enough (for energetic reasons) and if the growthisaterge enough. This will be
discussed on the various examples given below.

b - Analysis of the flutter instability on a simplified waist seal geometry (see Fig. 18)
The eigenvalue spectrum is given in Fig. 39 with friction fficent values ranging frond to
1.2. In order to analyze the problem more closely, the growté catresponding tp = 0.5 and
u = 0.9 are givenin Fig. 40 and 41.

Considering the lowest mode, it can be noted that :

— atu = 0.05, this mode is a high mode, with a frequency of approximafiviElOOHz and
with a small growth rate,

— atp = 0.45 and0.5, the two lowest modes are again high modes, one correspptaim
frequency of approximatively 6000Hz with a small growtrer&t = 0.5), and the other one
to a frequency of approximatively 6500Hz with a larger grtovdte ¢ = 2.3) (see Fig. 40),

— betweenu = 0.8 andu = 1.2, the lowest mode is the modewith a frequency of 990Hz
and a growth rate of = 2 (see Fig. 41).

In this case, it can be concluded that a flutter instability mecur whery. is larger tharo.8.
Mode4 may be excited with a frequency of 990Hz. This mode will be eneaisily excited than
the higher mode which occurs at 6000Hz with= 0.5 although the growth rates are similar in
both cases.
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¢ - How do the eigenvalues evolve when the friction coefficieincreases ?
As shown in Fig. 42, a flutter frequency results from the ceedace of two imaginary eigenval-
ues. In Fig. 42, the real (growth rate) and imaginary (freqyé parts of the eigenvalues found
around 1100Hz have been plotted when the friction coeffiérameased fron.7 to 0.85. It can
be observed that two separate imaginary eigenvalues weameld up tq: = 0.7505. These two
eigenvalues then coalesce, giving two conjugate complgenealues. One of them (with posi-
tive growth rate) corresponds to the possibility of flutiestability noted in Fig. 39 fop = 0.8
(in fact, we give here a more accurate evaluation of theidmclimit value which may give the
instability : x = 0.7505). In Fig. 42, the various steps are due to the successivetasmtact of

some nodes.
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d - Effects of the mesh refinement

The mesh given in Fig. 17 has been refined by cutting each ekente 4 and then into 9 parts.
The analysis of the sufficient conditions on the various raesthows, as previously noted, that
the refinement mainly affects the high modes in the spectiima.mesh acts mainly as a filter :
the finer it is, the higher the modes which are captured wilNevertheless, we are still working
on this point, which is a key one in the numerical approxiovadi

e - Effects of the compressibility

The influence of the compressibility tolerance is an impargint which needs to be checked
because the stiffness matrix depends strongly on the vélceedficientx, and this could affect
the instability analysis when the eigenvalues will be cotagu

The analysis shows that the effectsxofire small as long as the incompressibility is main-
tained :

— the effect can be seen to be small in Fig. 43 between200M Pa andx = 1200M Pa, but
in these two cases, the values are sufficiently high to erieatéhe compressibility is lower
than0.01% without requiring any Lagrangian augmentations,

— its effects are again small in Fig. 44 betweer= 10M Pa andx = 1200M Pa, but here,
it was necessary to perform Lagrangian augmentations fer 10M Pa to maintain the
incompressibility,

— however, a difference can be noted in Fig. 45 between 10M Pa andx = 1200M Pa ;

here, no augmentations have been performed and incomgitiégsss not satisfied in the case
of the solutions indicated by a circle in Fig. 45.

In conclusion, the value of itself is not very decisive, but the accuracy of the incorspitail-
ity is an important factor : either a large valuerofmust be taken, or a sufficiently large number
of Lagrangian augmentations must be carried out.
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f - Computation of the flutter solution

The dynamic computation of the flutter is now carried out whthalgorithm presented in Section
3. When a sufficient condition for instability is fulfilled,excompute the dynamic evolution of
the solution when a small perturbation is prescribed. Dukéamon smooth characteristics of the
dynamics which may include normal shocks and stick-slimpingena, the nonlinear problem is
solved by using the specific numerical approach given iniGeét

Taking the steady sliding solution as initial condition ahd numerical round-off as initial
perturbation, we compute then the dynamic solution. Theltegiven in Fig. 46 were obtained
with At = 107%s, T = 1s, 6 = 0.55, = 0.9. In Fig. 46, the solutions are given for four differ-
ent initial perturbations. The first one is simply the rouwftlerror. In the other three cases, the
perturbation is taken as follows v,,s At (Re(u*)) for the displacements,v,p,s (Re(A)Re(u*))
for the velocities.

In two cases{/* is taken to be the eigenvector associated with the eigeawahich char-
acterizes the instability with two different values ©{0.01 and0.1). In the third casen is a
random vector and = 0.1.

In all the cases considered, increasing flutter was obsewigll an oscillation frequency
equal to 990Hz, which was the value predicted by the sufficiendition analysis. The flutter
growth is limited by the numerical damping, depending oncth@ce off (the influence of will
be discussed in the next section). It can be noted that thedroff error is sufficient for flutter
to occur. Other choices, and especially that where the ition follows the direction of the
eigenvector, will speed up the onset of the flutter, and saneecomputational time.
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5.4 Analysis of a waist seal : comparison between two geoméis

a - Analysis of the flutter sufficient condition

In this section, we propose to analyze the stability of tleady sliding solutions in the case of
two kinds of waist seal sliding on a glass car window (see \Rd@us-Martins (1999)). These
steady sliding solutions were presented in Section 3.

In Fig. 47 and 48, the total spectrum (frequency and growtd) ria given fory = 0.4 in
the case of the two geometries when the glass is moving dowkigl 49, 50, 51 and 52, the
sufficient condition for flutter instability is presentedag with the evolution of the lowest mode
which can be excited, versus the friction coefficient valdds four figures relate geometry 1
and geometry 2, and glass moving up and glass moving dows€Tiesults show that :

— when the glass is moving up, the second geometry is moreedtadnh the first one because
a low flutter mode occurs at > 0.3 in the first case, and only at > 0.45 in the second
one; in addition, this result is reinforced by the fact that frequency is abo@000H z in
the first case and abo6®00H z in the second one,

— when the glass is moving down, the conclusion is similar botendetails have to be given.
As a matter of fact, from Fig. 51 and 52, it can be noted thataflotter mode (aB250H =
in the first case and at abat@00 H z in the second one) is obtained in both cases at similar
values of the friction coefficienf{ > 0.3 in the first case and > 0.35 in the second one).
But, it can be checked from Fig. 47 and 48 that the correspgygtiowth rates differ between
these two cases : at= 0.4, the growth rate is = 2.4 with geometryl, andr = 0.4 with
geometry2. Again, the second geometry is more stable.
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Figure 47.Eigenvalues of\/* "' K™, geometryl, Figure 48. Eigenvalues of\/* ' K*, geometry2,
u=0.4. pn=0.4.
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Figure 49. Flutter frequencies (geometiy glass moving dowry, = [0, 0.45]).

Flutter frequ

0.0 0.05 0.1 0.35 0.4 0.45

015 02 025 03
Friction coefficient

Figure 50. Flutter frequencies (geometgy glass moving dowry, = [0, 0.45]).
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b - Dynamic computation of the flutter

The dynamic computation of the flutter is now carried out ggtme dynamic formulation pre-
sented in Section 3. This enables us to confirm the resulendiy the sufficient conditions of
the stability analysis and to describe completely the biel@wf the structure during the flutter
(normal shocks and stick-slip).

In Fig. 53 and 54, flutter is computed in the case of the two getdes withy = 0.4 when
the glass is moving down. In Fig. 53, the occurrence of fluteronfirmed and the predicted
frequency 8250H z) is obtained. In Fig. 54, in line with our comment on the lowueaof the
growth rater = 0.4, no flutter was observed.

Fig. 55 and 56 illustrate the influence of the numerical dangpWhen the numerical damp-
ing increasesi = 0.55 in Fig. 55, and = 0.60 in Fig. 56), the onset of flutter is slightly delayed
and the amplitude of the oscillations is reduced.
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¢ - Analysis of the solution behaviour in the contact

In Fig. 57 to 59, the evolution of the normal and tangentiaptlicements is plotted using the
phase plane representatian ¢). In both cases, the movement converged after a while toitr lim
cycle.

The cycle associated with the tangential movement of rioffeg. 58) reflects a stick-slip
phenomenon : node 1 remains stuck during one period (theitetf the glass i¥5mm/s) and
slides during another one.

Fig. 59, which gives the normal movement of nodeshows the loss of contact and the
presence of normal shocks including velocity discontiesit

This analysis gives a good understanding of the source oifdise : the tangential and normal
micro-shocks in the rubber/glass contact generate vibatof the glass which acts as a loud
speaker membrane. Computations of the eigenmodes of the gifeowed that in the acoustic
frequency range, the number of eigenmodes is large and Wikr@ways exist a mode which
will be close enough to the excitation frequency to be trigde

In Fig. 60, the tangential movements of all theontact nodes are given with respect to time.
This shows that the movement is not a global movement butit@irdion effects occur in the
contact : the nodes do not stick all at the same time.
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