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Selective amplification of scars in a chaotic optical fiber

Claire Michel, Valérie Doya, Olivier Legrand, and Fabrice Mortessagneﬁ
Laboratoire de Physique de la Matiere Condensée
UMR 6622, CNRS & Université de Nice Sophia-Antipolis
06108 Nice cedex 2, France

In this letter we propose an original mechanism to select scar modes through coherent gain
amplification in a multimode D-shaped fiber. More precisely, we demonstrate how a single scar
mode can be amplified by positioning a gain region in the vicinity of specific points of a short

periodic orbit known to give rise to scar modes.

PACS numbers: 05.45.Mt, 42.55.Wd

Since their discovery in 1984 by Eric Heller [EI], scars
have remained one of the most intriguing features in the
field of Wave Chaos. These ‘anomalous’ modes of chaotic
wave cavities show unexpected enhancement of intensity
in the vicinity of the least unstable periodic orbits (PO)
of the corresponding billiards. According to Random
Matrix Theory [P], as well as from semiclassical analy-
sis [, an ergodic behavior is expected for modes in sys-
tems whose classical (geometrical) counterparts exhibit
chaotic dynamics of trajectories (rays). It is worth not-
ing that even if physically inescapable, scars remain the-
oretically ambiguous [@] and mathematically uncertain

B

In previous works we showed that a passive optical
fiber with a chaotic-billiard-shape transverse section con-
stitutes a powerful experimental system for studying (and
imaging) wave chaos [fJ], and particularly when scars are
involved [ﬂ] Indeed, at the output of a multimode D-
shaped fiber we were able to put to evidence a scar
mode associated to the shortest periodic orbit of the
chaotic section. Unfortunately, the diffraction due to
the finite aperture of the fiber precludes any truly se-
lective excitation of a single mode. For an input illu-
mination privileging the lowest order modes, a few tens
of modes contribute to the optical field, and the best
that one can do is to slightly enhance one of the low-
est order scars. For larger orders, the increasing number
of excited modes hampers the scar enhancement effect.
Scar modes have also been observed in microlasers [§, Il
These devices are more and more present in photonics,
for which high directionality and low lasing threshold are
required. Scar modes constitute the cavity modes with
the highest quality factors @] and privileged directions
of emission (given by the phase-space structure of the
modes). In such lasing microcavities, boundary losses
play a dominant role in the mode selection mechanism
and, for a given shape, only a few efficient scar modes
are supported [@] A different selection mechanism may
be found in the domain of wave propagation in random
media. In this context, the amplification of particular
modes is observed with random lasers (see Ref. [[[I] for
a recent review on this prolific subject), where localized

modes play the role of scar modes. Both types of modes
rely on strong coherent effects and display common sta-
tistical features [@] Numerical investigations recently
showed that, in the localized regime, the lasing modes in
a random laser just above threshold are the modes of the
passive disordered system [E] The same authors estab-
lished that the identification between lasing and passive
modes holds even when the gain region is smaller than
the mode size(f4)].

In this letter, we present an original way to achieve
a selective amplification of scar modes in a highly mul-
timode D-shaped optical fiber. Having in mind the re-
sults obtained in the context of random lasers, namely by
adding a spatially localized gain medium in our chaotic
fiber, we are able to amplify a single scar mode, or a fam-
ily of such modes, depending on realistic input illumina-
tions. More precisely, we demonstrate how scar modes
can be selectively amplified by positioning a gain region
in the vicinity of specific points along a short PO known
to give rise to scar modes. We also illustrate the ro-
bustness of this amplification mechanism by illuminating
the specially designed fiber with a spatially incoherent
speckle-like input. Such a device could be used as an in-
jection stage for a passive fiber with the same transverse
section as a new tool for further studies of scar modes in
chaotic fibers.

We recently showed that multimode D-shaped fibers
are perfectly suited to achieve high power optical ampli-
fication , E] In the single-mode doped core of an
optical amplifier, the guided optical field (called the sig-
nal) is amplified at the cost of an ancillary field (called
the pump) which propagates in the multimode D-shaped
silica cladding [@] Usually, the optical index of the Er-
bium or Ytterbium doped core is higher than the index
of the surrounding D-shaped silica structure. Therefore,
the signal is guided along the doped region, and, by guid-
ing the pump, the multimode external core only plays
the role of an energy reservoir. By some appropriate
modifications of the fabrication process, which will be
presented in a forthcoming publication, it is possible to
obtain a negligible index mismatch between the small
active region and the rest of the fiber , at least suffi-




ciently small to ensure that no mode is guided inside the
doped area. Thus, both the signal and the pump prop-
agate in the entire section of the multimode D-shaped
fiber. Here we propose a realistic numerical simulation
of such a chaotic fiber with a localized Ytterbium-doped
region. Ytterbium in a silica matrix may be viewed as
a four-level system with two metastable levels, which,
in our case, can be treated as an effective two-level sys-
tem. The wavelength is Ay = 1020nm, for the signal,
and A\, = 980nm, for the pump, thus limiting the sig-
nal reabsorption. The simulation is based on the Beam
Propagation Method (BPM) [@], which we already suc-
cessfully used for simulating optical amplification [LT].
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FIG. 1: Transverse cross section of the D-shaped multimode
fiber and 4 scar modes associated to the shortest periodic
orbit.

The optical fiber we consider has the D-shaped cross
section shown in figure El Its highly multimode core is
made of pure silica of refractive index n., = 1.451 and
has a 2R = 125 ym diameter. The value of the trun-
cated radius is R, = R/2. This core is surrounded by
a polymer cladding of refractive index n, = 1.41 that
acts both as an optical cladding (to guide light in the
core) and as a mechanical cladding (to protect the core).
By using Dirichlet boundary conditions (metallic fiber),
we are able to solve numerically the Helmholtz equation
and we show on Fig. [l| some scar modes associated to the
2-bounce periodic orbit (2PO). As the losses of our sys-
tem are weak, guided modes of the metallic and dielectric
fibers are quantitatively the same for the first hundreds
of modes. The order p of a given scar gives the corre-
sponding transverse wavenumber £() (eigenvalue of Eq.
() below) through the following Bohr-Sommerfeld-like
quantization relation:

KPL— Ap— g =27p (1)

where L is the length of the 2PO and A¢ is the phaseshift
at the core/cladding interface. The additional 7/2 phase-
shift is due to the unique self-focal point of the 2PO. The
active Ytterbium ions are located in a disk of diameter
15 um enclosing this self-focal point (see Fig. [[), that

also corresponds to a maximum of intensity of the vast
majority of the 2PO scars.

We denote by z the position along the axis of the
fiber and by " the position in the transverse plane. We
showed in [E] that the scalar approximation is legitimate
in the weak guidance limit. Thus the electromagnetic
field v, (7, z) representing the signal obeys, in a passive
fiber, the scalar three-dimensional Helmholtz stationary
equation

(AL +0.2) ¥s(7,2) + RQ(F)kng(Fv z)=0 (2)

where A is the transverse Laplacian and kg = 27/ is
the vacuum wavenumber. Using the translational invari-
ance of the refractive index, Eq. (E) can be reduced to a
stationary Schrodinger equation

3L V0| o) = 3Rers) )

where ¢ is given by (7, 2) = [ dBé(7; B)e'P*, the po-
tential V(7) = (82, — n*(Mk3)/2 with B, = neoko and
the transverse wavenumber x? = 32 — 32 which takes
on discrete values k, associated to guided modes ¢,.
Any guided solution (7, 2) of Eq. (f]) can be decom-
posed on the basis generated by the bound eigenstates

én(7) = ¢(7; By) of the Schrodinger equation (f]):

Bl 2) = 3 Caton () exp (i ) - (4)

To each mode can be associated an angle 6,, with re-
spect to the z-axis defined by sinf,, = k,/Bc. The
cut-off angle for guided modes is given by sinf,,,. =
V1= (ne/neo)? ~ 0.34, which corresponds to the maxi-
mum value Kmar = 2 2. Knowing this value, one
can obtain the total number of guided modes at wave-
length A\ which is approximately 3 500 [E] Mutatis mu-
tandis, we can derive similar expressions for the electro-
magnetic field ¢, (7, z) of the pump.

In the paraxial approximation (see [E] for a thorough
discussion of this approximation in the present context),
z plays the role of time in a Schrédinger-like equation. By
using the standard BPM numerical scheme, the coupled
evolution of the fields over an infinitesimal pseudo-time
step may be written

Y p(7, 2 +dz) = exp [—1(Ds p + Ps p)dz

+ %asyp(ﬁz)dz Vs p(Ty2)  (B)
where D = —(1/20.,)A | is the ‘diffraction operator’ act-
ing in the Fourier space and P = —(1/203.,)(n?(7)k3 — %)
is the ‘propagating operator’ accounting for the guided
propagation in the real space. From the population
densities Ni(7, z) and N3(7, z) of the two effective Yt-
terbium energy levels, one obtains the two amplifica-
tion factors: op(7,2) = —0pN1(7,2) and a4(7,z) =



Osa (775]\72 (7, z) — N1 (T, z)), where 044 (0pa) is the absorp-
tion cross section of the signal (pump), the stimulated
emission cross section at the wavelength of the signal o,
is also involved through the ratio 7y = 04./0sq [@]

In all the simulations performed, the numerical ini-
tial condition used for the pump evolution () corre-
sponds to an illumination by a focussed laser beam, en-
suring an optimal coupling with a large number of gener-
ically ergodic modes. The input powers are 6 W for the
pump and 100 W for the signal (corresponding to the
so-called weak signal regime [[[7]), and the cross sec-
tions have the following values: 0,, = 2.65 x 10724m?,
Osq = 5.56 x 1072°m?, o, = 6.00 x 1072°m?. The
identification of the guided modes which are present in
the propagating signal is performed through what we call
the pseudo-time-frequency spectrum C(k; z) of our sys-
tem. This quantity is derived from a standard procedure
in quantum physics adapted to the numerical algorithm
we use [ More precisely, C'(k; z) is obtained from the
Fourier transform of the correlation function defined as
the overlap of the propagating field (7, z) with the ini-
tial condition along a propagation length L.:

L
=5

C(w;2) dz’ / / AF* (7, 0)1hs (7, 2/ e ()=

Ls
=5

~ D An(2)8c(kin — k) (6)

where, for the sake of simplicity, we have written C(k; 2)
in a form which clearly exhibits smoothed delta peaks
at the values of the transverse wavenumber associated to
the eigenmodes of the fiber.

First, we use a selective illumination condition along
the 2-PO scar mode of order p = 4 which exhibits a
good overlap with the gain region. Practically, the in-
put signal is a plane wave with the transverse wavenum-
ber kK™® = 10.94/R. The left inset in Fig. J shows the
spectrum at z = 0. In spite of the plane wave illumi-
nation, whose wavenumber is associated to the highest
peak, the unavoidable diffraction due to the finite trans-
verse aperture of the fiber generates extra wavenumbers
in the spectrum. In a passive fiber this spectrum would
be unchanged during propagation. In Fig. E7 we show
the evolution of C'(k;z) computed with L, = 1.3m and
for z varying by steps of 0.65m. The x(¥-mode is clearly
enhanced during the propagation. But, as a consequence
of the initial diffraction, the scar of order p = 3 is also ex-
cited and amplified. It is worth noting that the spectral
content of the signal is deeply modified by the amplifica-
tion: two scar modes completely dominate the spectrum
at length 2,4, = 39m where the n(4)—peak reaches a
plateau. This length corresponds to the maximum am-
plification length after which the mode is depleted due
to the absorption of the signal by the active medium. At
this optimal length, the domination of the scar of order

p = 4 can be directly visualized by imaging either the
near-field intensity (NF) at the output of the fiber or the
far-field intensity (FF) obtained in the focal plane of a
lens. This is shown in right inset of Fig. E The FF in-
tensity exhibits two symmetric spots located at +x*) on
the k., axis. Moreover, NF and FF pictures are quanti-
tatively close to those numerically obtained for the p = 4
scar mode of a metallic fiber (see Fig. [). We verified
that none of the scar modes, even the dominant x4, are
preferentially amplified when the doped area is shifted
off the 2P0 axis. These results clearly demonstrate that
a properly positioned gain area can selectively amplify a
single scar mode.
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FIG. 2: Two-dimensional plot of C(k;z) defined in (H) for
L., = 1.3m. Left inset: spectrum at z = 0. Right Inset:
near-field (NF) and far-field (FF) intensities at the maximum
signal amplification length 2,4, = 39 m.

We now put our system to a more stringent test. We
consider for the signal a spatially incoherent illumination
resulting from a random superposition of a large number
of plane waves. We computed the coupled evolutions (E)
for such a random initial condition with transverse wave
numbers up to & = Kmaz/4. The corresponding initial
signal spectrum was thus almost uniform from 0 to . As
depicted in Fig. f] (a), the evolution of C(; z) exhibits a
drastic mode selection along propagation. Each notice-
able peak is associated to a scarred transverse wavenum-
ber. This is emphasized in Fig. [] (b) where C(; zmaz) is
plotted for z,,4; = 45 m and where an averaging over five
different incoherent illuminations has been performed.
Almost all scar modes up to order p = 12 (k12 R = 27.1)
are significantly amplified. The first peak corresponds
to light propagating into the fundamental guided mode.
The differential amplification of the scar modes can be
directly related to the relative intensities of the modes on
the gain zone. This is illustrated in the inset of Fig. f] (b)



where the overlap integral between the doped area and
the intensity of the 2PO scar modes in a metallic fiber
has been plotted. The modes of order p =1, 3,4,6 and 10
have a good overlap with the gain region and naturally
arise in the averaged pseudo-intensity spectrum. On the
contrary, modes that present a bad overlap as those as-
sociated to order p = 2,5 and 7 are clearly less amplified.
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FIG. 3: (a) Evolution of C(k; z) along the fiber for an incoher-
ent initial illumination. (b) Instantaneous spectrum averaged
over 5 different incoherent illuminations. The inset shows the
overlap integral between the intensity of the calculated scar
modes and the doped area.

In this letter we have tried to contribute to a new
trend in the field of wave chaos, namely the competi-
tion between the subtle interference effects giving rise to
complex spatial patterns and nonlinearities. Here we ad-
dress the problem of scar mode selection through coher-
ent gain amplification. More specifically, in a multimode
D-shaped optical fiber we demonstrate the selective am-
plification of scar modes by positioning a gain region in

the vicinity of the self-focal point of the shortest periodic
orbit in the transverse motion. This selection mechanism
is so efficient that it can extract a family of scar modes
from a spatially incoherent input signal. Our results may
be viewed as the first step toward nonlinear wave chaos
in guided optics.
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