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Abstract

We argue that any document set can be modelled as a hypergraph, and we apply a graph clustering process as a
way of analysis. A variant of the single link clustering is presented, and we assert that it is better suited to extract
interesting clusters formed along easily interpretable paths of associated items than algorithms based on
detecting high density regions. We propose a methodology that involves the extraction of similarity graphs from
the indexed-dataset represented as a hypergraph. The mining of informative short paths or geodesics in the
graphs follows a graph reduction process. An application for testing this methodology is briefly exposed. We
close this paper indicating the future work.
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1. Introduction

The main objective of this paper is to propose a graph clustering methodology including hypergraph
modelling of raw data. The position that we support here can be summarized in these three proposals:
[1] the hypergraph modelling constitutes a uniform data model that allows us to generalize the method
of co-word analysis as we try in this paper, and it can be compared to Galois lattice modelling use by
formal concept analysis (FCA) (Wille, 1982). This last point we will not treat it here. [2] On the basis
of what has been observed in co-word analysis (Courtial, 1990), short paths of strong associations can
reveal potential new connections between separated sectors of the co-word network. Thus, the graph
clustering method that we propose does not focus on homogeneous clusters, but highlight some
heterogeneous clusters formed along short path of strong associations. [3] Concerning the graph
clustering, we support that a variant of the single link clustering (SLC) is better suited to build
interesting clusters, formed along easily interpretable paths of associated items, than algorithms based
on detecting high density regions.

Section 2 introduces the hypergraph modelling, sections 3 and 4 deal with the graph reduction and
clustering process. A real application on SCI dataset try, in section 5, to provide the empirical
demonstration of the approach exposed in the former sections.

2. Hypergraph Modelling

Hypergraph definition (Berge, 1987): A hypergraph is a pair (X, E) where X is a set of elements, called
hypernodes or hypervertices, and E is a set of hyperedges; a hyperedge ¢ is a non empty subset of X,
S(X)\@. While graph edges are pairs of nodes, hyperedges are arbitrary set of nodes or vertices,
because in a hypergraph the edges can connect any number of vertices. A hypergraph is a family of
sets drawn from the set X.

Any set of documents D can be modelled as a hypergraph H. Each of the documents can be
represented by a hypervertex, and the document elements as for instance authors, keywords, and
citations are represented each one by the subset of documents sharing these elements. These subsets



constitute the hyperedges of the hypergraph. In the sequel, we shall identify each keyword w with the
subset of documents {d, ..., d,} indexed by w. According to the type of information that we want to
analyse, intersection graphs that we shall call co-occurrence graphs, can be derived from different
subparts of H. The vertices V are the selected hyperedges meanwhile an edge is drawn among two
vertices (v;,v;) whenever they have a non empty intersection. For example, if we select as subpart of H,
the hypervertex representing keywords or authors or citations, the resulting intersection graph is the
keyword or co-author or co-citation graph. If we select both author and keyword hyperedges, we
obtain a graph of associations between keywords and authors; if we select both citation and keyword
hyperedges, we obtain a graph of associations among keywords and citations.

3. Graph reduction process

The next consists of applying a graph clustering process from the co-occurrence data matrix, where the
data can be keywords, authors or citations. Here, we limit to treat the co-word matrix. This is the input
matrix of the graph of co-occurrences Go(V,E).

Many similarities between keywords can be defined based on the cardinality of w; N w; (Van Cutsem,
1994), in the present case the intersection graph Go(V,E) of H defines the co-word graph having as
many edges as there are non null values in the similarity matrix. The set E of edges of Go(V,E) is the
set of pairs of keywords {w;,w;} where w; N w; # @. But the associations between keywords cannot be
considered in a crisp binary way. The co-occurrence frequency alone is not enough to measure the
strength of associations, because it favours high-frequency couples compared to those with low
frequency. Then, it is necessary to use some normalizing coefficient. For this task, we apply the
“equivalence coefficient” (as originally defined in Michelet, 1988) based on the product of conditional
probabilities of appearance of a term knowing the presence of the other one. The equivalence
coefficient that we note o(w,w;) = Iw; N wjl2 ! (lwixiw;l) allows to avoid weak relations and to
normalise frequency of keywords. This coefficient also has an easy interpretation in terms of
probability theory, since it is the product of conditional probabilities of finding one item knowing the
presence of the other. This coefficient is maximized by pairs of items that are in the same closed sets.
We denote G(A) = (V,E,0) the weighted graph of associations. Usually, when a co-occurrence matrix
is used, a threshold is set on the keyword frequency in order to obtain a less sparse matrix. On the
other hand, setting the threshold on association value o(w;,w;) and not only on keyword frequency Iw;l
is better suited to form clusters that are closed. Consequently, every value s in ]0,1[ induces a sub-
graph G(A>s) = (V,E,,0) where E; is the set of pairs of vertices (w;,w;) such that 6(i,j) > s.

4. Graph clustering

We apply a variant algorithm of the single link clustering (SLC) called CPCL (Classification by
Preferential Clustered Link), originally introduced in Ibekwe-SanJuan (1998), here we use its
optimised version (SanJuan et al, 2005). This algorithm is applied on the graph G(A>s) building
clusters of keywords related by geodesic paths that are constituted of relatively high associations. Any
variant of single link clustering that reduces its chain effect can produce interesting results in this
context, since they naturally form clusters along short geodesics of maximal weight. The CPCL
algorithm (see table 1) merges iteratively clusters of keywords related by an association strongest than
any other in the external neighbourhood. In other words, CPCL works on local maximal edges instead
of absolute maximal values like the standard SLC. We refer the reader to Berry et al. (2004) for a
detailed description of the algorithm in the graph formalism.

Table 1 CPCL Algorithm

Program CPCL (V,E, o)

1) Compute the set S of edges {i, j}such that ofi,j) is greater than s(i,z), and s(j,z) for any vertex z

2) Compute the set C of connected components of the sub-graph (V,S)

3) Compute the reduced valued graph (C, E_C, o_C), where E_C is the set of pairs of
components {l,J} such that there exists {i,j} in E withiin J, jin J, and o_C(l,J) = max{a(i,j) : lin
l,jinJ).

If V<> C go to phase 1 else return (C, E_C, a_C)




5. Experimentation

We test this graph clustering process on a corpus of 5,795 bibliographic data on “data and text
mining”, extracted from the SCI database, over period 2000-2006. The different components of the
bibliographic data are catalogued according to 39 fields coded by a combination of two capitals as
specified by SCI. These 5,795 data characterized by these 39 fields are submitted to hypergraph
modelling. The hypergraph, denoted H, is stored on the form of a ternary relation i.e. records involve
an identification number, a code field, and keywords. The coded fields form the vertices of the
hypergraph H. From this general hypergraph with 165,850 vertices and 5,795 edges, a sub-hypergraph
by selecting a subset of vertices is extracted. In this case we select the set of keywords (SCI field
denoted by DE). The result is a sub-hypergraph K with 8,040 vertices and 3,171 edges, the vertices are
the author keywords. The degree of hyperedges corresponds to the number of keywords indexing a
reference. Its minimal value is 1, the mean 5.11 and the maximal 35. The degree of vertices is the
number of references indexed by a keyword. On this corpus, its minimal value is 2, its mean 6.35 and
its maximal value 1,722 for keyword “data mining”. The frequency of all other keywords is lower than
200.

The hypergraph modelling allows introducing a new data analysis instrument: the minimal transversal.
For any subset S of hyper-vertices, let us denote by 7(S) the set of hyper-edges & such that &

NS #@, S is said to be a minimal transversal if for any s in S, 7T(S — s) # T(S). Consequently,
the minimal transversals correspond to closed item-sets in data mining (Zaki, 2004), and to formal
concepts in Formal Concept Analysis (Ganter et al, 2005; 1999). The number of hyperedges in which
S is included is the support of S. On K there are 2,526 minimal transversals with at most 5 elements
and a support greater that 0.001. Table 2 gives some examples of minimal traversals with 5 elements
having a largest support.

Table 2 Minimal traversals of the hypergraph K.

Support

0.00421 bioinformatics cancer data mining genomics proteomics
0.00316 genomics machine learning microarray proteomics text mining
0.00316 data mining dimensionality reduction feature extraction neural network pattern recognition
0.00316 clustering machine learning microarray proteomics text mining
0.00316 bioinformatics genomics machine learning proteomics text mining

Computing such sets allow detecting subsets of frequently associated items. However, computing all
minimal transversal is intractable since the number of such sets can be exponential on the number of
items, because the numerous overlaps between minimal transversal.

The graph of weighted associations G(A) constitutes the intersection graph of the hypergraph K with
8,037 vertices and 34,375 weighted edges. The G(A) graph is a small world graph (SWG) since its
average clustering measure is 0.47. This value is far from the expected value for a random graph
having the same average degree which is the average degree over the number of edges 4.43/2,335. As
in random graphs, the average path length is low 2.31. These are the two conditions usually considered
to characterise SWGs (Watts, 1999). The SWGs are compact graphs with a high number of simplicial
vertices that are vertices whose neighborhood forms a complete graph. Setting a low threshold on
association values (0.001 here) is enough to drastically reduce the number of edges and reduces its
clustering measure (0.35). However, we do not loose the SW property since 0.35 is much greater than
the mean degree 3.28 over the number of edges 1,057, and the average path length is low 4.12.

The graph G(A>s) is induced from G(A) fixing the threshold s at 0,001, and the co-occurrence
frequency at 2. The graph G(A>0.001) has 447 vertices and 1,017 edges and easier to handle.
G(A>0.001) presents a central dense connected component of 187 vertices and 369 edges. All other
components are small (less than 10% of the total number of vertices). We focus our experiment on this
component to observe if it allows detecting complex associations as the one pointed out by minimal
transversals. Applying the CPCL algorithm on G(A>0.001) we obtain a clustered graph, G(CPCL),
with 187 vertices and 738 edges, each vertex is a cluster. By definition, CPCL output tries to highlight



a disjoint family of clusters formed on geodesics of relatively high associations. We have
experimentally checked that most of these clusters are minimal transversals. The biggest one has 10
keywords, and the mean size is 4.76% of these clusters are minimal transversals of the hypergraph K.
Table 3 shows three examples of clusters of medium size which are minimal transversal.

Table 3 Clusters in G(CPCL) graph

Label vertex 1 vertex 2 vertex 3 vertex 4

Ontology thesaurus query processing ontology knowledge mining
OLAP rule based reasoning OLAP data interchange XML

Intrusion detection computer security intrusion detection anomaly detection  user profiling

They are labeled by the vertex having in the graph the highest betweenness valued, and the elements
are enumerated following the geodesic that cross the edges with a highest value. This is the way that
the clusters are extracted.

A numerical notation of the keywords (i.e. co-words) of the graph G(A>0.001), and also of the clusters
of the graph G(CPCL), gives an idea of their positions in the structure of the graphs. The structural
properties considered are centrality, density, betweenness, degree, and w_betw. Centrality (Centrl)
gives the sum of association values involving the vertex, density (Dens) gives the number of edges in
the neighborhood over the maximal theoretic number, betweenness (Betw) gives the number of
geodesics crossing the vertex, degree gives the number of vertices in the neighborhood, and weighted
betweenness (w_Betw) gives the number of geodesics that maximize the sum of association values.
Tables 4 and 5 summarize the first five items ordered by decreasing betweenness (Betw). Keywords
having the higher betweenness centrality point out keywords shared by the longest minimal
transversals showed in table 2. This observation deserves a thorough analysis.

Table 4 Keyword vertices in G(A>0.001) graph

Vertex Centrl Dens Betw Degree w_Betw
text mining 0.07 0.01 14,573 44 11,264
machine learning 0.08 0.03 10,243 30 12,664
bioinformatics 0.13 0.03 8,113 34 3,549
classification 0.1 0.03 7,376 23 4,377
pattern recognition 0.22 0.05 7,286 22 7,111

Table 5 Cluster vertices in G(CPCL)

Vertex Centrl. Dens. Betw. Degre w_Betw
machine learning 0.035 0.003 7,224 35 7,845
text mining 0.055 0.005 4,854 26 3,867
pattern recognition 0.196 0.064 3,141 18 3,069
classification 0.059 0.002 2,902 17 1,318
bioinformatic 0.083 0.020 2,607 16 1,370

The graphs G(A>s) and G(CPCL) constitute data analysis levels. For example, using the AiSee
interactive interface (http:/www.aisee.com), we can visualized the graph of clusters G(CPCL) that
reveal the keywords that have the highest score of betweenness centrality since they are used as cluster
labels. Opening the clusters, we access to the main pair of non central concepts related by geodesic
paths that cross the label of the clusters suggesting potential new interactions between concepts. The
higher betweenness and degree values (see tables 4 and 5) allow characterizing hubs and crossroad
vertices in the graph structure. In the Appendix, by way of example two excerpts of G(CPCL) are
presented where clusters within circles -text mining, bioinformatics, proteomics, machine learning,
and classification- are hubs and crossroad at the same time in the global structure of the clustered
graph. In cluster G(A>s = 0.001) the keywords labelling the clusters also are hubs and crossroad
items. In both graphs G(A>s = 0.001) and G(CPCL), the data and text mining domain appears for the
period observed strongly related to bioinformatics.




6. Conclusion and Future Work

In this article we have proposed a graph clustering methodology for mining the topic structure of an
unordered set of textual data, which also can be browsed. The aim is to discover useful knowledge
from an unordered dataset, i.e. useful for watching a research domain. We believe that the hypergraph
modelling and the introduction of minimal traversal in the data analysis constitute something new in
the use of the graph theory in informetric studies. The studies which we know concentrate principally
on citations and then working with directed graph models, and do not refer any to hypergraph
modelling; in addition co-word analysis is omitted.

The advantages of the hypergraph theory widely are that it constitutes a uniform data model to
generalise co-word analysis, allowing to cover the entire model called relational (Callon et al, 1993).
On the other hand, we shall compare it to more symbolic methods as formal concept analysis (FCA)
using the Galois lattice model (Ganter et al, 2005; Ganter & Wille, 1999). Note that the number of
possible closed sets is exponential on the number of attributes, and the generation of the whole Galois
lattice is a NP hard problem. We are interested in clustering methods that naturally highlight particular
small closed sets of attributes in linear time. Our intention is to try to point out the theoretical
requirements of clustering algorithm in linear or quadratic time to maximize the probability of
extracting closed sets.

A tree can be viewed as a graph with no circle of length higher than 2, then a natural generalization of
trees are graphs with no circle longer than 3. This class of graphs is called chordal. We experimentally
observed that all subgraphs with less than 30 elements of a co-author graph are chordal, meanwhile the
whole graph is not. On the contrary, the co-word graph is more general and does not seem to have
special chordal properties. In future work we shall study the chordal properties in the purpose of
improving the graph visualisation.

Graph decomposition: to know that a graph is SWG allows to consider a “graph decomposition
process” (Berri et al, 2004) using group of vertices as “clique minimal separators” aiming to split the
SWG into not disjoint minimal unites; we are working on this.
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APPENDIX

(A) Text Mining, Bioinformatics, Proteomics
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