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Stationary Ergodic Jackson Networks: Results
and Counter-Examples

Francois Baccelli, Serguei Foss and Jean Mairesse

INRIA Sophia-Antipolis, Novosibirsk State University and BRIMS
Hewlett-Packard Laboratories Bristol

Abstract

This paper gives a survey of recent results on generalized Jackson net-
works, where classical exponential or i.i.d. assumptions on services and
routings are replaced by stationary and ergodic assumptions. We first
show that the most basic features of the network may exhibit unexpected
behavior. Several probabilistic properties are then discussed, including a
strong law of large numbers for the number of events in the stations, the
existence, uniqueness and representation of stationary regimes for queue
size and workload.

1 Introduction

Jackson networks provide a very effective mathematical model for packet switch-
ing networks. This paper gives a survey of recent results and a preview of on-
going research on generalized Jackson networks. Here the classical Markovian
assumptions on services and routings, as proposed in Jackson’s original model,
are replaced by general stationary and ergodic assumptions.

Beyond the natural quest for a better mathematical understanding of such
general stochastic networks, the interest in the non-Markovian case stems from
two practical observations. First, it enables the incorporation of periodic phe-
nomena, such as the dependence of random variables (services, routings) upon
the period of the day or the year. Second, it was recently observed that in several
basic communication networks (e.g. Ethernet LANs and the Internet), the point
processes describing the offered traffic exhibit long range dependence [31], which
rules out the classical Markovian representation.

The stability of Jackson networks has been considered in several papers.
Without any claim to an exhaustive enumeration, one can cite the works of
Jackson [19], Gordon and Newell [18], Borovkov [8, 9], Foss [16, 17|, Daduna
[14], Sigman [29, 30], Chang [11], Kaspi and Mandelbaum [20, 21] and Meyn
and Down [25]. A more complete bibliography on the subject can be found
in [17]. All these papers require some sort of independence assumptions or
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some distributional constraints on services. By constructing counter-examples,
the present paper first shows that under more general stationary and ergodic
assumptions, all basic quantitative measures of the network may indeed exhibit
unexpected behavior. The paper then focuses on positive results: strong laws
of large numbers for the daters and counters associated to stations, existence
and uniqueness of stationary regimes for the stochastic processes describing the
queue sizes and the workloads, with detailed discussions on how these objects
may depend on the initial condition. Finally, some special cases are investigated,
with the aim of showing more detailed results on the classes of functions which
are involved in the stationary regimes of such networks. The results are stated
without proofs, the paper serving as a comprehensive review/preview of material
to be found in: Baccelli and Foss [2, 3], Baccelli, Foss and Gaujal [4], Baccelli and
Mairesse [6], Baccelli, Foss and Mairesse [5]. The counter-examples mentioned
above, as well as several constructive results are original.

The main mathematical tools used are ergodic theory, random graphs, stochas-
tic recurrence equations and stochastic ordering.

2 Definitions
2.1 Model

Definition 2.1 A Jackson network is a queuing network with K stations, where
each station is a single FIFO server with infinite buffer (././1/oc FIFO using
Kendall’s notation). Customers move from station to station in order to receive
some service. The data are (2K) sequences

{o'(n),n € IN}, {v'(n),n€IN}, ic{l,...,K},

where o'(n) € IR and v'(n) € {1,..., K, K + 1}, K + 1 being the exit.

The n-th customer to be served by station i after the origin of time requires a
service time a'(n); after completion of its service there, it moves to station v'(n)
and is put at the end of the line. We say that v'(n) is the n-th routing variable
on station 1.

Remark As far as results on throughputs or workload processes are concerned,
we can replace FIFO by any non-preemptive, work conserving discipline.

We distinguish between two classes of Jackson networks, open and closed.

e Open case: There is an external arrival point process {T},,n € IN'}, with

0 <Ty <T) <---. Equivalently, there is an additional saturated station
(numbered 0) producing its first customer at time ¢°(0) = Ty, and further
customers with inter-arrival times 0%(n) =T, — T,,_1, n > 0.
The n-th external arrival is routed to station v%(n) € {1,..., K}. The de-
scription of the arrival process by means of station 0 is systematic through-
out the paper. The customers eventually leave the network (see absence of
capture below).

e Closed case: There are no external arrivals. It is impossible to be routed
to the exit, i.e. v'(n) € {1,...,K},Vi € {1,...,K},¥n € IN. The total
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number of customers in the network is then a constant.

Remark The previous definition of an open Jackson network includes the pos-
sibility of bulk arrivals.

It is convenient to denote by K the set of stations of the network. We have
in the open and closed cases respectively:

K=1{0,1,...,K}and K={1,... K} . (2.1)

Note that the exit, K + 1, is not considered as one of the stations in the open
case. We use the notation % with the convention that * = 0 in the open case
and % = 1 in the closed case. For example, the set C\* has to be interpreted as
{1,..., K} for an open network and {2,..., K} for a closed network.

We use the following compact way of describing a Jackson network J.
J={(c"(n),k € K),(v*(n),k € K),n € IN} (2.2)

To unify the presentation, the number of customers (in the closed case) is not
included in the definition of J but in the initial condition, to be defined below.

Definition 2.2. (Initial condition) For a Jackson network with K stations,
we denote the initial condition by (Q,R) = {(Q*, R*),k = 1,...,K}. The in-
teger QF is the number of customers in station k at time 0=, M = Z,{\Zl QF
is the total number of initial customers and R* is the residual service time of
the customer under service at station k at time 0~. We adopt the convention
R* =0 when Q* = 0.

An initial condition is said to be finite if Q* < +oc and R* < +o0.k =
1,..., K.

‘9

For an open network, the state of station 0 was not included in the above
definition as it is always (Q°, R?) = (00, Ty) = (oc, 0°(0)).

We do not require that R* < o*(0). If R* > 0*(0), one can interpret this
as the fact that the first customer is frozen in station k until instant R* — ¢*(0)
when its service starts.

We assume the initial condition to be deterministic. The case when Q* and
RF are random variables is further discussed in [5].

Definition 2.3. (Canonical initial condition) We say that a Jackson net-
work has a canonical initial condition if we have

e Open case: {(QF, RF) =(0,0),k =1,...,K}. In words, the state at the
origin of time is that all stations are empty.

e Closed case: {(Q',R') = (M,c'(0)),(Q*, R*) = (0,0),k = 2,...,K}.

In words, the state at the origin of time is that all customers are in station
1, and service 0 is just starting on station 1.

In the following, when nothing is specified, it is always implicit that the Jack-
son networks have canonical initial conditions. In order to avoid any confusion,
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we use specific notations indexed by I (e.g. 1J, 1Jjo,n), X[o,n], all quantities to
be defined later on) for a network with a non-canonical initial condition I.
Let us define the sub-class of closed cyclic Jackson networks.

Definition 2.4 A Cyclic Jackson Network (CJN) is a closed Jackson network,
where for all n and i, v'(n) = i + 1. The numbering of stations has to be
understood modulo [K|, for example station (K + 2) is station 2. The cycle time
of a customer is the time between two consecutive visits to the same station.

Remark Jackson networks are a sub-class of free-choice Petri nets. Cyclic
Jackson Networks are a sub-class of closed event graphs. Free-choice Petri nets
and event graphs are sub-classes of Petri nets, which provide an efficient formal-
ism to represent and study discrete event systems with synchronization and/or
routing, see for example Murata [26]. In [4], the method presented here for
Jackson networks is applied to open free-choice Petri nets. Event graphs can
be represented as (max,+) linear systems. It yields stronger results than those
presented here for the sub-class of Jackson Networks which are event graphs (i.e.
for CJIN), see for example [1], [22].

2.2 Stochastic framework

Let (Q,F, P) be a probability space. We consider a bijective and bi-measurable
shift function 6 : Q — Q. We assume that 6 is P—stationary (i.e. P{# 1(A)} =
P{A},VA € F) and P—ergodic (ie. A C 67 '(A) = P{A} = 0 or 1). The
symbols 8™, n > 0, denote the iterations of the shift 8 (8° is the identity). We
use the notation X o6 to denote the r.v. Xof(w) = X (6w),w € Q. A sequence of
random variables {X (n),n € IN} is said to be stationary-ergodic (with respect
to #) if X(n) = X(0) 0 ™.

Definition 2.5 A Jackson network is said to be i.i.d. if the sequences of service
times {o*(n),n € IN}, k € K, and routings {v*(n),n € IN}, k € K, are i.i.d.
and mutually independent.

As suggested by the title of the article, we are interested in studying more
general Jackson networks under stationary-ergodic assumptions. There are sev-
eral possible definitions of stationary-ergodic Jackson networks, some of which
are listed below in increasing order of generality.

SE1 The sequences {o*(n),n € IN}, {v*(n),n € IN}, k € K, are stationary-
ergodic and mutually independent.
SE2 The sequences {(c*(n),k € K),n € IN} and {v*(n),n € IN}, k € K, are
stationary-ergodic and mutually independent.
SE3 The sequence {(c*(n),v*(n),k € K),n € IN} is stationary-ergodic.
The stochastic assumptions we are going to work with are different yet again
from from the previous three. They are defined in eqn (4.3) and denoted H1.

Routing matrix Let us consider a stationary-ergodic (SE3) Jackson network.
We define its routing matrix as

P=(P;), P,=P00)=j). ijek. (2.3)
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For an open Jackson network, we identify stations 0 and K + 1, setting P,y =
P(v'(0) = K+1),i =1,..., K. Note that this definition of P boils down to the
usual one in the case of an i.i.d. network.

In the following, it is always assumed that a Jackson network is at least
stationary-ergodic (SE3). Furthermore, it is always assumed that a Jackson
network has an irreducible routing matrix IP (i.e. Vi,j,In € IN s.t. P}, > 0).
In the open case, the irreducibility of matrix IP implies that the system is without
capture, i.e. a customer entering the system eventually leaves it.

Remark When the previous assumptions are not verified, one should study
separately the maximal irreducible sub-networks. The departure processes from
upstream sub-networks provide the arrival processes for downstream ones. Ac-
cordingly, to connect together the results obtained for the different sub-networks,
one needs to prove that these departure processes are stationary and ergodic.
This is partially addressed in §8. For more insights, see also [4] and [5].

Letting a be a left-eigenvector associated with the maximal eigenvalue of IP,
we have

alP =o. (2.4)

It follows from the Perron-Frobenius theorem that « is unique (up to a con-
stant) and can be chosen to be positive (Vi,a; > 0). We choose « such that
a, = 1. The real a; can be interpreted as the relative frequency of visits to
stations £ and *.

Periodic networks By definition, a Jackson network is periodic if the se-
quences of services and routings are periodic. Periodic Jackson networks can be
transformed into stationary-ergodic (usually SE3) Jackson networks, as shown
below.

Example 2.6 Let us consider a closed periodic network with two stations. We
have

o'(n) =0,3,0,3,..., 0°(n) =5,5,5,..., v'(n) =1,2,1,..., v*(n) = 2,1,2, ...

This network does not satisfy the stationary ergodic assumptions.

Let (Q,F,P) be the probability space with Q@ = {w;,ws} and P(w;) =
P(wy) = 1/2. We consider the P-stationary and P-ergodic shift defined by
O(w1) = wy,B(we) = wy. We define a new network on  with services and
routings equal to

ol (n,w) =0,3,0,...,0%(n,w1) =5, v (n,w1) =1,2,1,....0%(n,w1) =2,1,2, ...
o' (n,ws) =3,0,3,....,0%(n,ws) = 5,0 (n,wy) =2,1,2, ... v°(n,ws) =1,2,1, ...
It is easy to verify that this network is stationary and ergodic (SE3).

In general, one builds a stationary-ergodic version of a periodic Jackson net-
work by considering a finite probability space whose cardinal is the least common
multiple of the periods of the sequences of services and routings.
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2.3 First and second order variables
We describe Jackson networks using daters and counters.

Definition 2.7 We define the internal dater X*(n) , k € K, to be the time at
which the n-th service is completed at station k. We define the internal counter
XE(t),k € K, to be the number of services completed at station k before time t.
And last, we define X*'(t), k,1 € K to be the number of customers routed from k
to I before time t. The counters are chosen to be right continuous with left-hand
limits.

We are going to study two types of variables, called respectively first and
second order variables.

First order variables Counters and daters are called first order variables.
Properly scaled, they may converge to throughputs. The throughput at station
k (when it exists) is equal to

M= lim n/X*(n) = tlim AR/t

The arrival rate in the network is \° = lim; ., X°(¢)/t. The departure rate
(when it exists) is A+ = lim; o, XEHL(t)/t.

Second order variables They include queue length, residual service time, and
workload processes. They are called second order variables because they can be
defined as differences of counters and daters, as shown below. All processes are
chosen to be right continuous with left-hand limits.

(1) Queue length and residual service time process:
(Q*(t), R*(t),k € K\0),t € IR*, with
QH(t) = Q"+, X4 ()~ X (1) and B (1) = [XF(X* (1)41) 111 gu 001
We have (Q(0), R(0)) = (@, R) where (@, R) is the initial condition.

(2) Workload process:
(WE(t), k € K\0),t € IRT, with WF(t) = [X*(X*(t)+Q"(t))—t]V0. Dually,
one can consider the idle time processes I*(t) = [t— X*(X*(t)+Q"*(t))] V0.

Here are different properties that we would like to investigate:

(A) Existence of throughputs A\*, k € K, for a given initial condition (Def. 2.2)?

(B) Uniqueness of the throughputs A\*, k € K, for all different initial conditions?
For an open network, this uniqueness has to be verified for any finite initial
condition, see Def. 2.2. For a closed network, this uniqueness has to be
verified for all finite initial conditions such that 25:1 Q" = M for some
M (i.e. the number of customers is fixed).

(C) Concavity of the throughputs \*(M), k € K, as a function of the number
M of customers in the network? This property is of course irrelevant for
open networks.

(D) Existence of stationary regimes for second order processes? Uniqueness of
the stationary regimes for different initial conditions (see property (B) for
a precise statement)?
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The answers to these questions are summarized in the following table, where
the assumptions which are considered are H1-2, see eqn (4.3):

. | Open network | Closed network

A Yes Yes
Table 1. | B Yes No

C — No

D No No

3 Counter-Examples

We provide counter-examples for all the cases corresponding to an answer “No”
in Table 1. The networks considered in these counter-examples are periodic
networks. The reader can check that the counter-examples remain valid if we
replace these networks by their stationary and ergodic extensions (the initial
conditions being kept unchanged), see §2.2. Note also that all these networks
(or rather their extensions) satisfy the forthcoming assumption H1, see eqn (4.3).
It is a direct consequence of the cyclic form for the networks of §3.2, 3.3 and 3.4
and it can be checked directly for the network of §3.1.

3.1 Open network, non-uniqueness of second order limits (D)

We consider an open Jackson network with two stations. The stations can be
described as ./D/1/o0o FIFO, using Kendall’s notation. Here D stands for De-
terministic. The service times are o'(n) = o' = 1/4 and o%(n) = o? = 1/2.
The input process is {T,, = n + 1,n € IN}, i.e. one customer arrives each unit
of time. The routing sequence of customers leaving station 1 is

vi(n) ={3,2,3,2,3,.. },
where 3 corresponds to the exit. This network is represented in Fig. 1.
./D/1/cc FIFO

{Tn} vi(n
O = Exit

Station 1: o' = 1/4

./D/1/cc FIFO

CH

Station 2: o2 = 1/2

Fia. 1. Open Jackson network with two stations.

Let us show that we obtain several stationary regimes. We fix 1 < ¢ < 140,
We consider an initial condition of the form (Q', R') = (1,¢), (Q%, R?) = (0,0),
i.e. there is one customer in station 1 with residual service time c.

We have represented, in Fig. 2, the Gantt chart corresponding to this network
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for ¢ = 1+ 1/8. The horizontal axis represents time. The blocks correspond to
the time spent by the customers in the stations. The colors of the blocks depend
on the customer. For example, black corresponds to the initial customer and light
gray to the customer arriving at instant 7y = 1. It follows from the periodicity
of v'(n) that each customer (except the initial one) receives exactly two services
at station 1 and one at station 2.

Station 1

Station 2 \

| I I | |
To =1 5/4 3/2 T, =2 Ty =3 t

FiG. 2. Initial condition (Q', R') = (1,9/8),(Q?, R*) = (0,0).

We recall that W1(t) is the workload at station 1 at instant t. Using Fig. 2,
one can easily see that max; Wi(t) = 1/4+ (¢ — 1) = Wl(n),n € IN. We con-
clude that there is a continuum of possible stationary regimes for the workload,
depending on c.

Remark This counter-example was first mentioned in [4]. The phenomenon
of multiplicity of second order limits appears in other types of open networks.
A folk example consists of a multiserver queue of the form D/P/2/0cc where
arriving customers are allocated to the server with the smallest workload. For
more details, see for example Brandt, Franken and Lisek, [10] Example 5.5.2.

3.2 Closed network, non-uniqueness of second order limits (D)

We consider a Cyclic Jackson Network (CJN) with three stations and two cus-
tomers. The stations are of type ./D/1/oo FIFO. The service times are o!(n) =
0%(n) = 0®(n) = 1. This network is represented in Fig. 3.

./D/1/oc FIFO ./D/1/oc FIFO

o1 O— 10

Station 1: o' =1 Station 2: o2 =1

./D/1/oco FIFO

(He

Station 3: 0% =1

Fia. 3. Cyclic Jackson Network, three stations and two customers.
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In Fig. 4 and 5, the Gantt charts corresponding to two different initial
conditions are given. The color of the blocks differs according to the customer
served, light gray is for the customer originally in station 1 and dark gray for the
one originally in station 3, see Fig. 3.

1 t
Fia. 4. Initial condition (Q', R') = (1,1/2),(Q% R?) = (0,0), (Q*, R%) = (1,1).

F1G. 5. Initial condition (Q!, R!) = (1,1),(Q?, R?) = (0,0), (Q3 R?) = (1,1).

Let us consider for example the idle time {I'(¢)} at station 1. For the initial
conditions corresponding to Fig. 4 and 5, we obtain {I*(n) =1/2,1/2,1/2,...}
and {I'(n) = 0,1,0,1,...},n € IN, respectively. It is easy to see that there
is a continuum of possible limiting regimes for I'(#) depending on the initial
condition.

In such a deterministic model, initial delays between customers never vanish.
In fact, even first order limits may depend on the initial condition, see next
section.

Remark Such counter-examples are well-known in the literature. In fact, a
complete classification of CJN having multiple second order stationary regimes
can be made using the (max,+) theory, see [22, 23].

3.3 Closed network, non-uniqueness of the throughput (B)

We consider a CJN with four stations and two customers. The stations are of

type ./P/1/oc FIFO, where P stands for Periodic. The service times are
ol(n)=2,0,2,0,..., o%(n) =1, ¢*(n)=0,2,0,2,..., o*(n)=1.

We consider the network under two different initial conditions, see Fig. 6.
The first one is with one customer in station 1 and one in station 3. The second
one is with both customers in station 1. We have represented the corresponding
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%HO j%m

) =12,0,2,... y=1,1,1,.. )=12,0,2,... y=1,1,1,..)

1y by

E%E E%E

o*(n) =1,1,1, )=0,2,0,. y=1,1,1,... )

FiG. 6. CJN, four stations and two customers.

Gantt charts in Fig. 7 and 8 respectively. For convenience, service times equal
to 0 have been materialized and represented by slim bars.

\

Fia. 7. (Q', R') = (1,2),(Q* RB?) = (0,0),(Q% R?) = (1,0), (Q*, B*) = (0,0).

Fia. 8. (QluRl) = (272)7 (Q27R2) = (070)7 (quRS) = (070)7 (Q47R4) = (070)

In Fig. 7, the throughput is 1/3. In Fig. 8, the throughput is 1/2. We
conclude that the throughput depends on the initial position of customers.

In Fig. 7, the light gray customer always receives long services and the dark
gray customer always waits before getting served. In Fig. 8, services and waiting
times are more equally shared between the two customers. It increases the
efficiency of the network.

Remark This example was first introduced in [23], Chap. 8. A closely related
counter-example is displayed by Bambos in [7]. His model is a CJN with distin-
guishable customers. It means that the service times depend on the station and
on the customer. For each couple station-customer, the sequence of service times
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is periodic. As customers do not overtake, the cyclic ordering of customers in the
network is an invariant. It is shown in [7], that the throughput may depend on
the cyclic ordering but also on the initial positioning of customers given a cyclic
ordering. This last result is close but slightly different from the one illustrated
in Fig. 7 and 8. Let us explain why.

We fix a cyclic ordering of customers. For a given initial positioning of cus-
tomers, we can define the sequence {s’(n),n € IN} of services received at station
i. It is easy to see that {s’(n)} is periodic. The difference with our model is that
the sequences {s'(n)} depend on the initial position of customers. For another
initial position, we will obtain sequences of the form {s*(n + k;),n € IN}.

3.4 Closed network, non-concavity of the throughput (C)

We investigate the behavior of the network with respect to the number of cus-
tomers. We consider the network of Fig. 6.A and we add a second customer in
station 1. The new Gantt chart is represented in Fig. 9.

Fig. 9. CJN, four stations and three customers. Initial condition (Q', R') =

(272)7 (Q27R2) = (070)7 (Q37R3) = (170)7 (Q47R4) = (070)'

The average cycle time (see Def. 2.4) of a customer is 21/4 = 5.25. For
example, the cycle time of the light gray customer computed from station 2 to
station 2 is {4,5,6,6,4,5,6,6,...}.

Comparing Fig. 7 and 9, one checks that the average cycle time of the origi-
nal two customers has decreased from 6 to 5.25. The addition of one customer
has increased the speed of the original customers!

For the purpose of this example, let us introduce some notation. We consider
a network with M customers. We denote by (M) the cycle time of a customer
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and by A(M) the throughput (which is the same at each station). We have
A(M) = M/~(M) .

In the previous example, we have obtained v(3) < «(2). It implies \(3)/3 >
A(2)/2. We conclude that there is no concavity of the throughput.

We have represented in Fig. 10, the throughput A(A/) for the network of Fig.
9. For M > 2, each new customer is added in the buffer of station 1. When M
becomes large, we obtain the expected behavior, i.e. the throughput becomes
constant and is imposed by the bottleneck (slowest) station(s).

A(M)

10
0.9
0.8
0.7
0.6
0.5
04

0.3

2 4 6 8 M

F1G. 10. Throughput A(M) as a function of the number of customers M.

In contrast, we can consider the same network with all the customers in
station 1. In this case, we obtain the expected behavior, i.e. the cycle time
(M) is an increasing function of M.

Remark To the best of our knowledge, this kind of counter-example is original.
A similar paradox is provided by the network of Braess, studied in Cohen and
Kelly [13]. It is a transportation network where the withdrawal of one of the
existing routes increases the speed of all the customers. However, the two models
are completely different. Braess model is that of an open congested network
with optimal routing. The paradox comes from the non compatibility between
customer optima and global optima, in a game theoretic sense. Our model is
closed, uncongested and with a predetermined routing. The paradox comes from
the (in)compatibility between the number of customers and the periods of the
sequences of service times.
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Summary The best we can expect to prove is the complement of the previous
counter-examples. More precisely, we propose in Table 2, a new detailed version
of Table 1, with the sections where the positive results are stated.

Open network Closed network
1.9.d. stat. erg. 1.9.d. stat. erg.
Table 2. A | Yes 8§52 ] Yes §5.2 | Yes §5.1 | Yes §5.1
B | Yes §6.3 | Yes §6.3 | Yes §6.2 | No §3.3
C — — 7?7 8§71 | No §34
D | Yes §81| No §3.1|No §3.2| No §3.2

4 Restriction of a Jackson Network
4.1

Let J be a Jackson network. We associate with J a random graph G, called
the routing graph which is defined from the information carried by the routing
sequences only. The set of nodes of G is K and a routing {v%(n) = j} is inter-
preted as an arc labeled n from node i to node 7. In the open case, a routing
{v'(n) = K + 1} is interpreted as an arc from node i to node 0. If (i,j) € K?
is such that P;; > 0 (see (2.3)), then there is an infinite number of arcs from ¢
into j. The arcs originating from a given node are totally ordered by the labels.
An initial condition for the graph is defined as a finite number of tokens placed
on the nodes. Each node might contain several tokens.

Euler property

Definition 4.1. (Game G) Given a routing graph G and an initial condition,
we move the tokens according to the following rules

e Step 1: Select one of the tokens, say one on node i, and move it to node
v(0). Remove the arc {v*(0)}.

e Step n > 1: Select one of the tokens, say one on node i, and move it to
node v'(p) where {v'(p)} is the arc originating from i with the lowest label.
Remove the arc v'(p).

e Termination rule: Each time a token returns to station x, it is frozen there
and cannot be considered for further moves. Equivalently, there is a step
0 for the game which consists of removing the arcs v*(I*),v*(I* +1),...,
where I* is the initial number of tokens in station x.

A sequence of mowves following the previous rules is called an execution of game
G. The game ends when there are mo unfrozen tokens left in the network. We
denote by T the step at which the game ends.

This game can in some sense be interpreted as an untimed version of the
evolution of the Jackson network. There are of course several possible executions
of the game depending on which token is selected at each step. In the closed
case, given an execution of the game, it is easy to build sequences {(7*(n),k €
K),n € IN} of service times such that the Jackson network {(5*(n),v*(n))}
evolves exactly as G. In the open case, it would be necessary to allow the
addition or removal of tokens to obtain the same interpretation.
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Proposition 4.2. (Euler property) Let J be a stationary and ergodic (SE3)
Jackson network. Let G be the corresponding routing graph. Let us consider a
finite initial condition for G. For all executions of the game G, the game ends
in finite time, i.e. T < oo. Furthermore both T and the set of arcs of G which
are not removed at time T do not depend on the execution.

Proof The key ingredient is the irreducibility of the routing matrix IP. A proof
was proposed in [2] under (Hy) type conditions. For a proof under (SE3), see
[5]. |
4.2 Restriction of a network

Let J be a Jackson network. For all integers [ > 0, we define the Jackson network

Jiou = {(a[’g,” (n).k € K), (vfy 4 (n), k € IC)} ., (4.1)
where
) = o*(n) for0<n <l
T,y = 00 otherwise

and J[%yl](n) =o"(n),¥n > 0,Vk € (K\*) and l/[%yl](n) =vk(n),vn > 0,Vk € K.
We say that Jj ) is a restriction of J. The intuitive interpretation is that we

block station * after [ services there.

In a consistent way with the notations of Def. 2.7, we denote the daters and
counters associated with the network Jy ; by X[’E"] 1 (n) and X[’("] z](t)- We define
the mazimal daters associated with the network Jjg ;) as

X = ma X (), Xiouy = max X, (42)

where the maxima are taken over the finite terms only. It follows from Prop. 4.2
that X|o; is finite P-a.s. The interpretation is that Xq ;; is the date of the last
event to take place in Jjg ;. Let us define

oy = Jim X*(8) = X*(Xo), loy =D oy -
ke

The integer l{“o I is the total number of services completed at station £k until
instant Xo; (or equivalently until oc). By definition, we have gy =1+1. Tt

follows from Prop. 4.2 that l{“o I is finite and depends only on the routings, not
on the services.
We define the following notations.

e Services used up to time Xjg
J[%J] = (Jk(0)7 o '70—k(lﬁ]7l] - 1))7 U[U,l] = (J[%ka € IC)
e Routings used up to time Xjg

V[%J] = (Vk(o) o '-,Vk(l[ko,l] - 1)) V[O,l] = (V[%JPk € IC)
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e Total service time received up to time Xpg ;:
k Hor=l ks k
||‘7[0,1]|| = 2_i=0 a” (i), ||‘7[0,l]|| = Zke;c ”‘7[0,1]”'

For all [ > 0, we define the Jackson network
Tt = {0 sy (0), k€ K). (v o (n). K € K),m € IV,

where 0[13700](11) =o*(n + lfcmzfl]) and vk

[1,00

}(n) = vh(n + lfco7l—1])7 k € K (with
the convention 1{60,71] =0).

The interpretation is that Jj; . is the network obtained by unblocking Jig ;1)
after instant Xo ;4.

The definition of the restricted networks Jj; ,),1 < p, follows naturally. The
notations used for quantities associated with .J;; ,; are consistent with the previ-
ous ones. For example, we denote the internal daters of Jj; ;) by X[’f p](n).

For convenience, we use the following abridged notation Jj, = J|
accordingly Xi,) = Xy, ), X[ () = X[ (n), ...

p,p] and

Remark The restrictions Jj; ;) are defined as Jackson networks, and the con-
ventions of Section 2.1 will be used without further mention. It implies that
Jj1,p) starts its evolution at time 0 and not at time 7} or X{g;_1].

Example 4.3 Let us consider the closed Jackson network of Fig. 6.B. We have
Iy =4, vy = {vp vt = {2,341},

o ={0ofg, - 0f} =1{2,1,0,1},i even, op; ={0,1,2,1},i odd .
Note that in this case, the stations visited and the services received by a customer

in the networks J and Jj; are the same. One can easily convince oneself that it
is not the case as soon as the routings allow customers to overtake.

4.3 Stochastic assumptions

We consider a probability space (2, F, P,f) as defined in §2.2. The main forth-
coming results (Sections 5,6,7) are to be given under the following stochastic
assumptions :

e H1 The sequence { (o, vp) = (a[ki],y['”;]., k€ K), i € IN} is stationary and

ergodic, i.e. we have

(] v12) = (70), v10)) 0 6" (4.3)
for some P—stationary and P—ergodic shift 6.
e H2 The total service time received in Jjo is integrable, i.e. E(|lol]) <
~+00.

Note that these assumptions are made on the quantities associated with the
restricted networks Jp;. They may not seem natural at first glance. All the



16 Francois Baccelli, Serquei Foss and Jean Mairesse

results to come will show that they are the right ones, see Remark 6.2. The
following lemma gives simple sufficient assumptions on J under which the above
assumptions are satisfied (see [5]).

Lemma 4.4 Let us consider a Jackson network J such that the sequences
{(c*(n)),n € IN},k € K, are stationary-ergodic and mutually independent and
the sequences {v*(n),n € INY, k € K, are i.i.d., mutually independent and inde-
pendent of the services. Then {(o1,],v)), p € INY} is a stationary and ergodic
sequence.

The previous lemma fails to be true if we only assume that {(c%(n), k €
KC),n € IN'} is stationary-ergodic.

5 First Order Limits for Canonical Initial Conditions (A)

It is easy to prove, see [5], that ay, defined in (2.4), is also the expected number
of visits to station k in Jy:

ar = E(lfy) . (5.1)
5.1 Closed network

Theorem 5.1 Let J be a closed Jackson network. Under the assumptions H1-
2, we have for all k € K:

k
t
ity = A was
. n . Xk(t)
S Blgrgy) = M B(—=—) =,

for some constant X and where ay is defined in (2.4) or (5.1).

Proof The proof is based on the sub-additivity of the maximal daters A7, ,,].
It is given in [5]. O

5.2 Open network

Let J be a Jackson network verifying assumptions H1-2. We define J{0} to be
the Jackson network obtained from J by modifying only the arrival process and
setting T,, = 0,Vn > 0. In words, J{0} is the saturated network associated with
J. We define, with obvious notations, the quantities X*(n){0}, X*(¢){0} ...

Theorem 5.2 Under the previous assumptions, there exists a constant A(0)

such that
XEH ({0}

lim

t—o0

A0), P—a.s. and in L, . (5.2)

The constant X(0) is the asymptotic throughput of departures from the network
J{0}. Furthermore, we have:

A0) = max E (||a[’g]||) .

=1,...,

We recall that ||a[ko]|| is the total service time received at station k in Jy.
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Proof The first proofs were given in [2] and [4]. A shorter proof will appear in
[5]. O

Theorem 5.3 Let J be an open Jackson network verifying assumptions H1-2.
Let M\(0) be the constant defined in (5.2). We assume that \° < A\(0). We have
for allk e CU{K + 1}:

XE(t)

nango XkL(n) = tli)rglo ;= ap\’, P —a.s. and in L ,

where ay, k € K, is defined in (2.4) and where a*T' = 1. If we assume that
A% > X\(0), then we have:

XI\’+1 t
Proof A weaker version of the result was proved in [2]. The proof of this version
is given in [5]. O

It follows from Theorems 5.2 and 5.3 that

,,,,,,

The constant A(0) is the throughput of the network when we saturate the
input. The interpretation of Theorem 5.3 is that A(0) is the maximal possible
throughput for the network. This follows from the fact that the saturation rule
of [3] can be applied. Theorem 5.2 provides a simple practical way to compute
the maximal throughput of an open network.

Example 5.4 We consider the network of §3.1. We obtain oy, = (1/4,1/4)
(two services, each of length 1/4) and o, = (1/2). It follows that [og|| =

||afo]|| = 1/2. We conclude that the maximal asymptotic throughput of the
network is 2.

6 First Order Limits for Different Initial Conditions (B)

We want to obtain extensions of the results of §5 for networks with arbitrary
initial conditions. The results will be completely different for open and closed
networks. The throughputs do not depend on the initial condition in the open
case and they do in the closed case.

6.1 Compatibility

Let 1J = {(c*(n),v*(n)),k € K,n € IN} be a Jackson network with an arbitrary
finite initial condition I = {(Q*, R),k € K}. We consider a modification ;Jig of
1J obtained by setting 0*(0) = +o00. All other quantities (services, routings and
initial condition) are the same in ;J and g The interpretation is that gy is
obtained by immediately blocking station *. Associated quantities are denoted
accordingly, for example Xy for the maximal dater.

It follows from Prop. 4.2 that ;Xjg is P — a.s. finite. Furthermore at instant
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IX[EW the network is empty (open case) or all the customers are in station 1
(closed case).

We define a new network ;J with service times { ;6*(n) = o*(n + Ilf”’w])., n € IN},
k € K, and routings { ;7*(n) = v*(n + rlfy),n € IN}, k € K. The initial
condition of Ifis canonical. The interpretation is that Ifis the network obtained
by unblocking rJjg) after instant [Xpg).

We are now ready to define compatibility. Let J and oJ be two Jackson
networks differing only by their initial conditions I; and I5. Let 1J[0] and 2J[g) be
the blocked networks defined as above. Let 1j and 2j be the unblocked networks
defined as above. Let {(107;], 17}57),% > 0} and {(267;,297;7),% > 0} be the services
and routings used in networks 1JAM and gj[i] respectively.

Definition 6.1 The initial conditions of 1J and oJ are said to be compatible if
(1) {(16pi127), 1 > 0} s stationary and ergodic.
(2) {(16i1707),1 > 0} has the same distribution as {(207;),20};)),7 > 0}.

Lemma 4.4 provides assumptions under which the first condition is always
verified. The next lemma is straightforward.

Lemma 6.2 Let us consider an i.i.d. Jackson network, see Def. 2.5. Then all
initial conditions are compatible.

Without the i.i.d. assumption, compatibility is not always verified.

Example 6.3 Let us consider the model of §3.3. The networks of Fig. 6.A and
6.B, say 4J and gJ, differ only by their initial condition.

e 4J. Let us consider the network /g as defined above. It gets blocked
after the dark gray customer has received exactly one service at stations 3 and
4. Tt implies that the network 4J has the following sequences of service times:

6'(n)=2,0,2,0,... 6%(n) =1,1,1,... 6°(n) =2,0,2,0,... 6*(n) =1,1,1,...

)

We have ﬁ['”;] =k +1[mod 4] for all i > 0 and 61, = (67, 07y) = (2,1,2,1),
odd, ;) = (0,1,0,1), i even.

e pJ. The quantities associated with the restricted network pJj; are
y[k] =k+1[mod 4] and 67;) = (2,1,0,1), i odd, (5 = (0,1,2,1), i even.
We conclude that the initial conditions of 4J and gJ are not compatible.
6.2 Closed network
The main theorem is the following one.

Theorem 6.4 Let (J and oJ be two closed Jackson networks with finite initial
conditions I and I,. We assume that I and I, are compatible. The networks
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are supposed to verify assumption H2. Let 1 X*(n), X*(t) and 2X*(n),X*(t)
denote the daters and counters associated with 1J and oJ respectively. There
erists a constant A such that for all k € IC:

. n . 1Xk(t) . n ) ﬂk(t)

neo 1X*(n) P il ST, agA, a.s
. n T 1Xk(t) L n s QXk(t) B
Jim B(—pes) = Jlim B(=22) =l Bl—res) = lim BC=72) = aid

where ay, s the expected number of visits to station k in 1j[0] or Qj[g], see (5.1).

Proof The networks 1j and 2j are equivalent in distribution. They also have a
canonical initial condition. It implies that we can apply Theorem 5.1. The last
step is to prove that the first order limits of ;J and ;J,i = 1,2, are identical. For
a more detailed proof, see [5]. O

For non-compatible initial conditions, the first order limits need not be the
same.

Example 6.5 Let us consider the counter-example of §3.3. The throughputs of
the networks 4J and gJ are different, equal to 1/3 and 1/2 respectively. We know
from Example 6.3 that the initial conditions of 4J and gJ are not compatible.

However, we obtain the next Theorem as a corollary of Lemma 4.4 and 6.2

Theorem 6.6 In an i.i.d. closed Jackson network verifying assumption H2,
the first order limits (n/X*(n), X*(t)/t,...) exist and do not depend on the finite
initial condition.

Remark The results of this section show that first order limits depend only on
the distribution of { (o, v},)), p € IN}. Tt implies that the “unusual” stochas-
tic assumption that we make on our Jackson networks (H1, see (4.3)) is the
“natural” one. It is not an artefact of our method of proof.

6.3 Open network

Let ;J be an open Jackson network with an arbitrary finite initial condition
I={(Q* R*),ke{l,...,K}}.

Let J be the associated network with exactly the same sequences of services
and routings but with a canonical initial condition (see Def. 2.3). We assume
that J verifies assumptions H1-2.

Theorem 6.7 We assume that \° < X(0), see eqn (5.2). For all finite initial
conditions I, we have for all k € KU {K + 1}:
1X5(t)

n
lim ——— = lim ——~2 =a;\°, P —a.s. and in L ,
n—o0o ]Xk(n) t— o0 t k ’ Lo

where ay, is defined in eqn (2.4). If we assume that \° > X(0), then we have:

XI\"-I—I t
n—oo g — o0
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Proof The first proof was given in [2], for initial conditions which are compat-
ible with the canonical one. The general proof is given in [5]. |

7 First Order Limits: Concavity of Throughput (C)
7.1 Results and conjecture

The throughput at a station is an increasing function of the vector of initial
queue lengths.

Proposition 7.1 Let yJ and vJ be two closed Jackson networks differing only
in their initial condition. We denote by yA and v\ the throughputs at station 1
in uJ and v.J respectively. Let us assume that yQ* > vQ* k € K. Then we
have yA > yA.

Proof The result follows from a sample path argument. It was originally proved
by Shanthikumar and Yao [28]. O

As far as concavity is involved, the only result which is known is for expo-
nential networks.

Proposition 7.2 Let J be an i.i.d. closed Jackson network. We assume fur-
thermore that all the services times are exponentially distributed, i.e. there exist
constants By, k € K, such that P{a*(0) > u} = exp(—fru). Let M be the num-
ber of customers in the network and \*(M) be the throughput at station k, k € K.
Then A*(M) is a concave function of M.

Proof The proof depends heavily on the product form solution for the station-
ary distribution of the vector of queue lengths. For details, see Shanthikumar
and Yao [27] and also Dowdy and al. [15]. O

Prop. 7.2 fails to be true for a stationary-ergodic (H1-2) Jackson network.
Note first that it is now necessary to record the exact initial position of the cus-
tomers because of the non-uniqueness of the throughput. However, the concavity
fails even for an increasing (in the sense of the partial ordering on (Q*, ..., Q%))

sequence of initial conditions. A counter-example is provided in §3.4, see Fig.
10 in particular.

To bridge the gap between this counter-example and Prop. 7.2, the next step
would be to (dis)prove the following result.

Conjecture Let J be an i.i.d. closed Jackson network. Then \*(M),k € K, is
a concave function of M, the number of customers in the network.

8 Second Order Limits (D)

We obtain different types of results for open and closed Jackson networks. In
the open case, we prove the existence of minimal stationary regimes for second
order processes. In the closed case, there are no general ways of constructing
the stationary regime. In both cases, there is no uniqueness of the stationary
solutions in general.
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8.1 Open network

Let us consider an open network J with a canonical initial condition and sat-
isfying assumptions H1-2. The second order processes of J are denoted by
(Q(t). R(t)) = (Q*(t), R*(t), k € K\0) and W (t) = (W"(t), k € K\0), see §2.3.

Theorem 8.1 If \° > \(0), then there exists k € K such that we have P-a.s.:
QF(t) 5 400, WH(H) 5 +o0.

If A% < X(0), then the processes (Q(t), R(t)) and W (t),t > 0, converge weakly to
a finite and stationary-ergodic limit processes (Qoo(t), Roo(t)) and W (t),t > 0.

Proof The proof is given in [2], §6. m|

The stationarity of the processes (Qw(t), Reo(t)) and W (t) has to be in-
terpreted as a Palm stationarity (i.e. with respect to the instants {T,}). These
processes are called the minimal stationary regimes for reasons explained in § 9.
They are explicitly computed under special assumptions in Section 9. In many
cases, there will be multiple stationary regimes depending on the initial condi-
tion, see Example 8.2.

Example 8.2 Let us consider the network of §3.1. It was shown in Example
5.4 that A(0) = 2. In the example of §3.1, the arrival rate is 1, hence we are
in the case A\’ < A(0). However, we have shown that there are several limits
for second order processes depending on the initial condition. The minimal
stationary regimes are the ones corresponding to ¢ = 0. For example, the minimal
queue length process is the randomized version of

C(1L0) i e [0.1]U,ugln —1/4n+1/4]
Qoo(t)—{ (0.1) if €U, oln+1/4n+3/4]

Under stronger assumptions, we obtain the following refined result.

Theorem 8.3 We consider a Jackson network pJ with a finite initial condition
I. We assume that the sequence of service times {(c*(n),k € K),n € IN} is
stationary and ergodic and the sequences of routings {v*(n),n € IN}, k € K, are
i.i.d., mutually independent and independent of the services. Then the results
of Theorem 8.1 apply independently of the initial condition. In particular, when
A0 < M(0), there is a unique stationary regime for the second order processes
(Q(t), R(t)) and W(t). Furthermore, they converge in total variation to their
stationary distribution.

Proof The proof of this result is given in [2], §7. a

Stability region Saying that [0, A(0)] is the stability region of an open Jackson
network is a way to summarize the results of Theorems 5.2,6.7 and 8.1. For an
input rate A’ € [0, A(0)], the output rate (A*1) is A\ and second order processes
are finite. For an input rate \° ¢ [0, A\(0)], the output rate is A(0) and second
order processes are asymptotically infinite.
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8.2 Closed network
Let J be a closed Jackson network verifying assumptions H1-2. In general there
is no uniqueness of the stationary regimes for second order processes. This is
illustrated by the counter-example of §3.2. Furthermore, we have not been able
to obtain a counterpart of Theorem 8.1, i.e. to construct a stationary regime in
general. Some insights into the difficulties that arise are given in [6].

Even for i.i.d. closed Jackson networks, no general necessary and sufficient
conditions for stability are known. There exist however some good sufficient
conditions, see [8, 9], [17], [29] or [20]. The most recent ones are provided in [24].

9 Fluid Open Jackson Networks

The object of this section is to give more detailed results on the class of functions
involved in the weak limits for second order variables, like those mentioned in
Theorem 8.1. We will concentrate on a rather special model with fluid rout-
ing and with deterministic service times, but which still allows one to handle
general stationary ergodic external arrival processes. More general cases can be
considered along these lines (see [5]).

9.1 Evolution equations for counters

In this section, we consider an open Jackson network J with canonical initial
condition, and such that o*(n) = o* =Const. for all k # 0. We will make use of
the following counters:

e VF(t), the total number of services initiated in station k in [0, ¢];
o Ak(t), the total number of external arrivals in station k in [0, ].

In addition, let
P
Wik(p) = > lpwiay=r}» p€IN,j k€ K\O. (9.1)
=1

Using the FIFO hypothesis and the assumption that the network is initially
empty, we obtain the following set of recurrence equations, holding for all ¢ > 0
and all k # 0 (see [4] for more details on these equations):

VE() = (Vt—o")+1) A DT Vit —o))) + A5t) |, (9.2)

j=1
with initial condition Y*(¢) = A*(t) = 0, for t < 0.

Fluid networks By definition, the fluid network J associated with (9.2) is
that with evolution equation

) = (y"(t—ak)ﬂ)/\ S PVt -0’ + A | (9.3)
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where P is the routing matrix. Such fluid models, which differ completely from
the usual fluid models of queuing theory (here only the routing is fluid, whereas
the services remain unchanged), were introduced in [12] for a class of Petri nets.
Although the state variables stop being integer-valued, we will go on speaking
of numbers of customers etc.

When each of the K sequences {v*(p)} is stationary, then for all (determin-
istic) X € IN, E(I1;5(X)) = Pjs E(X). Assume that the sequences {v*(p)} and
the arrival process are independent and that each of the sequences {v*(p)} is
iid. Then, when X is a random vector of IN¥ the relation Zj I (X7) =
Z]. P;;, E(X”) also holds true whenever X is a stopping time of the sequences
{v*(p)}, k = 1,..., K. This fact and the concavity of the mappings involved
in eqn (9.3) are the key ingredients to prove the following relation between the
fluid and the non-fluid equations (see [5] for more details).

Lemma 9.1 If the sequences {v*(p)} and the arrival process are independent
and if each of the sequences {v*(p)} is i.i.d., then for all f : IR® — IR, nonde-
creasing and concave, and for all t € IRY, E (f(Y(t))) < E (f(Y(t))) -

We will from now on concentrate on the fluid model.

9.2 Evolution equations for second order variables

When letting ¢ go to infinity in the above evolution equations, we obtain that
—k —k —

the total number of events Y = Y (0), AP = A*(00), satisfy the equation Y =

YIP* + A where IP* denotes the restriction of IP to the coordinates {1,..., K}.

The total numbers of events do not depend on the values of the service times.

This property is a special case of Prop. 4.2 (for fluid).
When Y is finite, let

M=y -Y'w, Bwt)=4" -2, (9.4)

be the processes which count the residual number of events to take place in
station k after time £. These second order variables satisfy the following system
of equations:

M) = (mk(t—ak) - 1) VY P (- o?) + B | . (9.5)
J

One can reconstruct the total number Q" (¢) of customers present in quene k at

time ¢, from MF(.) via the formula:

—k —k — ; .

Q(t) = M (t)=> PuM(t-o’)-B1). (9.6)
J

Remark Similar evolution equations can be derived for the initial non-fluid

network (see [4]), including the case of random services (see the last section

therein).
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9.3 Stationary regime

In this section, we consider a slotted model where all service times and inter-
arrival times are equal to 1. The only randomness comes from the number of
external arrivals at time n in station £ = 1..., K, described by the random se-
quence {Af“n}}., n € Z, which is assumed to be such that Akn] = Afo] o #™, for all
k and n. These stochastic assumptions are slightly different from the previous
ones in that 6 is not necessarily the Palm shift of the arrival process anymore.
Let M} = Mfﬂnm (n), n > 0, be the residual process in the system which
starts empty at time 0, has arrivals at time 1,2, ..., n+1, with respective numbers
of arrivals Aj_,,), A_n41, -+, Ajo)- We have Mk = y[’gp and from the relation

Mf,n,m] (n+1)of = ﬂﬁn,o](n + 1), we obtain that
. —k ! ‘
Mr]:+1 of = y[1]+(MT]: —1)V ZP]kMrJL . (97)
J

It is easy to check that the sequences M* are non-decreasing in n, and that
the limit M = lim,,_.. M,, is either a.s. finite or a.s. infinite. When the limit
M = lim, ., M, is a.s. finite, it is the minimal solution of the functional
equation

M*of =Y+ (M -1V [ Y P . (9.8)
J

These minimal stationary variables allow one to construct an associated “mini-
mal” stationary queuing process (giving the queuing process just before arrival
instants), via relation (9.6). More generally, it is in this sense that the limit
variables mentioned in Theorem 8.1 are said to be minimal.

Remark In the case where the transpose of matrix IP is substochastic, (9.7)
can be rewritten in vector form as M, = ¢(M,,), where the random map ¢ is
monotone, sub-homogeneous and non-expansive. The existence of the a.s. limit
max; MF /n follows then immediately from general theorems on such maps given
in [6].
Theorem 9.2 below, which is proved using (9.7) and (9.8), gives a representation
of the transient and the stationary variables M,, and M.

The following notations will be needed: for p < ¢, let

: —k
aﬁ%‘l] = Vipa — (@ = D). (9.9)

For 2 < h < 00, let ll? 12(j1)7 l3(j17j2)7 sy lh(jlu“'ujhfl% be a famlly of
integers indexed by j = (j1,...,jn_1) in {1,..., K}*71. Let A, (h) denote the
set of all families L = {19(j)}4=1,....n, je{1,...,i}n—1 such that for all j, 0 < It <
I2(j) < -+ < 1"(j) < n. Finally, let A = A (c0)

Theorem 9.2 Under the foregoing assumptions, the variable M*, n < oo,
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k=1,..., K, admits the following representation:
MF = , nax A% (n), (9.10)

with A% (0) = afin’o], AR (1) = maxo<i, <n af711+170] +3; ijaf;nﬁll], and more
generally

k - kp
A (h) = LenlX E : Ao+ (ky k)1, =17 (ke kp—1)] H Py ks

p=0.....h g=1

(9.11)
with the conventions I° =0, "1 =n +1, kg =k and Htl] =1.
In the case where the stability condition E(y[%]) < 1, for all k, is satisfied,

the stationary variable M* admits the representation:

P
ko kyp
M? = sup Z AL 41 (ke k)1, — 12 (ke kp—1)] H Py gy (912)
LeA > a1
1<k, ky....<K
Example 9.3 Consider a feedback queue with unit service times, where feed-
back takes place with probability p < 1. Equation (9.7) reads

A
My 06 = 1& + (M, —1)V (pM,). (9.13)
-D

The solution of this equation is

Mn = 11Tp(~’4[7n,0] — n)
maxg<ii<n llfp(A[,ll+170] — (l1 -1)) + %(A[fnﬁzl] —(n— ll)) v
maxo<y, <. <t,<n 7o (A 41,00 — (' = 1))

1 [ (T L)) AV

P

Vo e o (Ag-)-

The sequence M, is nondecreasing, and it tends to the limit

V
V

i
M = sup
0<ly<la <+ a>0

A Zpa+141,210),

as m goes to oo, which is finite when E(Aj) <1 — p.
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