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1Stationary Ergodic Jackson Networks: Resultsand Counter-ExamplesFran�cois Baccelli, Serguei Foss and Jean MairesseINRIA Sophia-Antipolis, Novosibirsk State University and BRIMSHewlett-Packard Laboratories BristolAbstractThis paper gives a survey of recent results on generalized Jackson net-works, where classical exponential or i.i.d. assumptions on services androutings are replaced by stationary and ergodic assumptions. We �rstshow that the most basic features of the network may exhibit unexpectedbehavior. Several probabilistic properties are then discussed, including astrong law of large numbers for the number of events in the stations, theexistence, uniqueness and representation of stationary regimes for queuesize and workload.1 IntroductionJackson networks provide a very e�ective mathematical model for packet switch-ing networks. This paper gives a survey of recent results and a preview of on-going research on generalized Jackson networks. Here the classical Markovianassumptions on services and routings, as proposed in Jackson's original model,are replaced by general stationary and ergodic assumptions.Beyond the natural quest for a better mathematical understanding of suchgeneral stochastic networks, the interest in the non-Markovian case stems fromtwo practical observations. First, it enables the incorporation of periodic phe-nomena, such as the dependence of random variables (services, routings) uponthe period of the day or the year. Second, it was recently observed that in severalbasic communication networks (e.g. Ethernet LANs and the Internet), the pointprocesses describing the o�ered tra�c exhibit long range dependence [31], whichrules out the classical Markovian representation.The stability of Jackson networks has been considered in several papers.Without any claim to an exhaustive enumeration, one can cite the works ofJackson [19], Gordon and Newell [18], Borovkov [8, 9], Foss [16, 17], Daduna[14], Sigman [29, 30], Chang [11], Kaspi and Mandelbaum [20, 21] and Meynand Down [25]. A more complete bibliography on the subject can be foundin [17]. All these papers require some sort of independence assumptions orThe work of the last author was supported in part by a post-doctoral grant from INRIA.1



2 Fran�cois Baccelli, Serguei Foss and Jean Mairessesome distributional constraints on services. By constructing counter-examples,the present paper �rst shows that under more general stationary and ergodicassumptions, all basic quantitative measures of the network may indeed exhibitunexpected behavior. The paper then focuses on positive results: strong lawsof large numbers for the daters and counters associated to stations, existenceand uniqueness of stationary regimes for the stochastic processes describing thequeue sizes and the workloads, with detailed discussions on how these objectsmay depend on the initial condition. Finally, some special cases are investigated,with the aim of showing more detailed results on the classes of functions whichare involved in the stationary regimes of such networks. The results are statedwithout proofs, the paper serving as a comprehensive review/preview of materialto be found in: Baccelli and Foss [2, 3], Baccelli, Foss and Gaujal [4], Baccelli andMairesse [6], Baccelli, Foss and Mairesse [5]. The counter-examples mentionedabove, as well as several constructive results are original.The main mathematical tools used are ergodic theory, random graphs, stochas-tic recurrence equations and stochastic ordering.2 De�nitions2.1 ModelDe�nition 2.1 A Jackson network is a queuing network with K stations, whereeach station is a single FIFO server with in�nite bu�er (:=:=1=1 FIFO usingKendall's notation). Customers move from station to station in order to receivesome service. The data are (2K) sequencesf�i(n); n 2 INg; f�i(n); n 2 INg; i 2 f1; : : : ;Kg;where �i(n) 2 IR+ and �i(n) 2 f1; : : : ;K;K + 1g, K + 1 being the exit.The n-th customer to be served by station i after the origin of time requires aservice time �i(n); after completion of its service there, it moves to station �i(n)and is put at the end of the line. We say that �i(n) is the n-th routing variableon station i.Remark As far as results on throughputs or workload processes are concerned,we can replace FIFO by any non-preemptive, work conserving discipline.We distinguish between two classes of Jackson networks, open and closed.� Open case: There is an external arrival point process fTn; n 2 INg, with0 � T0 � T1 � � � �. Equivalently, there is an additional saturated station(numbered 0) producing its �rst customer at time �0(0) = T0, and furthercustomers with inter-arrival times �0(n) = Tn � Tn�1; n > 0.The n-th external arrival is routed to station �0(n) 2 f1; : : : ;Kg. The de-scription of the arrival process by means of station 0 is systematic through-out the paper. The customers eventually leave the network (see absence ofcapture below).� Closed case: There are no external arrivals. It is impossible to be routedto the exit, i.e. �i(n) 2 f1; : : : ;Kg;8i 2 f1; : : : ;Kg;8n 2 IN . The total



Stationary Ergodic Jackson Networks: Results and Counter-Examples 3number of customers in the network is then a constant.Remark The previous de�nition of an open Jackson network includes the pos-sibility of bulk arrivals.It is convenient to denote by K the set of stations of the network. We havein the open and closed cases respectively:K = f0; 1; : : : ;Kg and K = f1; : : : ;Kg : (2.1)Note that the exit, K + 1, is not considered as one of the stations in the opencase. We use the notation � with the convention that � = 0 in the open caseand � = 1 in the closed case. For example, the set Kn� has to be interpreted asf1; : : : ;Kg for an open network and f2; : : : ;Kg for a closed network.We use the following compact way of describing a Jackson network J .J = f(�k(n); k 2 K); (�k(n); k 2 K); n 2 INg (2.2)To unify the presentation, the number of customers (in the closed case) is notincluded in the de�nition of J but in the initial condition, to be de�ned below.De�nition 2.2. (Initial condition) For a Jackson network with K stations,we denote the initial condition by (Q;R) = f(Qk; Rk); k = 1; : : : ;Kg. The in-teger Qk is the number of customers in station k at time 0�, M = PKk=1Qkis the total number of initial customers and Rk is the residual service time ofthe customer under service at station k at time 0�. We adopt the conventionRk = 0 when Qk = 0.An initial condition is said to be �nite if Qk < +1 and Rk < +1; k =1; : : : ;K.For an open network, the state of station 0 was not included in the abovede�nition as it is always (Q0; R0) = (1; T0) = (1; �0(0)).We do not require that Rk � �k(0). If Rk > �k(0), one can interpret thisas the fact that the �rst customer is frozen in station k until instant Rk � �k(0)when its service starts.We assume the initial condition to be deterministic. The case when Qk andRk are random variables is further discussed in [5].De�nition 2.3. (Canonical initial condition) We say that a Jackson net-work has a canonical initial condition if we have� Open case: f(Qk; Rk) = (0; 0); k = 1; : : : ;Kg. In words, the state at theorigin of time is that all stations are empty.� Closed case: f(Q1; R1) = (M;�1(0)); (Qk ; Rk) = (0; 0); k = 2; : : : ;Kg.In words, the state at the origin of time is that all customers are in station1, and service 0 is just starting on station 1.In the following, when nothing is speci�ed, it is always implicit that the Jack-son networks have canonical initial conditions. In order to avoid any confusion,



4 Fran�cois Baccelli, Serguei Foss and Jean Mairessewe use speci�c notations indexed by I (e.g. IJ; IJ[0;n]; IX[0;n], all quantities tobe de�ned later on) for a network with a non-canonical initial condition I .Let us de�ne the sub-class of closed cyclic Jackson networks.De�nition 2.4 A Cyclic Jackson Network (CJN) is a closed Jackson network,where for all n and i, �i(n) = i + 1. The numbering of stations has to beunderstood modulo [K], for example station (K+2) is station 2. The cycle timeof a customer is the time between two consecutive visits to the same station.Remark Jackson networks are a sub-class of free-choice Petri nets. CyclicJackson Networks are a sub-class of closed event graphs. Free-choice Petri netsand event graphs are sub-classes of Petri nets, which provide an e�cient formal-ism to represent and study discrete event systems with synchronization and/orrouting, see for example Murata [26]. In [4], the method presented here forJackson networks is applied to open free-choice Petri nets. Event graphs canbe represented as (max,+) linear systems. It yields stronger results than thosepresented here for the sub-class of Jackson Networks which are event graphs (i.e.for CJN), see for example [1], [22].2.2 Stochastic frameworkLet (
;F ; P ) be a probability space. We consider a bijective and bi-measurableshift function � : 
! 
. We assume that � is P�stationary (i.e. Pf��1(A)g =PfAg;8A 2 F) and P�ergodic (i.e. A � ��1(A) ) PfAg = 0 or 1). Thesymbols �n; n � 0; denote the iterations of the shift � (�0 is the identity). Weuse the notation X �� to denote the r.v. X ��(!) = X(�!); ! 2 
. A sequence ofrandom variables fX(n); n 2 INg is said to be stationary-ergodic (with respectto �) if X(n) = X(0) � �n.De�nition 2.5 A Jackson network is said to be i.i.d. if the sequences of servicetimes f�k(n); n 2 INg, k 2 K, and routings f�k(n); n 2 INg, k 2 K, are i.i.d.and mutually independent.As suggested by the title of the article, we are interested in studying moregeneral Jackson networks under stationary-ergodic assumptions. There are sev-eral possible de�nitions of stationary-ergodic Jackson networks, some of whichare listed below in increasing order of generality.SE1 The sequences f�k(n); n 2 INg, f�k(n); n 2 INg, k 2 K, are stationary-ergodic and mutually independent.SE2 The sequences f(�k(n); k 2 K); n 2 INg and f�k(n); n 2 INg, k 2 K, arestationary-ergodic and mutually independent.SE3 The sequence f(�k(n); �k(n); k 2 K); n 2 INg is stationary-ergodic.The stochastic assumptions we are going to work with are di�erent yet againfrom from the previous three. They are de�ned in eqn (4.3) and denoted H1.Routing matrix Let us consider a stationary-ergodic (SE3) Jackson network.We de�ne its routing matrix asIP = (IPij ); IPij = P (�i(0) = j); i; j 2 K : (2.3)



Stationary Ergodic Jackson Networks: Results and Counter-Examples 5For an open Jackson network, we identify stations 0 and K + 1, setting IPi0 =P (�i(0) = K+1); i = 1; : : : ;K. Note that this de�nition of IP boils down to theusual one in the case of an i.i.d. network.In the following, it is always assumed that a Jackson network is at leaststationary-ergodic (SE3). Furthermore, it is always assumed that a Jacksonnetwork has an irreducible routing matrix IP (i.e. 8i; j; 9n 2 IN s.t. IP nij > 0).In the open case, the irreducibility of matrix IP implies that the system is withoutcapture, i.e. a customer entering the system eventually leaves it.Remark When the previous assumptions are not veri�ed, one should studyseparately the maximal irreducible sub-networks. The departure processes fromupstream sub-networks provide the arrival processes for downstream ones. Ac-cordingly, to connect together the results obtained for the di�erent sub-networks,one needs to prove that these departure processes are stationary and ergodic.This is partially addressed in x8. For more insights, see also [4] and [5].Letting � be a left-eigenvector associated with the maximal eigenvalue of IP ,we have �IP = � : (2.4)It follows from the Perron-Frobenius theorem that � is unique (up to a con-stant) and can be chosen to be positive (8i; �i > 0). We choose � such that�� = 1. The real �k can be interpreted as the relative frequency of visits tostations k and �.Periodic networks By de�nition, a Jackson network is periodic if the se-quences of services and routings are periodic. Periodic Jackson networks can betransformed into stationary-ergodic (usually SE3) Jackson networks, as shownbelow.Example 2.6 Let us consider a closed periodic network with two stations. Wehave�1(n) = 0; 3; 0; 3; :::; �2(n) = 5; 5; 5; :::; �1(n) = 1; 2; 1; :::; �2(n) = 2; 1; 2; :::This network does not satisfy the stationary ergodic assumptions.Let (
;F ; P ) be the probability space with 
 = f!1; !2g and P (!1) =P (!2) = 1=2. We consider the P -stationary and P -ergodic shift de�ned by�(!1) = !2; �(!2) = !1. We de�ne a new network on 
 with services androutings equal to�1(n; !1) = 0; 3; 0; :::; �2(n; !1) = 5; �1(n; !1) = 1; 2; 1; :::; �2(n; !1) = 2; 1; 2; :::�1(n; !2) = 3; 0; 3; :::; �2(n; !2) = 5; �1(n; !2) = 2; 1; 2; :::; �2(n; !2) = 1; 2; 1; :::It is easy to verify that this network is stationary and ergodic (SE3).In general, one builds a stationary-ergodic version of a periodic Jackson net-work by considering a �nite probability space whose cardinal is the least commonmultiple of the periods of the sequences of services and routings.



6 Fran�cois Baccelli, Serguei Foss and Jean Mairesse2.3 First and second order variablesWe describe Jackson networks using daters and counters.De�nition 2.7 We de�ne the internal dater Xk(n) , k 2 K, to be the time atwhich the n-th service is completed at station k. We de�ne the internal counterX k(t); k 2 K, to be the number of services completed at station k before time t.And last, we de�ne X k;l(t); k; l 2 K to be the number of customers routed from kto l before time t. The counters are chosen to be right continuous with left-handlimits.We are going to study two types of variables, called respectively �rst andsecond order variables.First order variables Counters and daters are called �rst order variables.Properly scaled, they may converge to throughputs. The throughput at stationk (when it exists) is equal to�k = limn!1n=Xk(n) = limt!1X k(t)=t :The arrival rate in the network is �0 = limt!1 X 0(t)=t. The departure rate(when it exists) is �K+1 = limt!1 XK+1(t)=t.Second order variables They include queue length, residual service time, andworkload processes. They are called second order variables because they can bede�ned as di�erences of counters and daters, as shown below. All processes arechosen to be right continuous with left-hand limits.(1) Queue length and residual service time process:(Qk(t); Rk(t); k 2 Kn0); t 2 IR+; withQk(t) = Qk+Pl2K X l;k(t)�X k(t) andRk(t) = [Xk(X k(t)+1)�t]1fQk(t)>0g.We have (Q(0); R(0)) = (Q;R) where (Q;R) is the initial condition.(2) Workload process:(W k(t); k 2 Kn0); t 2 IR+; withW k(t) = [Xk(X k(t)+Qk(t))�t]_0. Dually,one can consider the idle time processes Ik(t) = [t�Xk(X k(t)+Qk(t))]_0.Here are di�erent properties that we would like to investigate:(A) Existence of throughputs �k; k 2 K; for a given initial condition (Def. 2.2)?(B) Uniqueness of the throughputs �k; k 2 K; for all di�erent initial conditions?For an open network, this uniqueness has to be veri�ed for any �nite initialcondition, see Def. 2.2. For a closed network, this uniqueness has to beveri�ed for all �nite initial conditions such that PKk=1Qk = M for someM (i.e. the number of customers is �xed).(C) Concavity of the throughputs �k(M); k 2 K; as a function of the numberM of customers in the network? This property is of course irrelevant foropen networks.(D) Existence of stationary regimes for second order processes? Uniqueness ofthe stationary regimes for di�erent initial conditions (see property (B) fora precise statement)?



Stationary Ergodic Jackson Networks: Results and Counter-Examples 7The answers to these questions are summarized in the following table, wherethe assumptions which are considered are H1-2, see eqn (4.3):Table 1. . Open network Closed networkA Yes YesB Yes NoC | NoD No No3 Counter-ExamplesWe provide counter-examples for all the cases corresponding to an answer \No"in Table 1. The networks considered in these counter-examples are periodicnetworks. The reader can check that the counter-examples remain valid if wereplace these networks by their stationary and ergodic extensions (the initialconditions being kept unchanged), see x2.2. Note also that all these networks(or rather their extensions) satisfy the forthcoming assumptionH1, see eqn (4.3).It is a direct consequence of the cyclic form for the networks of x3.2, 3.3 and 3.4and it can be checked directly for the network of x3.1.3.1 Open network, non-uniqueness of second order limits (D)We consider an open Jackson network with two stations. The stations can bedescribed as :=D=1=1 FIFO, using Kendall's notation. Here D stands for De-terministic. The service times are �1(n) = �1 = 1=4 and �2(n) = �2 = 1=2.The input process is fTn = n + 1; n 2 INg, i.e. one customer arrives each unitof time. The routing sequence of customers leaving station 1 is�1(n) = f3; 2; 3; 2; 3; : : :g ;where 3 corresponds to the exit. This network is represented in Fig. 1.
Station 2: �2 = 1=2
:=D=1=1 FIFOfTng �1(n):=D=1=1 FIFOStation 1: �1 = 1=4 Exit

Fig. 1. Open Jackson network with two stations.Let us show that we obtain several stationary regimes. We �x 1 < c < 1+�1.We consider an initial condition of the form (Q1; R1) = (1; c); (Q2; R2) = (0; 0),i.e. there is one customer in station 1 with residual service time c.We have represented, in Fig. 2, the Gantt chart corresponding to this network



8 Fran�cois Baccelli, Serguei Foss and Jean Mairessefor c = 1 + 1=8. The horizontal axis represents time. The blocks correspond tothe time spent by the customers in the stations. The colors of the blocks dependon the customer. For example, black corresponds to the initial customer and lightgray to the customer arriving at instant T0 = 1. It follows from the periodicityof �1(n) that each customer (except the initial one) receives exactly two servicesat station 1 and one at station 2.
tT2 = 3Station 2Station 1 3/25/4 T1 = 2T0 = 1Fig. 2. Initial condition (Q1; R1) = (1; 9=8); (Q2; R2) = (0; 0).We recall that W 1(t) is the workload at station 1 at instant t. Using Fig. 2,one can easily see that maxtW 1(t) = 1=4 + (c � 1) = W 1(n); n 2 IN . We con-clude that there is a continuum of possible stationary regimes for the workload,depending on c.Remark This counter-example was �rst mentioned in [4]. The phenomenonof multiplicity of second order limits appears in other types of open networks.A folk example consists of a multiserver queue of the form D=P=2=1 wherearriving customers are allocated to the server with the smallest workload. Formore details, see for example Brandt, Franken and Lisek, [10] Example 5.5.2.3.2 Closed network, non-uniqueness of second order limits (D)We consider a Cyclic Jackson Network (CJN) with three stations and two cus-tomers. The stations are of type :=D=1=1 FIFO. The service times are �1(n) =�2(n) = �3(n) = 1. This network is represented in Fig. 3.

Station 1: �1 = 1:=D=1=1 FIFO :=D=1=1 FIFO
:=D=1=1 FIFOStation 2: �2 = 1
Station 3: �3 = 1Fig. 3. Cyclic Jackson Network, three stations and two customers.



Stationary Ergodic Jackson Networks: Results and Counter-Examples 9In Fig. 4 and 5, the Gantt charts corresponding to two di�erent initialconditions are given. The color of the blocks di�ers according to the customerserved, light gray is for the customer originally in station 1 and dark gray for theone originally in station 3, see Fig. 3.
t1Fig. 4. Initial condition (Q1; R1) = (1; 1=2); (Q2; R2) = (0; 0); (Q3; R3) = (1; 1).

Fig. 5. Initial condition (Q1; R1) = (1; 1); (Q2; R2) = (0; 0); (Q3; R3) = (1; 1).Let us consider for example the idle time fI1(t)g at station 1. For the initialconditions corresponding to Fig. 4 and 5, we obtain fI1(n) = 1=2; 1=2; 1=2; : : :gand fI1(n) = 0; 1; 0; 1; : : :g; n 2 IN; respectively. It is easy to see that thereis a continuum of possible limiting regimes for I1(t) depending on the initialcondition.In such a deterministic model, initial delays between customers never vanish.In fact, even �rst order limits may depend on the initial condition, see nextsection.Remark Such counter-examples are well-known in the literature. In fact, acomplete classi�cation of CJN having multiple second order stationary regimescan be made using the (max,+) theory, see [22, 23].3.3 Closed network, non-uniqueness of the throughput (B)We consider a CJN with four stations and two customers. The stations are oftype :=P=1=1 FIFO, where P stands for Periodic. The service times are�1(n) = 2; 0; 2; 0; : : : ; �2(n) = 1; �3(n) = 0; 2; 0; 2; : : : ; �4(n) = 1 :We consider the network under two di�erent initial conditions, see Fig. 6.The �rst one is with one customer in station 1 and one in station 3. The secondone is with both customers in station 1. We have represented the corresponding



10 Fran�cois Baccelli, Serguei Foss and Jean Mairesse�1(n) = 2; 0; 2; : : :A. B.�1(n) = 2; 0; 2; : : : �2(n) = 1; 1; 1; : : :�4(n) = 1; 1; 1; : : : �3(n) = 0; 2; 0; : : : �4(n) = 1; 1; 1; : : : �3(n) = 0; 2; 0; : : :�2(n) = 1; 1; 1; : : :
Fig. 6. CJN, four stations and two customers.Gantt charts in Fig. 7 and 8 respectively. For convenience, service times equalto 0 have been materialized and represented by slim bars.

Fig. 7. (Q1; R1) = (1; 2); (Q2; R2) = (0; 0); (Q3; R3) = (1; 0); (Q4; R4) = (0; 0).
Fig. 8. (Q1; R1) = (2; 2); (Q2; R2) = (0; 0); (Q3; R3) = (0; 0); (Q4; R4) = (0; 0).In Fig. 7, the throughput is 1=3. In Fig. 8, the throughput is 1=2. Weconclude that the throughput depends on the initial position of customers.In Fig. 7, the light gray customer always receives long services and the darkgray customer always waits before getting served. In Fig. 8, services and waitingtimes are more equally shared between the two customers. It increases thee�ciency of the network.Remark This example was �rst introduced in [23], Chap. 8. A closely relatedcounter-example is displayed by Bambos in [7]. His model is a CJN with distin-guishable customers. It means that the service times depend on the station andon the customer. For each couple station-customer, the sequence of service times



Stationary Ergodic Jackson Networks: Results and Counter-Examples 11is periodic. As customers do not overtake, the cyclic ordering of customers in thenetwork is an invariant. It is shown in [7], that the throughput may depend onthe cyclic ordering but also on the initial positioning of customers given a cyclicordering. This last result is close but slightly di�erent from the one illustratedin Fig. 7 and 8. Let us explain why.We �x a cyclic ordering of customers. For a given initial positioning of cus-tomers, we can de�ne the sequence fsi(n); n 2 INg of services received at stationi. It is easy to see that fsi(n)g is periodic. The di�erence with our model is thatthe sequences fsi(n)g depend on the initial position of customers. For anotherinitial position, we will obtain sequences of the form fsi(n+ ki); n 2 INg.3.4 Closed network, non-concavity of the throughput (C)We investigate the behavior of the network with respect to the number of cus-tomers. We consider the network of Fig. 6.A and we add a second customer instation 1. The new Gantt chart is represented in Fig. 9.
�3(n) = 0; 2; : : :�1(n) = 2; 0; : : : �2(n) = 1; 1; : : :�4(n) = 1; 1; : : :

Fig. 9. CJN, four stations and three customers. Initial condition (Q1; R1) =(2; 2); (Q2; R2) = (0; 0); (Q3; R3) = (1; 0); (Q4; R4) = (0; 0).The average cycle time (see Def. 2.4) of a customer is 21=4 = 5:25. Forexample, the cycle time of the light gray customer computed from station 2 tostation 2 is f4; 5; 6; 6; 4; 5; 6; 6; : : :g.Comparing Fig. 7 and 9, one checks that the average cycle time of the origi-nal two customers has decreased from 6 to 5:25. The addition of one customerhas increased the speed of the original customers!For the purpose of this example, let us introduce some notation. We considera network with M customers. We denote by (M) the cycle time of a customer



12 Fran�cois Baccelli, Serguei Foss and Jean Mairesseand by �(M) the throughput (which is the same at each station). We have�(M) =M=(M) :In the previous example, we have obtained (3) < (2). It implies �(3)=3 >�(2)=2. We conclude that there is no concavity of the throughput.We have represented in Fig. 10, the throughput �(M) for the network of Fig.9. For M > 2, each new customer is added in the bu�er of station 1. When Mbecomes large, we obtain the expected behavior, i.e. the throughput becomesconstant and is imposed by the bottleneck (slowest) station(s).
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Fig. 10. Throughput �(M) as a function of the number of customers M .In contrast, we can consider the same network with all the customers instation 1. In this case, we obtain the expected behavior, i.e. the cycle time(M) is an increasing function of M .Remark To the best of our knowledge, this kind of counter-example is original.A similar paradox is provided by the network of Braess, studied in Cohen andKelly [13]. It is a transportation network where the withdrawal of one of theexisting routes increases the speed of all the customers. However, the two modelsare completely di�erent. Braess model is that of an open congested networkwith optimal routing. The paradox comes from the non compatibility betweencustomer optima and global optima, in a game theoretic sense. Our model isclosed, uncongested and with a predetermined routing. The paradox comes fromthe (in)compatibility between the number of customers and the periods of thesequences of service times.



Stationary Ergodic Jackson Networks: Results and Counter-Examples 13Summary The best we can expect to prove is the complement of the previouscounter-examples. More precisely, we propose in Table 2, a new detailed versionof Table 1, with the sections where the positive results are stated.Table 2. Open network Closed networki.i.d. stat. erg. i.i.d. stat. erg.A Yes x5.2 Yes x5.2 Yes x5.1 Yes x5.1B Yes x6.3 Yes x6.3 Yes x6.2 No x3.3C | | ??? x7.1 No x3.4D Yes x8.1 No x3.1 No x3.2 No x3.24 Restriction of a Jackson Network4.1 Euler propertyLet J be a Jackson network. We associate with J a random graph G, calledthe routing graph which is de�ned from the information carried by the routingsequences only. The set of nodes of G is K and a routing f�i(n) = jg is inter-preted as an arc labeled n from node i to node j. In the open case, a routingf�i(n) = K + 1g is interpreted as an arc from node i to node 0. If (i; j) 2 K2is such that IPij > 0 (see (2.3)), then there is an in�nite number of arcs from iinto j. The arcs originating from a given node are totally ordered by the labels.An initial condition for the graph is de�ned as a �nite number of tokens placedon the nodes. Each node might contain several tokens.De�nition 4.1. (Game G) Given a routing graph G and an initial condition,we move the tokens according to the following rules� Step 1: Select one of the tokens, say one on node i, and move it to node�i(0). Remove the arc f�i(0)g.� Step n > 1: Select one of the tokens, say one on node i, and move it tonode �i(p) where f�i(p)g is the arc originating from i with the lowest label.Remove the arc �i(p).� Termination rule: Each time a token returns to station �, it is frozen thereand cannot be considered for further moves. Equivalently, there is a step0 for the game which consists of removing the arcs ��(I�); ��(I� + 1); : : :,where I� is the initial number of tokens in station �.A sequence of moves following the previous rules is called an execution of gameG. The game ends when there are no unfrozen tokens left in the network. Wedenote by T the step at which the game ends.This game can in some sense be interpreted as an untimed version of theevolution of the Jackson network. There are of course several possible executionsof the game depending on which token is selected at each step. In the closedcase, given an execution of the game, it is easy to build sequences f(~�k(n); k 2K); n 2 INg of service times such that the Jackson network f(~�k(n); �k(n))gevolves exactly as G. In the open case, it would be necessary to allow theaddition or removal of tokens to obtain the same interpretation.



14 Fran�cois Baccelli, Serguei Foss and Jean MairesseProposition 4.2. (Euler property) Let J be a stationary and ergodic (SE3)Jackson network. Let G be the corresponding routing graph. Let us consider a�nite initial condition for G. For all executions of the game G, the game endsin �nite time, i.e. T < 1. Furthermore both T and the set of arcs of G whichare not removed at time T do not depend on the execution.Proof The key ingredient is the irreducibility of the routing matrix IP . A proofwas proposed in [2] under (H1) type conditions. For a proof under (SE3), see[5]. 24.2 Restriction of a networkLet J be a Jackson network. For all integers l � 0, we de�ne the Jackson networkJ[0;l] = n(�k[0;l](n); k 2 K); (�k[0;l](n); k 2 K)o ; (4.1)where ��[0;l](n) = � ��(n) for 0 � n � l1 otherwise ;and �k[0;l](n) = �k(n);8n � 0;8k 2 (Kn�) and �k[0;l](n) = �k(n);8n � 0;8k 2 K.We say that J[0;l] is a restriction of J . The intuitive interpretation is that weblock station � after l services there.In a consistent way with the notations of Def. 2.7, we denote the daters andcounters associated with the network J[0;l] by Xk[0;l](n) and X k[0;l](t). We de�nethe maximal daters associated with the network J[0;l] asXk[0;l] = maxn�0 Xk[0;l](n); X[0;l] = maxk2K Xk[0;l] ; (4.2)where the maxima are taken over the �nite terms only. It follows from Prop. 4.2that X[0;l] is �nite P -a.s. The interpretation is that X[0;l] is the date of the lastevent to take place in J[0;l]. Let us de�nelk[0;l] = limt!1X k(t) = X k(X[0;l]); l[0;l] =Xk2K lk[0;l] :The integer lk[0;l] is the total number of services completed at station k untilinstant X[0;l] (or equivalently until 1). By de�nition, we have l�[0;l] = l + 1. Itfollows from Prop. 4.2 that lk[0;l] is �nite and depends only on the routings, noton the services.We de�ne the following notations.� Services used up to time X[0;l]:�k[0;l] = (�k(0); � � � ; �k(lk[0;l] � 1)); �[0;l] = (�k[0;l]; k 2 K).� Routings used up to time X[0;l]:�k[0;l] = (�k(0); � � � ; �k(lk[0;l] � 1)); �[0;l] = (�k[0;l]; k 2 K).



Stationary Ergodic Jackson Networks: Results and Counter-Examples 15� Total service time received up to time X[0;l]:k�k[0;l]k =Plk[0;l]�1i=0 �k(i); k�[0;l]k =Pk2K k�k[0;l]k.For all l � 0, we de�ne the Jackson networkJ[l;1] = n(�k[l;1](n); k 2 K); (�k[l;1](n); k 2 K); n 2 INo ;where �k[l;1](n) = �k(n + lk[0;l�1]) and �k[l;1](n) = �k(n + lk[0;l�1]), k 2 K (withthe convention lk[0;�1] = 0).The interpretation is that J[l;1] is the network obtained by unblocking J[0;l�1]after instant X[0;l�1].The de�nition of the restricted networks J[l;p]; l � p; follows naturally. Thenotations used for quantities associated with J[l;p] are consistent with the previ-ous ones. For example, we denote the internal daters of J[l;p] by Xk[l;p](n).For convenience, we use the following abridged notation J[p] = J[p;p] andaccordingly X[p] = X[p;p]; Xk[p](n) = Xk[p;p](n); : : :Remark The restrictions J[l;p] are de�ned as Jackson networks, and the con-ventions of Section 2.1 will be used without further mention. It implies thatJ[l;p] starts its evolution at time 0 and not at time Tl or X[0;l�1].Example 4.3 Let us consider the closed Jackson network of Fig. 6.B. We havel[i] = 4; �[i] = f�1[i]; : : : ; �4[i]g = f2; 3; 4; 1g ;�[i] = f�1[i]; : : : ; �4[i]g = f2; 1; 0; 1g; i even; �[i] = f0; 1; 2; 1g; i odd :Note that in this case, the stations visited and the services received by a customerin the networks J and J[i] are the same. One can easily convince oneself that itis not the case as soon as the routings allow customers to overtake.4.3 Stochastic assumptionsWe consider a probability space (
;F ; P; �) as de�ned in x2.2. The main forth-coming results (Sections 5,6,7) are to be given under the following stochasticassumptions :� H1 The sequence f (�[i]; �[i]) = (�k[i]; �k[i]; k 2 K); i 2 INg is stationary andergodic, i.e. we have (�[i]; �[i]) = (�[0]; �[0]) � ~�i ; (4.3)for some P�stationary and P�ergodic shift ~�.� H2 The total service time received in J[0] is integrable, i.e. E(k�[0]k) <+1.Note that these assumptions are made on the quantities associated with therestricted networks J[i]. They may not seem natural at �rst glance. All the



16 Fran�cois Baccelli, Serguei Foss and Jean Mairesseresults to come will show that they are the right ones, see Remark 6.2. Thefollowing lemma gives simple su�cient assumptions on J under which the aboveassumptions are satis�ed (see [5]).Lemma 4.4 Let us consider a Jackson network J such that the sequencesf(�k(n)); n 2 INg; k 2 K; are stationary-ergodic and mutually independent andthe sequences f�k(n); n 2 INg; k 2 K; are i.i.d., mutually independent and inde-pendent of the services. Then f(�[p]; �[p]); p 2 INg is a stationary and ergodicsequence.The previous lemma fails to be true if we only assume that f(�k(n); k 2K); n 2 INg is stationary-ergodic.5 First Order Limits for Canonical Initial Conditions (A)It is easy to prove, see [5], that �k, de�ned in (2.4), is also the expected numberof visits to station k in J[0]: �k = E(lk[0]) : (5.1)5.1 Closed networkTheorem 5.1 Let J be a closed Jackson network. Under the assumptions H1-2, we have for all k 2 K:limn!1 nXk(n) = limt!1 X k(t)t = �k�; P � a:s:limn!1E( nXk(n) ) = limt!1E(X k(t)t ) = �k� ;for some constant � and where �k is de�ned in (2.4) or (5.1).Proof The proof is based on the sub-additivity of the maximal daters X[m;n].It is given in [5]. 25.2 Open networkLet J be a Jackson network verifying assumptions H1-2. We de�ne Jf0g to bethe Jackson network obtained from J by modifying only the arrival process andsetting Tn = 0;8n � 0. In words, Jf0g is the saturated network associated withJ . We de�ne, with obvious notations, the quantities Xk(n)f0g;X k(t)f0g : : :Theorem 5.2 Under the previous assumptions, there exists a constant �(0)such that limt!1 XK+1(t)f0gt = �(0); P � a:s: and in L1 : (5.2)The constant �(0) is the asymptotic throughput of departures from the networkJf0g. Furthermore, we have:1=�(0) = maxk=1;:::;KE �k�k[0]k� :We recall that k�k[0]k is the total service time received at station k in J[0].



Stationary Ergodic Jackson Networks: Results and Counter-Examples 17Proof The �rst proofs were given in [2] and [4]. A shorter proof will appear in[5]. 2Theorem 5.3 Let J be an open Jackson network verifying assumptions H1-2.Let �(0) be the constant de�ned in (5.2). We assume that �0 < �(0). We havefor all k 2 K [ fK + 1g:limn!1 nXk(n) = limt!1 X k(t)t = �k�0; P � a:s: and in L1 ;where �k; k 2 K; is de�ned in (2.4) and where �K+1 = 1. If we assume that�0 > �(0), then we have:limn!1 nXK+1(n) = limt!1 XK+1(t)t = �(0); P � a:s: and in L1 :Proof A weaker version of the result was proved in [2]. The proof of this versionis given in [5]. 2It follows from Theorems 5.2 and 5.3 that1=�K+1 = max(1=�0; 1=�(0)) = maxk=0;1;:::;KE �k�k[0]k� :The constant �(0) is the throughput of the network when we saturate theinput. The interpretation of Theorem 5.3 is that �(0) is the maximal possiblethroughput for the network. This follows from the fact that the saturation ruleof [3] can be applied. Theorem 5.2 provides a simple practical way to computethe maximal throughput of an open network.Example 5.4 We consider the network of x3.1. We obtain �1[0] = (1=4; 1=4)(two services, each of length 1=4) and �2[0] = (1=2). It follows that k�1[0]k =k�2[0]k = 1=2. We conclude that the maximal asymptotic throughput of thenetwork is 2.6 First Order Limits for Di�erent Initial Conditions (B)We want to obtain extensions of the results of x5 for networks with arbitraryinitial conditions. The results will be completely di�erent for open and closednetworks. The throughputs do not depend on the initial condition in the opencase and they do in the closed case.6.1 CompatibilityLet IJ = f(�k(n); �k(n)); k 2 K; n 2 INg be a Jackson network with an arbitrary�nite initial condition I = f(Qk; Rk); k 2 Kg. We consider a modi�cation IJ[;] ofIJ obtained by setting ��(0) = +1. All other quantities (services, routings andinitial condition) are the same in IJ and IJ[;]. The interpretation is that IJ[;] isobtained by immediately blocking station �. Associated quantities are denotedaccordingly, for example IX[;] for the maximal dater.It follows from Prop. 4.2 that IX[;] is P � a:s: �nite. Furthermore at instant



18 Fran�cois Baccelli, Serguei Foss and Jean MairesseIX+[;], the network is empty (open case) or all the customers are in station 1(closed case).We de�ne a new network IbJ with service times f I �̂k(n) = �k(n+ I lk[;]); n 2 INg,k 2 K, and routings f I �̂k(n) = �k(n + I lk[;]); n 2 INg, k 2 K. The initialcondition of IbJ is canonical. The interpretation is that IbJ is the network obtainedby unblocking IJ[;] after instant IX[;].We are now ready to de�ne compatibility. Let 1J and 2J be two Jacksonnetworks di�ering only by their initial conditions I1 and I2. Let 1J[;] and 2J[;] bethe blocked networks de�ned as above. Let 1Ĵ and 2Ĵ be the unblocked networksde�ned as above. Let f(1̂�[i]; 1̂�[i]); i � 0g and f(2�̂[i];2�̂[i]); i � 0g be the servicesand routings used in networks 1Ĵ[i] and 2Ĵ[i] respectively.De�nition 6.1 The initial conditions of 1J and 2J are said to be compatible if(1) f(1̂�[i];1�̂[i]); i � 0g is stationary and ergodic.(2) f(1̂�[i];1�̂[i]); i � 0g has the same distribution as f(2�̂[i];2�̂[i]); i � 0g.Lemma 4.4 provides assumptions under which the �rst condition is alwaysveri�ed. The next lemma is straightforward.Lemma 6.2 Let us consider an i.i.d. Jackson network, see Def. 2.5. Then allinitial conditions are compatible.Without the i.i.d. assumption, compatibility is not always veri�ed.Example 6.3 Let us consider the model of x3.3. The networks of Fig. 6.A and6.B, say AJ and BJ , di�er only by their initial condition.� AJ . Let us consider the network AJ[;] as de�ned above. It gets blockedafter the dark gray customer has received exactly one service at stations 3 and4. It implies that the network AĴ has the following sequences of service times:�̂1(n) = 2; 0; 2; 0; : : : �̂2(n) = 1; 1; 1; : : : �̂3(n) = 2; 0; 2; 0; : : : �̂4(n) = 1; 1; 1; : : :We have �̂k[i] = k +1 [mod 4] for all i � 0 and �̂[i] = (�̂1[i]; : : : ; �̂4[i]) = (2; 1; 2; 1), iodd, �̂[i] = (0; 1; 0; 1), i even.� BJ . The quantities associated with the restricted network BJ[i] are�̂k[i] = k + 1 [mod 4] and �̂[i] = (2; 1; 0; 1), i odd, �̂[i] = (0; 1; 2; 1), i even.We conclude that the initial conditions of AJ and BJ are not compatible.6.2 Closed networkThe main theorem is the following one.Theorem 6.4 Let 1J and 2J be two closed Jackson networks with �nite initialconditions I1 and I2. We assume that I1 and I2 are compatible. The networks



Stationary Ergodic Jackson Networks: Results and Counter-Examples 19are supposed to verify assumption H2. Let 1Xk(n);1X k(t) and 2Xk(n);2X k(t)denote the daters and counters associated with 1J and 2J respectively. Thereexists a constant � such that for all k 2 K:limn!1 n1Xk(n) = limt!1 1X k(t)t = limn!1 n2Xk(n) = limt!1 2X k(t)t = �k�; P � a:s:limn!1E( n1Xk(n) ) = limt!1E( 1X k(t)t ) = limn!1E( n2Xk(n) ) = limt!1E( 2X k(t)t ) = �k� ;where �k is the expected number of visits to station k in 1Ĵ[0] or 2Ĵ[0], see (5.1).Proof The networks 1Ĵ and 2Ĵ are equivalent in distribution. They also have acanonical initial condition. It implies that we can apply Theorem 5.1. The laststep is to prove that the �rst order limits of iJ and iĴ ; i = 1; 2; are identical. Fora more detailed proof, see [5]. 2For non-compatible initial conditions, the �rst order limits need not be thesame.Example 6.5 Let us consider the counter-example of x3.3. The throughputs ofthe networks AJ and BJ are di�erent, equal to 1=3 and 1=2 respectively. We knowfrom Example 6.3 that the initial conditions of AJ and BJ are not compatible.However, we obtain the next Theorem as a corollary of Lemma 4.4 and 6.2Theorem 6.6 In an i.i.d. closed Jackson network verifying assumption H2,the �rst order limits (n=Xk(n);X k(t)=t; : : :) exist and do not depend on the �niteinitial condition.Remark The results of this section show that �rst order limits depend only onthe distribution of f (�[p]; �[p]); p 2 INg. It implies that the \unusual" stochas-tic assumption that we make on our Jackson networks (H1, see (4.3)) is the\natural" one. It is not an artefact of our method of proof.6.3 Open networkLet IJ be an open Jackson network with an arbitrary �nite initial conditionI = f(Qk; Rk); k 2 f1; : : : ;Kgg.Let J be the associated network with exactly the same sequences of servicesand routings but with a canonical initial condition (see Def. 2.3). We assumethat J veri�es assumptions H1-2.Theorem 6.7 We assume that �0 < �(0), see eqn (5.2). For all �nite initialconditions I, we have for all k 2 K [ fK + 1g:limn!1 nIXk(n) = limt!1 IX k(t)t = �k�0; P � a:s: and in L1 ;where �k is de�ned in eqn (2.4). If we assume that �0 > �(0), then we have:limn!1 nIXK+1(n) = limt!1 IXK+1(t)t = �(0); P � a:s: and in L1 :



20 Fran�cois Baccelli, Serguei Foss and Jean MairesseProof The �rst proof was given in [2], for initial conditions which are compat-ible with the canonical one. The general proof is given in [5]. 27 First Order Limits: Concavity of Throughput (C)7.1 Results and conjectureThe throughput at a station is an increasing function of the vector of initialqueue lengths.Proposition 7.1 Let UJ and VJ be two closed Jackson networks di�ering onlyin their initial condition. We denote by U� and V� the throughputs at station 1in UJ and VJ respectively. Let us assume that UQk � VQk; k 2 K. Then wehave U� � V�.Proof The result follows from a sample path argument. It was originally provedby Shanthikumar and Yao [28]. 2As far as concavity is involved, the only result which is known is for expo-nential networks.Proposition 7.2 Let J be an i.i.d. closed Jackson network. We assume fur-thermore that all the services times are exponentially distributed, i.e. there existconstants �k; k 2 K; such that Pf�k(0) � ug = exp(��ku). Let M be the num-ber of customers in the network and �k(M) be the throughput at station k; k 2 K.Then �k(M) is a concave function of M .Proof The proof depends heavily on the product form solution for the station-ary distribution of the vector of queue lengths. For details, see Shanthikumarand Yao [27] and also Dowdy and al. [15]. 2Prop. 7.2 fails to be true for a stationary-ergodic (H1-2) Jackson network.Note �rst that it is now necessary to record the exact initial position of the cus-tomers because of the non-uniqueness of the throughput. However, the concavityfails even for an increasing (in the sense of the partial ordering on (Q1; : : : ; QK))sequence of initial conditions. A counter-example is provided in x3.4, see Fig.10 in particular.To bridge the gap between this counter-example and Prop. 7.2, the next stepwould be to (dis)prove the following result.Conjecture Let J be an i.i.d. closed Jackson network. Then �k(M); k 2 K; isa concave function of M , the number of customers in the network.8 Second Order Limits (D)We obtain di�erent types of results for open and closed Jackson networks. Inthe open case, we prove the existence of minimal stationary regimes for secondorder processes. In the closed case, there are no general ways of constructingthe stationary regime. In both cases, there is no uniqueness of the stationarysolutions in general.



Stationary Ergodic Jackson Networks: Results and Counter-Examples 218.1 Open networkLet us consider an open network J with a canonical initial condition and sat-isfying assumptions H1-2. The second order processes of J are denoted by(Q(t); R(t)) = (Qk(t); Rk(t); k 2 Kn0) and W (t) = (W k(t); k 2 Kn0), see x2.3.Theorem 8.1 If �0 > �(0), then there exists k 2 K such that we have P -a.s.:Qk(t) t! +1; W k(t) t! +1 :If �0 < �(0), then the processes (Q(t); R(t)) and W (t); t � 0; converge weakly toa �nite and stationary-ergodic limit processes (Q1(t); R1(t)) and W1(t); t � 0.Proof The proof is given in [2], x6. 2The stationarity of the processes (Q1(t); R1(t)) and W1(t) has to be in-terpreted as a Palm stationarity (i.e. with respect to the instants fTng). Theseprocesses are called the minimal stationary regimes for reasons explained in x 9.They are explicitly computed under special assumptions in Section 9. In manycases, there will be multiple stationary regimes depending on the initial condi-tion, see Example 8.2.Example 8.2 Let us consider the network of x3.1. It was shown in Example5.4 that �(0) = 2. In the example of x3.1, the arrival rate is 1, hence we arein the case �0 < �(0). However, we have shown that there are several limitsfor second order processes depending on the initial condition. The minimalstationary regimes are the ones corresponding to c = 0. For example, the minimalqueue length process is the randomized version ofQ1(t) = � (1; 0) if t 2 [0; 1]Sn>0[n� 1=4; n+ 1=4](0; 1) if t 2 Sn>0[n+ 1=4; n+ 3=4]Under stronger assumptions, we obtain the following re�ned result.Theorem 8.3 We consider a Jackson network IJ with a �nite initial conditionI. We assume that the sequence of service times f(�k(n); k 2 K); n 2 INg isstationary and ergodic and the sequences of routings f�k(n); n 2 INg; k 2 K; arei.i.d., mutually independent and independent of the services. Then the resultsof Theorem 8.1 apply independently of the initial condition. In particular, when�0 < �(0), there is a unique stationary regime for the second order processes(Q(t); R(t)) and W (t). Furthermore, they converge in total variation to theirstationary distribution.Proof The proof of this result is given in [2], x7. 2Stability region Saying that [0; �(0)] is the stability region of an open Jacksonnetwork is a way to summarize the results of Theorems 5.2,6.7 and 8.1. For aninput rate �0 2 [0; �(0)], the output rate (�K+1) is �0 and second order processesare �nite. For an input rate �0 62 [0; �(0)], the output rate is �(0) and secondorder processes are asymptotically in�nite.



22 Fran�cois Baccelli, Serguei Foss and Jean Mairesse8.2 Closed networkLet J be a closed Jackson network verifying assumptions H1-2. In general thereis no uniqueness of the stationary regimes for second order processes. This isillustrated by the counter-example of x3.2. Furthermore, we have not been ableto obtain a counterpart of Theorem 8.1, i.e. to construct a stationary regime ingeneral. Some insights into the di�culties that arise are given in [6].Even for i.i.d. closed Jackson networks, no general necessary and su�cientconditions for stability are known. There exist however some good su�cientconditions, see [8, 9], [17], [29] or [20]. The most recent ones are provided in [24].9 Fluid Open Jackson NetworksThe object of this section is to give more detailed results on the class of functionsinvolved in the weak limits for second order variables, like those mentioned inTheorem 8.1. We will concentrate on a rather special model with uid rout-ing and with deterministic service times, but which still allows one to handlegeneral stationary ergodic external arrival processes. More general cases can beconsidered along these lines (see [5]).9.1 Evolution equations for countersIn this section, we consider an open Jackson network J with canonical initialcondition, and such that �k(n) = �k =Const. for all k 6= 0. We will make use ofthe following counters:� Yk(t), the total number of services initiated in station k in [0; t];� Ak(t), the total number of external arrivals in station k in [0; t].In addition, let �jk(p) = pXl=1 1f�j(l)=kg ; p 2 IN; j; k 2 K n0: (9.1)Using the FIFO hypothesis and the assumption that the network is initiallyempty, we obtain the following set of recurrence equations, holding for all t > 0and all k 6= 0 (see [4] for more details on these equations):Yk(t) = �Yk(t� �k) + 1� ^0@ KXj=1�jk �Yj(t� �j)�+Ak(t)1A ; (9.2)with initial condition Yk(t) = Ak(t) = 0, for t < 0.Fluid networks By de�nition, the uid network J associated with (9.2) isthat with evolution equationYk(t) = �Yk(t� �k) + 1� ^0@ KXj=1 IPjkYj(t� �j) +Ak(t)1A ; (9.3)



Stationary Ergodic Jackson Networks: Results and Counter-Examples 23where IP is the routing matrix. Such uid models, which di�er completely fromthe usual uid models of queuing theory (here only the routing is uid, whereasthe services remain unchanged), were introduced in [12] for a class of Petri nets.Although the state variables stop being integer-valued, we will go on speakingof numbers of customers etc.When each of the K sequences f�k(p)g is stationary, then for all (determin-istic) X 2 IN , E(�jk(X)) = IPjkE(X). Assume that the sequences f�k(p)g andthe arrival process are independent and that each of the sequences f�k(p)g isi.i.d. Then, when X is a random vector of INK , the relation Pj �jk(Xj) =Pj IPjkE(Xj) also holds true whenever X is a stopping time of the sequencesf�k(p)g; k = 1; : : : ;K. This fact and the concavity of the mappings involvedin eqn (9.3) are the key ingredients to prove the following relation between theuid and the non-uid equations (see [5] for more details).Lemma 9.1 If the sequences f�k(p)g and the arrival process are independentand if each of the sequences f�k(p)g is i.i.d., then for all f : IRK ! IR, nonde-creasing and concave, and for all t 2 IR+, E (f(Y(t))) � E �f(Y(t))� :We will from now on concentrate on the uid model.9.2 Evolution equations for second order variablesWhen letting t go to in�nity in the above evolution equations, we obtain thatthe total number of events Yk = Yk(1); Ak = Ak(1), satisfy the equation Y =YIP � +A where IP � denotes the restriction of IP to the coordinates f1; : : : ;Kg.The total numbers of events do not depend on the values of the service times.This property is a special case of Prop. 4.2 (for uid).When Y is �nite, letMk(t) = Yk �Yk(t); Bk(t) = Ak �Ak(t); (9.4)be the processes which count the residual number of events to take place instation k after time t. These second order variables satisfy the following systemof equations:Mk(t) = �Mk(t� �k)� 1� _0@Xj IPjkMj(t� �j) + Bk(t)1A : (9.5)One can reconstruct the total number Qk(t) of customers present in queue k attime t, from Mk(:) via the formula:Qk(t) = Mk(t)�Xj IPjkMj(t� �j)�Bk(t): (9.6)Remark Similar evolution equations can be derived for the initial non-uidnetwork (see [4]), including the case of random services (see the last sectiontherein).



24 Fran�cois Baccelli, Serguei Foss and Jean Mairesse9.3 Stationary regimeIn this section, we consider a slotted model where all service times and inter-arrival times are equal to 1. The only randomness comes from the number ofexternal arrivals at time n in station k = 1 : : : ;K, described by the random se-quence fAk[n]g, n 2 ZZ, which is assumed to be such that Ak[n] = Ak[0] � �n, for allk and n. These stochastic assumptions are slightly di�erent from the previousones in that � is not necessarily the Palm shift of the arrival process anymore.Let Mkn � Mk[�n;0](n), n � 0, be the residual process in the system whichstarts empty at time 0, has arrivals at time 1; 2; : : : ; n+1, with respective numbersof arrivals A[�n], A[�n+1], . . . , A[0]. We have Mk0 = Yk[0], and from the relationMk[�n�1;0](n+ 1) � � =Mk[�n;0](n+ 1), we obtain thatMkn+1 � � = Yk[1] + (Mkn � 1) _0@Xj IPjkM jn1A : (9.7)It is easy to check that the sequences Mkn are non-decreasing in n, and thatthe limit M = limn!1Mn is either a.s. �nite or a.s. in�nite. When the limitM = limn!1Mn is a.s. �nite, it is the minimal solution of the functionalequation Mk � � = Yk[1] + (Mk � 1) _0@Xj IPjkM j1A : (9.8)These minimal stationary variables allow one to construct an associated \mini-mal" stationary queuing process (giving the queuing process just before arrivalinstants), via relation (9.6). More generally, it is in this sense that the limitvariables mentioned in Theorem 8.1 are said to be minimal.Remark In the case where the transpose of matrix IP is substochastic, (9.7)can be rewritten in vector form as Mn+1 = �(Mn), where the random map � ismonotone, sub-homogeneous and non-expansive. The existence of the a.s. limitmaxkMkn=n follows then immediately from general theorems on such maps givenin [6].Theorem 9.2 below, which is proved using (9.7) and (9.8), gives a representationof the transient and the stationary variables Mn and M .The following notations will be needed: for p � q, letak[p;q] = Yk[p;q] � (q � p): (9.9)For 2 � h � 1, let l1, l2(j1), l3(j1; j2), : : :, lh(j1; : : : ; jh�1), be a family ofintegers indexed by j = (j1; : : : ; jh�1) in f1; : : : ;Kgh�1. Let �n(h) denote theset of all families L = flq(j)gq=1;:::;h; j2f1;:::;Kgh�1 such that for all j, 0 < l1 <l2(j) < � � � < lh(j) � n. Finally, let � = �1(1)Theorem 9.2 Under the foregoing assumptions, the variable Mkn , n < 1,



Stationary Ergodic Jackson Networks: Results and Counter-Examples 25k = 1; : : : ;K, admits the following representation:Mkn = maxh=0;:::;nAkn(h); (9.10)with Akn(0) = ak[�n;0], Akn(1) = max0<l1�n ak[�l1+1;0]+Pj IPjkaj[�n;�l1], and moregenerallyAkn(h) = maxL2�n(h) Xp=0;:::;h1�k1 ;:::;kp�K akp[�lp+1(k1;:::kp)+1;�lp(k1;:::;kp�1)] pYq=1 IPkq ;kq�1 ;(9.11)with the conventions l0 = 0, lh+1 = n+ 1, k0 = k and Q01 = 1.In the case where the stability condition E(Yk[0]) < 1, for all k, is satis�ed,the stationary variable Mk admits the representation:Mk = supL2� Xp�01�k1;k2;:::�K akp[�lp+1(k1;:::kp)+1;�lp(k1;:::;kp�1)] pYq=1 IPkq ;kq�1 : (9.12)Example 9.3 Consider a feedback queue with unit service times, where feed-back takes place with probability p < 1. Equation (9.7) readsMn+1 � � = A[1]1� p + (Mn � 1) _ (pMn): (9.13)The solution of this equation isMn = 11�p (A[�n;0] � n)_ max0<l1�n 11�p (A[�l1+1;0] � (l1 � 1)) + p1�p (A[�n;�l1] � (n� l1)) _ : : :_ max0<l1<:::<lq�n 11�p (A[�l1+1;0] � (l1 � 1))+ : : :+ pq1�p (A[�n;�lq ] � (n� lq)) _ : : :_ Pnq=0 pq1�p (A[�q]�1):The sequence Mn is nondecreasing, and it tends to the limitM = sup0<l1<l2<���Xq�0 pq1� pA[�lq+1+1;�lq ];as n goes to 1, which is �nite when E(A[0]) < 1� p.
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