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Hopf algebra of non-commutative eld theory

We contruct here the Hopf algebra structure underlying the process of renormalization of non-commutative quantum eld theory.

Introduction and motivation

Hopf algebras (see for example [START_REF] Kassel | Quantum Groups[END_REF] or [START_REF] Sorin | Hopf Algebras, An Introduction[END_REF]) are today one of the most studied structures in mathematics. In relation with quantum eld theories (QFT), Hopf algebras were proven to be a natural framework for the description of the forest structure of renormalization -the Connes-Kreimer algebras [START_REF] Connes | Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem[END_REF][START_REF] Connes | Renormalization in Quantum Field Theory and the RiemannHilbert Problem II: The ÿ-Function, Dieomorphisms and the Renormalization Group[END_REF]. Ever since there has been an important amount of work with respect to this new class of Hopf algebras (for a general review see for example [START_REF] Kreimer | Structures in Feynman Graphs -Hopf Algebras and Symmetries[END_REF]). However, this construction was realized so far only at the level of commuta- Recently, NCQFT models were also proven to be renormalizable at any order in perturbation theories, despite the ultraviolet-infrared mixing problem. The non-commutative analogous of the Bogoliubov-Parasiuk-Hepp-Zimmerman (BPHZ) theorem was proven for the Grosse-Wulkenhaar Φ 4 scalar model in [START_REF] Grosse | Power-counting theorem for nonlocal matrix models and renormalisation[END_REF][START_REF] Grosse | Renormalisation of φ 4 -theory on noncommutative R 4 in the matrix base[END_REF]. In [START_REF] Gurau | Renormalization of non-commutative φ 4 4 eld theory in x space[END_REF] a general proof in x-space, using multiscale analysis was given. The parametric representation was implemented for this model in [START_REF] Gurau | Parametric representation of noncommutative eld theory[END_REF]. Furthermore, the Mellin representation of the non-commutative Feynman amplitudes was achieved in [START_REF] R Zvan Gur U | Non-Commutative Complete Mellin Representation for Feynman Amplitudes[END_REF]. Finally, the dimensional regularization and renormalization were constructed in [START_REF] Tanas | Dimensional regularization and renormalization of non-commutative QFT[END_REF].

With respect to the form of the associated propagator, a second class of NCQFT models exists. This second class contains the non-commutative Gross-Neveu and the Langmann-Szabo-Zarembo [START_REF] Langmann | Exact solution of quantum eld theory on noncommutative phase spaces[END_REF] models. The associate BPHZ theorem was proven in [START_REF] Vignes-Tourneret | Renormalization of the orientable noncommutative Gross-Neveu model[END_REF] for the non-commutative Gross-Neveu model. Moreover, the parametric representation [START_REF] Rivasseau | Parametric representation of critical noncommutative QFT models[END_REF] and the Mellin representation [START_REF] R Zvan Gur U | Non-Commutative Complete Mellin Representation for Feynman Amplitudes[END_REF] were also implemented for this class of models too. For a recent review on dierent issues of renormalizability of NCQFT the interested reader may report himself to [START_REF] Rivasseau | Non-commutative renormalization. Poincare Seminar, updated and expanded version[END_REF].

Note that even though recent progress has been made in [DGWW07, GW07, BGS07],

physicists do not yet have a renormalizable non-commutative gauge theory.

In this article we construct the Hopf algebra structure associated to the renormalization of these NCQFT models. The paper is organized as follows. In the next section we give some insights on the renormalization of NCQFT with respect to renormalization of commutative QFT. The third section is devoted to the Hopf algebra structure of Feynman diagrams. In the last section we state and prove our main result.

Renormalization of non-commutative quantum eld theory

In this section we briey recall some features of both commutative and non-commutative Euclidean renormalization. We will mainly focus on the Grosse-Wulkenhaar model [START_REF] Grosse | Renormalisation of φ 4 -theory on noncommutative R 4 in the matrix base[END_REF][START_REF] Gurau | Renormalization of non-commutative φ 4 4 eld theory in x space[END_REF] or non-commutative Φ 4 4 theory. It consists in a scalar quantum eld theory on the four-dimensional Moyal space. Its action is given by

S[φ] = d 4 x - 1 2 φ(-∆)φ + Ω 2 2 x 2 φ 2 + 1 2 m 2 φ 2 + λ 4 φ φ φ φ (x) (2.1)
with x µ = 2(Θ -1 x) µ and Θ a four by four skew-symmetric matrix which encodes the noncommutative character of space time: [x µ , x ν ] = ıΘ µν . It has been shown renormalizable to all orders of perturbation.

Furthermore, as already stated in the previous section, the same renormalization results also hold for the non-commutative Gross-Neveu model [START_REF] Vignes-Tourneret | Renormalization of the orientable noncommutative Gross-Neveu model[END_REF] and the generalized LSZ model [START_REF] Gurau | Renormalization of non-commutative φ 4 4 eld theory in x space[END_REF]:

S GN = d 2 x ψ(-i / ∂ + Ω / x + m + µγ 5 )ψ - 3 A=1 g A 4 (J A J A )(x) ,
(2.2)

J A = ψ Γ A ψ, Γ 1 = 1, Γ 2 = γ µ , Γ 3 = γ 5 , , (2.3) 
S gLSZ = d 4 x φ (-ı∂ µ + Ω 1 x µ ) 2 + Ω 2 x 2 + m 2 φ + λ 2 φ φ φ φ (x).
(2.4)

Topology and power counting

Let a graph G with V vertices and I internal lines. Interactions of quantum eld theories on the Moyal space are only invariant under cyclic permutation of the incoming/outcoming elds. This restriced invariance replaces the permutation invariance which was present in the case of local interactions.

A good way to keep track of such a reduced invariance is to draw Feynman graphs as ribbon graphs. Moreover there exists a basis for the Schwartz class functions where the Moyal product becomes an ordinary matrix product [START_REF] Grosse | Renormalisation of φ 4 -theory on noncommutative R 2 in the matrix base[END_REF][START_REF] Gracia-Bondía | Algebras of distributions suitable for phase space quantum mechanics[END_REF]. This further justies the ribbon representation. Let us consider the example of gure 2. Propagators in a ribbon graph are made of

- + - + + - + - - + + - (a) x-space repre- sentation o o / / O O / / o o / / o o O O O O / / o o O O O O / / (b) Ribbon representa- tion
Figure 2: A graph with two broken faces double lines. Let us call F the number of faces (loops made of single lines) of a ribbon graph. The graph of gure 2b has V = 3, I = 3, F = 2. Each ribbon graph can be drawn on a manifold of genus g. The genus is computed from the Euler characteristic χ = F -I + V = 2 -2g. If g = 0 one has a planar graph, otherwise one has a non-planar graph. For example, the graph of gure 2b may be drawn on a manifold of genus 0. Note that some of the F faces of a graph may be broken by external legs. In our example, both faces are broken. We denote the number of broken faces by B.

Furthermore let N the number of external legs of the graph. For the commutative φ 4 model one has the following supercial degree of convergence ω = N -4. Thus one has to deal only with the renormalization of the two-and four-point functions. In the case of the Grosse-Wulkenhaar model, the situation is dierent. In [GW05a, GW05b, GR07] it was proven that ω = (N -4) + 8g + 4(B -1).

(2.5) Note that, as proven in [START_REF] Rivasseau | Parametric representation of critical noncommutative QFT models[END_REF] one has the same power counting for the LSZ like model (2.4). The one of the Gross-Neveu model (2.2) is more involved but leads to the same conclusion: one has to deal only with the renormalization of the B = 1, planar two-and four-point graphs hereafter qualied as planar regular.

Locality vs Moyality

A crucial aspect of the uplifting from commutative to non-commutative renormalization is that the principle of locality of renormalized interactions of commutative QFT is replaced with a new principle: renormalized interactions have a non-local Moyal vertex form. This is nothing but the analog of the locality phenomenon which occurs in commutative renormalization. One can thus speak, in the case of non-commutative renormalization, of a new type of renormalization group, where the locality is just replaced by Moyality.

The divergent parts of the planar regular two-and four-point graphs with one broken face (the only divergent graphs) are proportional to the (1PI) tree level terms of the perturbative expansion. Such a new denition of locality was suggested in [START_REF] Kreimer | Structures in Feynman Graphs -Hopf Algebras and Symmetries[END_REF], see equation (62).

Let us also argue here that, despite this uplifting, the combinatorial backbone of renormalization theory is almost the same when dealing with commutative or non-commutative QFT. Thus the combinatorics of non-commutative renormalization will be shown to be encoded by a Hopf algebra.

Renormalization as a factorization issue

The basic operation for renormalization is the disentanglement of a graph Γ into pieces γ and cograph Γ/γ. It is exactly this operation that was present at the level of commutative renormalization and that gave rise to a Hopf algebra structure.

We now argue that this factorization process is also present at the level of noncommutative renormalization. Indeed, consider the dimensional renormalization scheme for the Grosse-Wulkenhaar model. The parametric representation constructed in [START_REF] Gurau | Parametric representation of noncommutative eld theory[END_REF] writes the Feynman amplitude φ(Γ) as

φ(Γ) = K 1 0 L =1 [dt (1 -t 2 ) D 2 -1 ]HU G, V (t) -D 2 e - HV G HU G , (2.6) 
where K is some constant,

t = tanh α 2 , = 1, . . . , L, (2.7) 
where α are the parameters associated to any of the propagators of the graph. In [START_REF] Gurau | Parametric representation of noncommutative eld theory[END_REF] it was furthermore proved that HU and HV are polynomials in the set of variables t . Considering now a primitive divergent subgraph γ of Γ and rescaling the parameters t of its internal edges, it was proven in [START_REF] Tanas | Dimensional regularization and renormalization of non-commutative QFT[END_REF] that

HU l Γ = HU l γ HU Γ/γ (2.8)
where by the index l we understand the leading terms under the rescaling. A similar factorization theorem was also proven for the exponential part in (2.6) of the Feynman amplitude φ(Γ).

Moreover, in [START_REF] Gurau | Renormalization of non-commutative φ 4 4 eld theory in x space[END_REF] an analogous phenomena of factorization was shown for the Grosse-Wulkenhaar model in position space namely the planar regular graphs contribute to the renormalization of the mass, wave-function, harmonic frequency Ω and coupling constant, see Equation (2.1).

3 Hopf algebra structure of Feynman diagrams

Hopf algebra reminder

In this subsection we recall the general denition of a Hopf algebra (for further details one can refer for example to [START_REF] Kassel | Quantum Groups[END_REF][START_REF] Sorin | Hopf Algebras, An Introduction[END_REF]).

Denition 3.1 (Algebra). A unital associative algebra A over a eld K is a K-linear space endowed with two algebra homomorphisms:

• a product m : A ⊗ A → A satisfying the associativity condition:

∀Γ ∈ A, m • (m ⊗ id)(Γ) =m • (id ⊗ m)(Γ), (3.1) 
• a unit u : K → A satisfying:

∀Γ ∈ A, m • (u ⊗ id)(Γ) =Γ = m • (id ⊗ u)(Γ).
(3.2) Denition 3.2 (Coalgebra). A coalgebra C over a eld K is a K-linear space endowed with two algebra homomorphisms:

• a coproduct ∆ : C → C ⊗ C satisfying the coassociativity condition:

∀Γ ∈ C, (∆ ⊗ id) • ∆(Γ) =(id ⊗ ∆) • ∆(Γ), (3.3) 
• a counit ε : C → K satisfying:

∀Γ ∈ C, (ε ⊗ id) • ∆(Γ) =Γ = (id ⊗ ε) • ∆(Γ).
(3.4) Denition 3.3 (Bialgebra). A bialgebra B over a eld K is a K-linear space endowed with both an algebra and a coalgebra structure (see Denitions 3.1 and 3.2) such that the coproduct and the counit are unital algebra homomorphisms (or equivalently the product and unit are coalgebra homomorphisms):

∆ • m B =m B⊗B • (∆ ⊗ ∆), ∆(1) = 1 ⊗ 1, (3.5a) ε • m B =m K • (ε ⊗ ε), ε(1) = 1.
(3.5b) Denition 3.4 (Graded Bialgebra). A graded bialgebra is a bialgebra graded as a linear space:

B = ∞ n=0 B (n) (3.6)
such that the grading is compatible with the algebra and coalgebra structures:

B (n) B (m) ⊆ B (n+m) and ∆B (n) ⊆ n k=0 B (k) ⊗ B (n-k) .
(3.7) Denition 3.5 (Connectedness). A connected bialgebra is a graded bialgebra B for which B (0) = u(K).

One can then dene a Hopf algebra:

Denition 3.6 (Hopf algebra). A Hopf algebra H over a eld K is a bialgebra over K equipped with an antipode map S : H → H obeying:

m • (S ⊗ id) • ∆ =u • ε = m • (id ⊗ S) • ∆. (3.8)
Finally we remind a useful lemma:

Lemma 3.1 ([Man03]) Any connected graded bialgebra is a Hopf algebra whose antipode is given by S(1) = 1 and recursively by any of the two following formulas for Γ = 1:

S(Γ) = -Γ - (Γ) S(Γ )Γ , (3.9a) S(Γ) = -Γ - (Γ) Γ S(Γ ) (3.9b)
where we used Sweedler's notation.

Locality and the residue map

In quantum eld theory, Feynman graphs are built from a certain set of edges and vertices

R = R E ∪ R V .
This set is given by the particle content of the model and by the type of interactions one wants to consider. For example, in the commutative φ 4 4 theory (which will be our benchmark until section 4), R E contains only the scalar bosonic line while R V contains the local four-point vertex and the two-point vertices corresponding to the mass and wave-function renormalization:

R E = { }, R V = { , 0 , 1 }.
In the following we will still write R V for the free algebra generated by the elements of R V . Let us now consider the algebra H generated by a certain class of graphs (connected, 1PI etc) made out of the set R.

Denition 3.7 (Subgraph). Let Γ ∈ H, Γ [1] its set of internal lines and Γ [0] its vertices.

A subgraph γ of Γ, written γ ⊂ Γ, consists in a subset γ [1] of Γ [1] and the vertices of Γ [0] hooked to the lines in γ [1] . Note that with such a denition, γ is truncated.

Denition 3.8 (Shrinkable subgraph). Let Γ ∈ H. A subgraph ∅ γ Γ is said shrinkable if res(γ) ∈ R V .
The set of shrinkable subgraphs of Γ will be denoted by Γ.

Note that until now we did not really dene what is the map res. We now do it. First we assume that it is an algebra homomorphism from H to H ∪ R V . Then to compute the graphical residue of a generator of H, we need the following remarks and denitions. The coproduct of H (usually given by (3.15)) drives the combinatorial and algebraic aspects of renormalization if it corresponds to some analytical facts. Before we explain this, let us recall the following denitions.

Denition 3.9. The (unrenormalized) Feynman rules are an homomorphism φ from H to A. The precise denition of A depends on the regularization scheme employed (in dimensional regularization, A is the Laurent series).

Denition 3.10. The projection T is a map from A to A wich has to fulll: ∀Γ ∈ H, Γ primitive

(id A -T ) • φ(Γ) < ∞. (3.10)
This means that if φ(Γ) is supercially divergent (as the cut-o is removed) then its overall divergence is totally included in T • φ(Γ).

External structures The projection T extracts the divergent part of the amplitude φ(Γ). In the case of a two-point graph this divergent part decomposes into two pieces.

The rst one is a mass term whereas the second one contributes to the wave function renormalization (recall that the propagator of the commutative φ 4 theory is (-∆+m 2 ) -1 ).

To distinguish between these two, one introduces external structures [START_REF] Connes | Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem[END_REF][START_REF] Kreimer | Structures in Feynman Graphs -Hopf Algebras and Symmetries[END_REF]. It consists in the following endomorphisms of A (in x-space representation):

σ 0 , φ(Γ) =ρ 0 (Γ)δ y (x), (3.11a) σ 1 , φ(Γ) =ρ 1 (Γ)∆δ y (x), (3.11b) σ 2 , φ(Γ) =ρ 2 (Γ)δ x 2 (x 1 )δ x 3 (x 1 )δ x 4 (x 1 ) (3.11c)
where the ρ i 's are characters on A. If K Γ is the kernel of the amplitude φ(Γ), these characters are given by:

ρ 0 (Γ) = d 4 z K Γ (x, z), (3.12a) ρ 1 (Γ) = 1 8 d 4 z (z -x) 2 K Γ (x, z), (3.12b) ρ 2 (Γ) = d 4 x 2 d 4 x 3 d 4 x 4 K Γ (x, x 2 , x 3 , x 4 ).
(3.12c)

Recall that commutative eld theories are usually translation invariant so that none of the ρ i 's depend on x. With those notations, T = σ 0 + σ 1 on a two-point graph and T = σ 2 on a four-point graph.

There is now a way to relate the analytical operations σ i 's to the graphical map res:

Denition 3.11 (Residue). The residue map res :

H → H ∪ R V is dened by σ i , φ(Γ) =ρ i (Γ) σ i , φ • res(Γ) (3.13)
where i = 0 or 1 for a two-point graph and i = 2 on a four-point graph.

Following equations (3.11) and (3.12) one nds

φ • res(Γ) =δ y (x) + ∆δ y (x) if Γ is a two-point graph, (3.14a) φ • res(Γ) =δ x 2 (x 1 )δ x 3 (x 1 )δ x 4 (x 1 ) if Γ is a four-point graph (3.14b)
which leads to the following graphical denitions:

res( ) = = 0 + 1 -1 , res( ) = .
(3.14c) Equation (3.13) means that the divergent part of a graph Γ looks like another graph called res(Γ). For a renormalizable quantum eld theory the residue of any supercially divergent graph belongs to R V . This is the usual statement according to which all the divergences of a renormalizable eld theory can be absorbed in a redenition of the various coupling constants. If the theory is local then res(Γ) corresponds to the graph obtained from Γ by shrinking all its internal lines to a point. But this is a particular case and we have to dene res as reecting the appropriate projection T . For example, we will see in the next section that the residue of a non-commutative graph is not a local graph anymore.

The T operation is designed to extract the main part of graphs. For the convergent ones there is no good distinction between T • φ(Γ) and (id -T ) • φ(Γ): both are convergent expressions. That's why T is mainly dened on (supercially) divergent graphs. Nevertheless one can dene T to be id A on convergent graphs. Condition (3.10) is then trivially fullled and equation (3.13) is satised with res = id H and ρ the trivial character.

Coassociative coproducts

Using the denitions of section 3.2 we have the following lemma:

Lemma 3.2 (Coassociativity) Let Γ ∈ H. Provided 1. ∀γ ∈ Γ, ∀γ ∈ γ such that res(γ) ∈ R V and res(γ ) ∈ R V , res(γ/γ ) ∈ R V , 2. ∀γ 1 ∈ H, ∀γ 2 ∈ H such that res(γ 1 ) ∈ R V and res(γ 2 ) ∈ R V , there exists gluing data G such that res(γ 1 • G γ 2 ) ∈ R V , the following coproduct is coassociative ∆Γ =Γ ⊗ 1 + 1 ⊗ Γ + ∆ Γ, (3.15a) ∆ Γ = γ∈Γ γ ⊗ Γ/γ. (3.15b)
Remark that Γ/γ is the graph obtained from Γ by replacing γ ⊂ Γ by its residue. Then res(γ) ∈ R V implies Γ/γ ∈ H. We prove this lemma by following closely [START_REF] Connes | Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem[END_REF].

Proof. First note that (∆ ⊗ id)∆ = (id ⊗ ∆)∆ ⇐⇒ (∆ ⊗ id)∆ = (id ⊗ ∆ )∆ which
means that all the following subgraphs can be considered as neither full nor empty. Let Γ a generator of H,

(∆ ⊗ id)∆ Γ =(∆ ⊗ id) γ∈Γ γ ⊗ Γ/γ (3.16) = γ∈Γ γ ∈γ γ ⊗ γ/γ ⊗ Γ/γ (3.17) (id ⊗ ∆ )∆ Γ = γ ∈Γ γ ∈Γ/γ γ ⊗ γ ⊗ (Γ/γ )/γ . (3.18)
By the denitions 3.7, 3.8 and 3.11 it is clear that γ ∈ γ and γ ∈ Γ implies γ ∈ Γ. This implicitly uses the fact that the residue of a graph is independant of the surrounding of this graph and really only depends on the graph itself: res(γ) is the same wether γ is a subgraph or not of another graph. Equation (3.17) can then be rewritten as

(∆ ⊗ id)∆ Γ = γ ∈Γ γ∈Γ|γ γ γ ⊗ γ/γ ⊗ Γ/γ. (3.19)
It is now enough to prove equality between (3.18) and (3.19) at xed γ ∈ Γ. Let us rst x a subgraph γ ∈ Γ such that γ γ and prove that there exists a graph γ ∈ Γ/γ such that γ/γ ⊗ Γ/γ = γ ⊗ (Γ/γ )/γ . Of course the logical choice for γ is γ/γ because then (Γ/γ )/(γ/γ ) = Γ/γ.

We only have to prove that γ = γ/γ ∈ Γ/γ . It is clear that γ/γ is a subset of internal lines of Γ/γ . Then γ/γ ∈ Γ/γ if res(γ) ∈ R V and res(γ ) ∈ R V implies res(γ/γ ) ∈ R V which we assumed.

Conversely let us x γ ∈ Γ/γ and prove that there exists γ ∈ Γ containing γ such that γ/γ ⊗ Γ/γ = γ ⊗ (Γ/γ )/γ . Let us write γ = i∈I γ i for the connected components of γ . Some of these components led to vertices of γ , the others to vertices of (Γ/γ ) \ γ . We can then dene γ as (γ

• G I 1 i∈I 1 γ i ) j∈I 2 γ j with I 1 ∪ I 2 = I. It is clearly a subgraph of Γ and belongs to Γ if ∀γ 1 , γ 2 ∈ H, res(γ 1 ) ∈ R V , res(γ 2 ) ∈ R V there exists gluing data G such that res(γ 1 • G γ 2 ) ∈ R V .
We also assumed it. This ends the proof of Lemma 3.2.

Let us now work out how Lemma 3.2 ts the commutative φ 4 model. In this local eld theory the divergent graphs have two or four external legs. The residue of a given graph is the one obtained by shrinking all its internal lines to a point (see section 3.2) and then only depends on the number of external lines of the graph. Let us check condition 2 of Lemma 3.2 for commutative φ 4 . We consider two graphs γ 1 and γ 2 with two or four external legs. We consider γ 0 = γ 1 • G γ 2 for any gluing data G. Let V i , I i and E i the respective numbers of vertices, internal and external lines of γ i , i ∈ {0, 1, 2}. For all i ∈ {0, 1, 2}, we have

4V i =2I i + E i (3.20a) V 0 = V 1 + V 2 if E 2 = 2 V 1 + V 2 -1 if E 2 = 4 (3.20b) I 0 = I 1 + I 2 + 1 if E 2 = 2 I 1 + I 2 if E 2 = 4 (3.20c)
which proves that E = E 1 . Then as soon as res(γ 1 ) ∈ R V so does res(γ 0 ). Concerning condition 1 note that γ = γ/γ ⇐⇒ ∃G | γ = γ • G γ which allows to prove, in the case of a local theory, that condition 1 also holds and that the coproduct (3.15) is coassociative.

Lemma 3.3 Let H c the linear space of graphs whose residue is R V -valued: In the following all the graphs we are going to insert will be four-point graphs. The case of two-point graphs is easier and left to the reader. Before proving conditions 1 and 2, let us consider the insertion of a regular four-point graph γ 2 into a vertex of another graph γ 1 . Let γ 0 = γ 1 • γ 2 and for all i ∈ {0, 1, 2} let F i , I i , V i , B i the respective numbers of faces, internal lines, vertices and broken faces of γ i . The number of faces of a ribbon graph is the number of closed a single lines. A ribbon vertex is drawn on gure 3a. One sees that the number of faces to which the lines of that vertex belong is at most four. Some of them may indeed belong to the same face. The gluing data necessary to the insertion of γ 2 corresponds to a bijection between the half-lines of the vertex in γ 1 and the external lines of γ 2 . This last one being regular (only one broken face) the typical situation is represented on gure 3b. It should be clear that F = F 2 -1 + F 1 -n for some n 0. F 2 -1 is the number of internal faces of γ 2 i.e. the number of faces of the blob.

H c = {Γ ∈ H : res(Γ) ∈ R V } .
The number n depends on the gluing data. It vanishes if the insertion respects the cyclic ordering of the vertex. For example the following bijection σ does: σ((1 , 2 )) =(2, 3), σ((2 , 3 )) = (3, 4), σ((3 , 4 )) = (4, 1), σ((4 , 1 )) = (1, 2). Moreover by exhausting the 4!/4 possible insertions, one checks that B 0 B 1 . For example, on gure 4a, lines 1 and 3 belong to two dierent broken faces. Figure 4b shows an insertion of a regular four-point graph which increases the number of broken faces by one: now trajectories (1, 4), (1, 2) and 3 are external faces (line (2, 4) is still an internal one).

Let us now turn to proving that the algebra of non-commutative Feynman graphs described above fullls conditions 1 and 2.

1. γ, γ planar implies γ/γ planar thanks to equation (4.6). Furthermore B(γ) = 1 implies B(γ/γ ) = 1 due to the preceding remark. a In the case of external faces, one considers that the corresponding lines are closed. As in the commutative eld theories, the renormalized amplitude φ + of a graph Γ ∈ H is given by: φ + (Γ) =φ - * φ(Γ).

(4.9)

  Figure 1: A Moyal vertex

H

  c is a Hopf subalgebra of H. Proof. Thanks to the denition (3.15), ∆H c ⊂ H c ⊗H c . By induction on the augmentation degree, one also proves that S(H c ) ⊂ H c .

  Figure 3: Insertion procedure

(4. 5 )

 5 As in equations (3.20), I 0 = I 1 + I 2 and V 0 = V 1 + V 2 -1. It follows that the genus of γ 0 satises g(γ 0 ) =g(γ 1 ) + g(γ 2 ) + n.

Figure 4 :

 4 Figure 4: Increasing number of external faces

(4. 7 )

 7 Let φ the unrenormalized Feynman rules and φ -∈ Hom(H, A) the twisted antipode: ∀Γ ∈ H,φ -(Γ) = -T φ(Γ) + γ∈Γ φ -(γ) φ(Γ/γ) .
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Hopf algebra for non-commutative Feynman graphs

The denition of the Hopf algebra of non-commutative Feynamn graphs which drives the combinatorics of perturbative renormalization is formally the same as in the commutative case [START_REF] Connes | Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem[END_REF]. But before giving the denitions let us dene the residue of a non-commutative graph. As already mentionned it has been proven (rst in [START_REF] Grosse | Renormalisation of φ 4 -theory on noncommutative R 4 in the matrix base[END_REF]) that the Grosse-Wulkenhaar model (2.1) is renormalizable to all orders of perturbation.

It means that the divergent parts of the divergent graphs are proportionnal to mass, wave-function, x 2 and Moyal vertex terms. Following the procedure exposed in section 3.2, particularly equations (3.13) and (3.14), we nd

if Γ is a four-point planar regular graph (4.1b) which leads to the following graphical denitions:

res( ) = , res( ) = .

(4.1c)

Once more the (graphical) residue of a convergent graph is dened as id H .

Consider now the unital associative algebra H freely generated by 1PI non-commutative Feynman graphs (including the empty set, which we denote by 1). The product m is bilinear, commutative and given by the operation of disjoint union. Let the coproduct We can state the main result of this letter: Theorem 4.1 The quadruple (H, ∆, ε, S) is a Hopf algebra.

Proof. The only thing to prove is the coassociativity of the coproduct (4.2). Once it is done, the denition (4.4) for the antipode follows from the fact that H is graded (by the loop number), connected and from Lemma 3.1. We will use Lemma 3.2 and the fact that for all Γ ∈ H, res(Γ) ∈ R V is equivalent to Γ is planar regular. Then conditions 1 and 2 of Lemma 3.2 are equivalent to:

1. for all γ and γ ⊂ γ both planar regular, γ/γ is planar regular, 2. for all γ and γ ⊂ γ both planar regular, there exits gluing data G such that γ • G γ is planar regular.