N

N

Learning Metrics between Tree Structured Data:
Application to Image Recognition
Laurent Boyer, Amaury Habrard, Marc Sebban

» To cite this version:

Laurent Boyer, Amaury Habrard, Marc Sebban. Learning Metrics between Tree Structured Data:
Application to Image Recognition. 18th European Conference on Machine Learning (ECML), Sep
2007, Warsaw, Poland. pp.54-66. hal-00165954

HAL Id: hal-00165954
https://hal.science/hal-00165954
Submitted on 30 Jul 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00165954
https://hal.archives-ouvertes.fr

Learning Metrics between Tree Structured Data:
Application to Image Recognition*

Laurent Boyer?, Amaury Habrard!, and Marc Sebban?

{laurent.boyer,marc.sebban } @univ-st-etienne.fr,amaury.habrard@lif.univ-mrs.fr

! Université de Provence, LIF, France
2 Université de Saint-Etienne, Laboratoire Hubert Curien, France

Abstract. The problem of learning metrics between structured data
(strings, trees or graphs) has been the subject of various recent papers.
With regard to the specific case of trees, some approaches focused on
the learning of edit probabilities required to compute a so-called stochas-
tic tree edit distance. However, to reduce the algorithmic and learning
constraints, the deletion and insertion operations are achieved on entire
subtrees rather than on single nodes. We aim in this article at filling
the gap with the learning of a more general stochastic tree edit distance
where node deletions and insertions are allowed. Our approach is based
on an adaptation of the EM optimization algorithm to learn parameters
of a tree model. We propose an original experimental approach aiming at
representing images by a tree-structured representation and then at us-
ing our learned metric in an image recognition task. Comparisons with a
non learned tree edit distance confirm the effectiveness of our approach.

1 Introduction

In many machine learning or pattern recognition tasks, the choice of metrics
plays an essential role for computing similarity between objects. Some classifica-
tion, clustering or learning techniques are even intrinsically based on a metric,
that is the case for the nearest-neighbors-based algorithms or some kernel-based
methods. So, the choice or the parametrization of a similarity measure can dras-
tically influence the result of an algorithm. One way to improve the influence of
a metric is to integrate domain knowledge about the objects. While calling on
an expert seems to be reasonable for small amount of data in domains where the
background knowledge does exist, it becomes clearly intractable with huge data
sets, where the expertise is low. In this context, a solution is to automatically
infer the metric while capturing domain knowledge from a learning sample.
The general problem of learning metrics received an increasing interest since
the beginning of 2000. With regards to numerical data, Bilenko et al [1] proposed
an EM-based algorithm that integrates constraints and metric learning in the
domain of semi-supervised clustering. Schultz et al [2] use some SVM techniques
to learn a measure given a set of relative comparisons of the form "z is closer to
y than to z”. Kummamuru et al in [3] improved these techniques providing the

* This work is funded by the MARMOTA project and the PAscAL Network of Excellence.

concept of Context-sensitive Learnable Asymmetric Dissimilarity (CLAD) mea-
sures. A mixed approach, for objects described by binary and nominal attributes,
has been proposed by Bayoudh et al [4] for learning a measure by analogy in the
form "z is to y as z is to t”. Concerning structured data, recent works have tried
to tackle this learning problem with data represented by strings or trees. In the
majority of the cases, they dealt with the edit distance [5] that handles three
primitive edit operations (deletion, insertion, substitution) for changing an input
instance into an output one. The resulting learned metrics lead to significant im-
provements on real world applications. For instance, Oncina et al. [6] introduced
a string edit distance learning algorithm via the inference of a discriminative
stochastic transducer. They showed a dramatic improvement on a handwrit-
ten digit recognition task, using Freeman codes for converting scanned digits to
strings. In [7], Ristad and Yianilos provided a generative model of string edit
distance, and illustrated its high utility on the difficult problem of learning the
pronunciation of words in conversational speech. Recently, the Pascal network
of excellence (http://www.pascal-network.org) funded a pump priming project on
the learning of a stochastic tree edit distance for musical recognition. A first
learning algorithm, where deletions and insertions only concern entire subtrees,
has been proposed in [8]. Although this type of tree edit distance is costless from
an algorithmic standpoint (quadratic complexity [9] rather than a polynomial
complexity of order 4 for a more general case [10]), it is not the most used in
the literature because of a clear loss of generality. In this paper, we propose to
overcome this restriction by allowing insertions and deletions of single nodes.
However, this requires to define a new probabilistic learning framework. This is
the main aim of this paper. Then, we propose to apply our learned metric on an
image recognition task, whose novelty comes from the use of a structured repre-
sentation of images. If much work has been done on images having high levels of
definition, the question of recognizing small images for which the definition is too
low to allow the application of numerical techniques (such as segmentation into
regions) is still an open problem. Moreover, numerical vectors are, in general,
not suited for expressing notions such as sequentiality or relationships between
features. In this context, we think that a symbolic structural representation can
provide a richer modeling of the object. Among the first approaches using a
symbolic representation for image recognition, Jolion et al. [11] have proposed
a method for encoding some relevant information of images in strings. The idea
consists in extracting some characteristic points with a high level of contrast and
to sort them in the form of a string. Despite of its interest, this representation
does not include spatial knowledge, that implies a strong loss of information. In
order to add this spatial information, one needs a two dimensional representa-
tion. In this paper, we propose an original representation of images in the form
of trees, and we use our learned tree edit distance in an image recognition task.

The paper is organized as follows. We introduce in Section 2 some definitions
and notations. Then, we recall the classic tree edit distance in Section 3. Section 4
deals with our stochastic model for learning tree edit probabilities. We finally
present our application in image recognition in Section 5.

AGA AN DGR

Fig. 1. Substltutlon of s1 € L into s2 (b) Deletion of s1 (Insertlon of s1

2 Deﬁmtlons and Notations

We assume we handle ordered labeled trees of arbitrary arity. There is a left-to-
right order among siblings of a tree and trees are labeled with elements of a set
L of labels. We denote 7 (L) the set of all labeled trees buildable from L.

Definition 1. Let V be a set of nodes. We inductively define trees as follows:
a node is a tree, and given T trees ai,..,ar and a node r € V, r(a1,..,ar) is a
tree. r is the root of r(a1,..,ar), and a1, ..,ar are subtrees.

Definition 2. Let L be a set of labels, and let A & L be the empty label. Let
l:V — L be a labeling function. r(a1,..,ar) is a labeled tree if its nodes are
labeled according to l.

We assume that trees can be concerned by three edit operations (see Fig.1):
The substitution operation which consists in changing the label I(r) of a node r
by another label of £; the deletion operation which removes a node r of parent
r’, the children of r becoming a subsequence of those of r’ according to a left-
to-right order; the insertion operation adds a node r as a child of 7/ making r
the parent of a subsequence of children of r" according to a left-to-right order.

Definition 3. Assuming that a cost function assigns a cost to each edit opera-
tion, an edit script between two trees r(aq,..,ar) and r'(b1,..,by) is a set of edit
operations changing r(ai,..,ar) into 7' (b1,..,by). The cost of an edit script is
the sum of the costs of its edit operations.

Definition 4. The edit distance between two trees r(ay,..,ar) and r'(by,..,by)
1s the cost of the minimum cost edit script.

We are interested in the learning of a probabilistic tree edit distance. Roughly
speaking, we aim at learning the probability of each edit operation used during a
transformation process of an input tree into an output one. These probabilities
are the parameters of a generative model describing a joint distribution over
(input,output) pairs of trees. In [8], we proposed a first solution to this problem,
in a restrictive case of tree edit distance, when a deletion (resp. an insertion)
implies the removal (resp. the add) of an entire subtree. The objective of this
paper is to fill the gap with a more general approach of the tree edit distance
allowing the insertion/deletion of nodes. This case is more general because the
deletion (or insertion) of an entire subtree can also be achieved by iteratively
using the deletion (or insertion) operation on a single node. However, it implies
to set a new probabilistic framework, intrinsically more difficult due to a larger
size of the search space. To achieve this task, we first recall the principle of
the algorithms able to compute such a tree edit distance. The interested reader
can find more details in Zhang and Shasha [10], Klein [12] and an uniformized
presentation in the survey of Bille [13].

(o)
NORO,

2
@ (b) ©
Fig. 2. (a) Example of keyroots represented by nodes with a circle, (a)+(b) the special
subforests, and (a)+(b)+(c) the relevant subproblems.

3 Tree Edit Distance Algorithm

3‘ 4 ‘5. 1.‘1.2.‘1.2.35‘1. 4 ‘1./4\5‘2.‘%3.

2 3 2 3 2 3

To allow a larger spectrum of applications, the majority of the tree edit distance
algorithms usually handled forests, a tree being a particular case of a forest.

Definition 5. A forest F = {a1,..,ar} is a set of trees. F is an ordered forest if
there is a left-to-right order among the trees a1, ..,ar and if each tree is ordered.

Definition 6. Let F be a forest, and p(a) be the root node of a tree a € F.
F — p(a) is the forest obtained from F by the deletion of p(a). Children of p(a)
becomes a sequence of trees of the resulting forest F — p(a). f(p(a)) is the forest
composed of the children of p(a). F — a is the forest obtained by removing the
tree a of F.

Let F} and F5 be two forests and a and b the rightmost trees of F} and F;
respectively. Let § be a cost function on pairs of labels, representing the edit
operations. The edit distance d(Fy, F3) for the general case of forests is given by:

dx,A) =0
d(F1,) = d(Fy — pla), \) + (U(p(a)), \)
A0 Es) = d(\ Bs — p(b) + 60 Hp(h))
d(Fy — p(a), F2) + 5(l(p(a)), N) \ * deletion
d(Fy, F2) = min d(F1, F> — p(b)) + (A, 1(p(D))) \ * insertion
’ d(Fy — a, Fa — b) + d(f(p(a)), F(p(b)))
+3(l(p(a)),l(p(d))) \ * substitution

where I(p(x)) is the label of the root of tree x.

This pseudo-code suggests a dynamic programming approach to compute
the tree edit distance. In fact, we can note that d(F1, F>) depends on a constant
number of relevant subproblems of smaller size. Zhang and Shasha [10] defined
these subproblems from the notion of keyroots of a given tree a:

keyroots(a) = {p(a)} U {r € V(a)|r has a left sibling}.

From this set of keyroots (see Fig 2.a), one can deduce the set of special
subforests of a (see Fig 2.b), defined by the forests f(u), where u € keyroots(a).
Zhang and Shasha also defined the set of relevant subproblems that allows us
to design a dynamic programming algorithm to compute the tree edit distance.
These relevant subproblems are all the forests corresponding to the prefixes of
the special subforests (see Fig 2.(b+c)). Then, to compute the tree edit distance

d(Fy, F»), one can show that is it sufficient to compute d(S7, Sz) for all relevant
subproblems S; and Sy (for more details see [10]).

So far, we assumed that we had a function § which returns the cost induced by
an edit operation. In real world applications, these costs are often tuned by hand.
We claim that machine learning techniques can efficiently be used to improve
this task which can become tricky when the size of the alphabet is large. In the
next section, we show how to automatically learn edit probabilities (rather than
edit costs) from a learning set of tree pairs.

4 Learning Tree Edit Probabilities

4.1 Stochastic Tree Edit Distance

A stochastic tree Edit Distance supposes that edit operations occur according
to an unknown random process. We aim at learning the underlying probability
distribution §(s, s'), (s,s") € ({£ U {A})?, in order to infer a generative model
of all possible edit scripts. We will use a special symbol # to denote the end of
an edit script. For sake of convenience, we will also denote the termination cost
of a script §(#) by 0(A, A). To be a statistical distribution, the function ¢ must
fulfill the following conditions:

Z 8(s,s') =1 and 6(s,s") >0 (1)
(5,8)E(LU{A})?

Let e = eg - - - e, be an edit script with n edit operations (e; = (s, ') # (A, N)),
the probability of e is evaluated by: p(e) = [[;—, d(e;) x 8(#). To model the
distance between two trees, we propose to compute the probability of all ways
to change a tree a into another one b (as described in [7] for the case of strings).

Definition 7. Let two trees a and b, we denote by E(a,b) the set of all possible
edit scripts for transforming a in b. The stochastic tree ED between a and b is

defined by: ds(a,b) = —108 3" c p(4p) P(€)-

To learn the matrix §, we propose to adapt the Expectation-Maximization
(EM) algorithm [14] to this specific context of tree edit distance. Let us remind
that EM estimates the hidden parameters of a probabilistic model by maximizing
the likelihood of a learning sample. In our case, the parameters will correspond
to the matrix § of edit probabilities, and the learning sample will be composed
of (input,output) tree pairs. In a pattern recognition task, these pairs can be
either randomly generated from instances of the same class, or built by hand by
an expert who judged them as being similar. EM achieves an expectation step
followed by a maximization stage. During the first step, EM accumulates, from
the training corpus, the expectation of each hidden event (edit operation) for
transforming an input tree into an output one. In the maximization step, EM
sets the parameter values (edit probabilities) in order to maximize the likelihood.

Algorithm 1: a({a1,..,ar}, {b1,..,bv})
Input : Two forests {a1,..,ar}, {b1,..,bv}
Let a be a matrix of dimension (T'+ 1) x (V +1); a[{},{}] < 1
for t de 0 a T do
for v de 0 a V do
if (t > 0) or (v > 0) then
|_ O‘[{alv --,llt,}, {bla ~~7bu}] =0
if t > 0 then
|_ al{a1,..,at}, {b1, .., bu Y]+ = 6(I(p(at)), N).a[{a1, .., f(p(at))}, {b1, .., by }]
if v > 0 then
L al{ar, . ai}, {b1, .., b }+ = 6(N, U(p(bo)))-al{a1, .., ar}, {b1, .., f(p(bv))}]
if (t > 0) and (v > 0) then
L af{a1,..;ac}, {b1, .., bu }+ = a(f(p(at)), f(p(bv)))-6(I(p(ar)), L(p(by)))

af{ar,..,ai—1},{b1, .., bu—1}]

return af{a1,..,ar}, {b1,..,bv }]

4.2 Forward and Backward Functions

To learn the matrix 6, EM uses two auxiliary functions, so-called forward ()
and backward (0), that are respectively described in Algorithms 1 and 2. The
bold font is used for a recursive call of these algorithms (o and 3), while the
normal font (« and 3) describes intermediate values stored in a local matrix.

We can note that both functions o and (3 return the quantity ZeeE(%b) p(e),
i.e the sum of probabilities of all paths (described by a script e) changing an
input forest into an output one. Beyond the fact that they allow to compute the
tree edit distance (cf Def.7), they are overall combined to achieve the expecta-
tion step in order to estimate the expectation of each edit operation (see Fig.3
and details in the next section). What is important to note is that functions «
and (§ are nothing else but an extension to the stochastic case of the original
tree edit distance algorithm. Actually, they contain the three main instructions
corresponding to the three edit operations. For instance, considering the substi-
tution operation, a(f(p(at)), f(p(by))) and «[{as,..,at—1},{b1,..,by—1}] are the
recursive stochastic version of d(f(p(a)), f(p(b))) and d(F; — a, F» — b) respec-
tively. The main difference is that in our probabilistic framework, we take into
account all the paths transforming a forest into another one, while the classic
edit distance only keeps the costless path.

4.3 Expectation

During the expectation step, we estimate the expectation of the hidden events,
i.e the edit operations used to transform an input tree into an output one. These
expectations are stored in an auxiliary matrix v (|£|+1) x (|£]|41). This process
takes a training tree pair (z,y) in input. Then, for all the subtree pairs (a¢, b,),
where a; is a subtree of x and b, a subtree of y, it accumulates the expectations
of the three edit operations consisting either in deleting p(a;), or inserting p(b,)
or substituting I(p(at)) by (p(b,)). The pseudo-code of the expectation step is
described in Algorithm 3, which requires the following definitions.

Algorithm 2: 8({a1,..,ar}, {b1,..,bv})
Input : Two forests{ai,..,ar}, {b1,..,bv}
Let 3 be a matrix of dimension (T + 1) x (V +1); B[{},{}] — 1
for t deT a 0 do
for v de V a 0 do
if (t<T) or (v<V) then
|_ ﬁ[{ah oy aT}v {bU7 "abV}] =0
if t < T then
|_ Bl{at,..,ar}, {bv,...,bv }+ = (l(p(aT)), N).Bl{as, .., f(p(ar))}, {bv, .., bv }]
if v <V then
|_ ﬁ[{ah oy aT}v {bU7 oy bV}]+ =0(A, l(p(bv))).ﬂ[{at,) a'T}a {b171 ooy f(P(bV))}]
if (t <T) and (v < V) then
L Bl{ae, .., ar}, {by, .., by }4+ = 6(l(p(ar)), U(p(bv))).B(f(p(aT)), f(p(bv)))

'B({ah ooy anl}a {bm ooy bV—l})

return S[{a1,..,ar}, {b1,..,bv}]

B(gs(p(ar)), ¢5(p(bo)))

a(pa(plar)) = f(p(ar)), pa(p(be)) = f(p(b0))) alf(plar)), f(p(bo)))

Fig. 3. Illustration of the Expectation step for a substitution operation.

Definition 8. A postorder traversal of a labeled tree x = r(aq, ..,ar) is obtained
by first recursively visiting the subtrees a;,t = 1..T and then the root r. The
postorder numbering assigns a number to each node of x according to a postorder
traversal. Let ¢o : V(x) — T (L) be the function that takes a node r' and returns
the ordered forest composed of the subtrees with root a node having a number
strictly smaller than that of ' according to a postorder numbering.

Definition 9. Let © = r(a1,..,ar) be an ordered tree. Let ¢g : V(z) — T(L)"
be the function that takes a node v’ and returns the ordered tree with root r and
with the children of v having a number strictly smaller than that of ' according
to a reverse postorder numbering.

Fig.3 shows an example of postorder (in arabic font) and reverse postorder
numbering (in roman font). Considering the node labeled by 4|III of the left
tree, ¢, returns the forest composed of 3 subtrees with root the nodes labeled
respectively by 11VI, 2|V and 3|1V, ¢g returning the subtree with root the node
labeled by 6|1 and with the child 5|ITI.

Let us recall that this algorithm calculates the expectation of the number of
times each edit operation is used for changing a tree x into another one y. To do
this, for each edit operation (whose probability is given by §), we consider not
only all the ways leading to this operation (given by «) but also those allow-

Algorithm 3: expectation(z, y)

Input : Two trees x and y
Let € be the empty tree;
foreach a; s.t. p(ar) € V(z) UE, b, s.t. p(by) € V(y) UE do

if a; # € then
a(da(plat)),da(p(by))U{by}).6(1(p(at)),N).B(dg(p(at)) ¢g5(p(by)))
| o), N+ = ’ Semn B

if b, # € then
a(pa(plag))U{a},dalp(by))).8(N,Lp(by))).B(og(plat)),¢g5(p(bv)))
| O i)+ = L o s

if (ar # &) and (b, # £) then

a(¢alpla))—Ff(p(at)),¢a(p(bv)) = f(p(bv))) - alf(p(at)), f(p(bv))).8(U(p(ar)),l(p(bv)))-B(eg (p(at)) 5 (p(bv)))

L Y(U(p(ar)), Hp(bo)))+ =

a(z,y)

Algorithm 4: maximization
Input: A matrix of accumulators
Output: A matrix of probabilistic edit costs §
TA — 0
foreach (s,s’) € (LU {A\})? do TA «— TA + ~(s,s")
’
foreach (s,s’) € (LU {A\})? do (s, s’) «— %

ing us to finish the transformation (given by) after the edit operation. While
the deletion and insertion operations are quite understandable, the substitution
one deserves some explanations. Fig.3 graphically describes the substitution of
the input node 4|III into the output one 4|IV. This requires to calculate the
forward function a(¢a(p(a:)) — f(p(ar)), pa(p(bs)) — f(p(by))), i.e. the proba-
bility of the forest pair [{1|VI}, {2|VI(1|VII)}]. This forest pair is constituted of
subtrees with root node having a numbering smaller than 4 according to a pos-
torder numbering (given by function ¢,), minus subtrees that are the children
of 4|IIT and 4|1V (given by function f). We estimate, as well, the backward
function (B(da(p(ar)). da(p(b,)))) on the pair [{6|T(5|11)}, {7|1(6|T(|LT))}],
with nodes smaller than III for the input forest and IV for the output one, ac-
cording to a reverse postorder numbering. We need also to compute the forward
function (a(f(p(at)), f(p(by)))) on the pair [{2|V,3|IV}, {3|V}] corresponding to
the children of the nodes involved in the substitution operation.

4.4 Maximization

The final step of the EM algorithm is achieved by the maximization procedure
presented in Algorithm 4. This step is crucial since it ensures a convergence
of the process under constraints thanks to the normalization of the expecta-
tions. For learning a stochastic tree edit distance in the form of a generative
model, we must fulfill constraints of Eq.1. This implies a simple normaliza-
tion consisting in dividing each expectation ~(s,s’) by the total accumulator
TA= Z(s,s/)e(ﬁu{A})2 (s, s"). With Algorithms 1,2,3 and 4, we can now present
in Algorithm 5 the global procedure for learning a stochastic tree edit distance.

Algorithm 5: tree edit distance — EM

Input: LS a learning set of tree pairs

repeat
foreach (s,s’) € (LU {A\})? do v(s,s’) < 0
foreach (z,y) € LS do expectation(z,y)
maximization(~y)

until convergence

4.5 Example of Learning

We present here the running of our algorithm on a simple example, with an
input alphabet £ = {a,b, ¢}, an output alphabet L5 = {a, b} and a training set
composed of only one tree pair [a(b,c(a,b));b(c, a(d), a,b)] (see Fig.4(a)). The
algorithm converges towards an optimum after only 4 iterations. The learned
matrix ¢ (initialized with random values) is described in Fig.4(b). We can note
that our algorithm has correctly learned the target. Actually, on this example,
one optimal solution consists in: (i) inserting the symbol a that becomes the
father of the symbol b, (ii) keeping unchanged the symbol b, (iii) deleting the
symbol ¢ and (iv) changing one out of twice the symbol a by b or by itself.

a b
VN PN
b [a a b

5 A a b
Al — 0.167 0
/\ ‘ al 0 0.167 0.167
a b b bl 0O 0 0.332
c|0.167 0 0
Input Output

(a) Learning tree pair (b) Matrix ¢ after 4 EM iterations.

Fig. 4. Example of learning from a tree pair.

5 Experiments in Image Recognition

5.1 From a Numerical to a Symbolic Representation of Images

In this section, we aim at verifying the interest of our learning algorithm on an
image classification task. So far, the main trend in image recognition has mainly
concerned numerical approaches based on color and texture [15-17]. However,
many objects are poorly modeled with numerical values that can not express the
relationships between attributes. Strings and trees are structured representations
that allow us to take into account either the sequentiality or the hierachization
between attributes. A pioneer work has been recently achieved by Jolion et al.
[11] with a string representation showing very interesting results on clustering
and recognition tasks. The principle of this approach is first based on the extrac-
tion of characteristic points (see Fig.5(b)) according to their contrast level in the
original image (Fig.5(a)). Then, to each of these points is assigned the symbol of
the alphabet constituted of all the 512 binary masks 3 x 3, and that is applicable
on that point in the binary version of the image (see Fig.5(c)). Finally, these
characteristic points are sorted according to their decreasing level of contrast,
providing a sequence of masks labeled by a symbol € [0,512].

10

(a) Original image (b) Charact. points (c) Binary image

Fig. 5. Example of image represented by characteristic points.

5.2 Tree Representation of Images

This string representation outperformed numerical features in various classifica-
tion and clustering tasks [11]. However, we can note that no spatial information
is considered. One way to tackle this drawback is to consider a tree representa-
tion linking the depth of a tree with that information. To illustrate our approach,
consider the example of Fig.6(a). First, we propose to divide the image in four
equal parts and we extract, for each of them, the characteristic point with the
highest level of contrast. These four points constitute the first level of our tree.
They are ordered from left-to-right according to their respective level of con-
trast. In a second step, we sub-divide each of the four original parts into four
new sub-parts, and we extract again the characteristic points with the highest
level of contrast in each sub-part. These points become the children of the node
extracting during the first step. We recursively repeat this process until no more
division can separate two points. To obtain a labeled tree, we assign to each node
its corresponding mask applicable in the binary image. The main properties of
this tree representation are the following: (i) We do not challenge the alphabet
distribution observed in the sequence built with Jolion’s approach; (ii) we keep
the sequentiality between the characteristic points for each granularity level; and
(iii) deep leaves represent a large local density of characteristic points.

5.3 Experimental Setup and Results

In order to assess the relevance of our model in a pattern recognition task, we
applied it in handwritten digit classification. We used the NIST Special Database
3 of the National Institute of Standards and Technology, already used in several
articles such as [18,6]. A part of this database consists in 128 x 128 bitmap
images of handwritten digits written by 100 different writers. Each class of digit
(from 0 to 9) has about 1,000 instances.

We divided these data in a learning set LS (6,000 digits) and a test set T'S
(4,000 digits). Since our model handles trees, we coded each digit as previously
explained but we reduced the alphabet from 22 to 15 by removing small frequent
masks. Then, to construct a learning set of tree pairs, we used an uniform matrix
6 of tree edit probabilities and we associated to each input tree x € LS the output
tree y € LS,y # x s.t. p(z,y) is maximal and s.t. © and y belong to the same
class. We then learned matrix § with our EM algorithm. We classified each digit

11

e o B G
1st level 2nd level 3rdlevel
[] ””T ””” =
—-— S
+ 16 characteristic 2 ; ! ' |SWL-SNL|TNL-SNL|TWL-SNL
points : i i | +6 | +11 | +32
Y : 22 i 1
| . % e E@G Hﬁl J& z ‘ | (b) The first column shows
(.f M I D the interest of learning a
E EARD string edit distance, the sec-

ond the contribution of our
tree representation and the
third the relevance of learn-
ing a tree edit distance.

(a) Tree-representation of an image.

Fig. 6. (a) Tree representation and (b) experimental results.

t € T'S by the class i of the tree € LS maximizing p(¢, z) (result TWL).

We compared our learning approach with a standard tree edit distance with
a priori fixed edit costs (result TNL). Moreover, to assess the relevance of our
tree-based image representation, we used the same protocol with images coded
in strings (see Section 5.1) using non learned and learned stochastic string edit
distances as presented in [6] (results SNL and SWL). To compare all the results,
we present in Table 6(b) the relative accuracy gain on T'S of each approach (SWL,
TNL, TWL) in comparison with the standard string edit distance SNL.

We can make the following interesting remarks: First, the results confirm the
relevance of our tree-based image representation in comparison with strings (+11
percentage points); second, they definitely prove the interest of our approach for
learning a tree similarity measure. Actually, not only a learned tree distance
outperforms a standard string edit distance (+32 percentage points) but also it
outperforms a non learned tree edit distance (421 percentage points).

6 Conclusion

In this paper, we proposed a first attempt to adapt the tree edit distance, in
its more general form, to a stochastic context. From this new point of view, the
probabilities of the primitive edit operations are seen as hidden parameters that
an adapted EM-based algorithm is able to automatically learn from a set of tree
pairs. We think that this work opens the door to significant improvements in
classification and clustering, that confirm our first experimental results in digit
recognition. However, some problems deserve further investigations. First, we
think that the constitution of the learning tree pairs can be highly improved
and still constitutes an open problem; second, the tree representation issued
from characteristic points must be further studied to be able to tackle a larger
spectrum of image recognition tasks; moreover, our algorithm has to be adapted
in a form of a discriminative model (rather than the presented generative one)

12

to handle small datasets; finally, in front of the emergence of huge datasets of
XML documents, we plan to use our model on web applications.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning

in semi-supervised clustering. In: Proceedings of the Twenty-first International
Conference (ICML 2004), ACM (2004)

Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons.
In: Advances in Neural Information Processing Systems 16 [Neural Information
Processing Systems, NIPS 2003, MIT Press (2003)

Kummamuru, K., Krishnapuram, R., Agrawal, R.: On learning asymmetric dis-
similarity measures. In: Proceedings of the 5th IEEE International Conference on
Data Mining (ICDM 2005), IEEE Computer Society (2005) 697-700

Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: A classification rule for
binary and nominal data. In: IJCAI (2007) 678-683

Wagner, R., Fisher, M.: The string to string correction problem. Journal of the
ACM (1974)

Oncina, J., Sebban, M.: Learning stochastic edit distance: application in hand-
written character recognition. Journal of Pattern Recognition (2006)

Ristad, S., Yianilos, P.: Learning string-edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20(5) (1998) 522-532

Bernard, M., Habrard, A., Sebban, M.: Learning stochastic tree edit distance. In:
Proc. of ECML’06, Springer LNCS 4212 (2006) 42-53

Selkow, S.: The tree-to-tree editing problem. Information Processing Letters 6(6)
(1977) 184-186

Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing (1989) 1245-1262
Jolion, J.: Some experiments on clustering a set of strings. In Springer-Verlag,
ed.: 4th TAPR International Workshop on Graph based Representations. Volume
LNCS 2726. (2003) 214224

Klein, P.: Computing the edit-distance between unrooted ordered trees. In: Proc.
of the 6th European Symposium on Algorithms (ESA), Springer (1998) 91-102
Bille, P.: A survey on tree edit distance and related problem. Theoretical Computer
Science 337(1-3) (2005) 217-239

Dempster, A., Laird, M., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. J. R. Stat. Soc B(39) (1977) 1-38

Pentland, A., Picard, R., Sclaroff, S.: Photobook: Tools for content-based manip-
ulation of image databases. In: SPIE Storage and Retrieval of Image and Video
Databases. Volume 2. (1995) 18-32

Wang, J., Li, J., Wiederhold, G.: Simplicity: Semantics-sensitive integrated match-
ing for picture libraries. IEEE Trans. on Pat. Ana. Mach. Int. 23(9) (2001) 947-963
Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmenta-
tion using expectation-maximization and its application to image querying. IEEE
Trans. on Pattern Analysis and Machine Intelligence 24(8) (2002) 1026-1038
Goémez, E., Mico, L., Oncina, J.: Testing the linear approximating eliminating
search algorithm in handwritten character recognition tasks. In: VI Symposium
Nacional de reconocimiento de Formas y Anélisis de Imégenes. (1995) 212-217

