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TEMPERATURE DYNAMICS OF THE 1-d ISING AND
POTTS MODELS
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ABSTRACT

We consider the Glauber dynamics of the g-state Potts model in one dimension
at zero temperature. Starting with a random initial configuration, we measure the
density r; of spins which have never flipped from the beginning of the simulation
until time . We find that for large ¢, the density r; has a power law decay (r; ~ ¢=%)
where the exponent # varies with ¢g. Our simulations lead to § ~ .37 for ¢ = 2,

O~ .53 for¢g=3and § — 1 as g — oo.
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The study of irreversible processes has led to the discovery of a large variety of
non-trivial critical behaviors. Such processes include reaction-diffusion problems [1],
(2], [3], [4], [5], [6], random sequential parking or fragmentation models [7], [8], [9],
[10], [11], domain growth models [12] and the kinetic roughening of interfaces [13],
[14].

In an earlier work [12], we have studied a simple deterministic model of domain
growth in one dimension. The system consists of a sequence of intervals along
the line. At each time step, the two closest domain walls in the system merge and
annihilate whereas the other domain walls do not move. Starting with random initial
lengths for the domains, we showed that the fraction r; of the line which has not
been crossed by any domain wall up to time ¢ decays with a power law r; ~ l(t)_‘gl
where [(t) is the average length of the domains at time ¢ and ¢’ ~ .1750759... is
a non-trivial exponent, the solution of a transcendental equation (notice that in
reference [12], we used the exponent f3 related to our present 8’ by =1 —6'). As
for other critical exponents, #' is universal in the sense that it is the same for all
initial conditions (provided that the correlations in the initial condition are short
range).

In the present work, we investigate the same kind of question for similar models
with stochastic dynamics: the one dimensional Ising model at zero temperature and
its generalisation to the general g-state Potts model. In contrast to our previous
results [12], our approach here will be mostly numerical because so far we have not
been able to develop an analytical approach.

Our simulation of the dynamics of the one-dimensional Ising model with ferro-
magnetic interactions at zero temperature is done for a system of N = 100000 spins
with periodic boundary conditions. We start with a random initial spin configura-
tion (each spin is initially + or — with equal probability). The updating rule to go
from configuration C; at time ¢ to the next configuration Cypa; at time ¢ + At is

done by choosing one spin ¢ at random. This spin is aligned with its two neighbors



if these two neighbors are parallel or is flipped at random if the two neighbors are
opposite [15]. We take here our time step At = 1/N so that each spin in the system
is updated on average once per unit of time. Then we count the total number R; of
spins which never flipped until time ¢ (the number of non-moving spins was shown
to have interesting properties in some deterministic voter models [16]). The density
r; of these spins is thus r, = R;/N.

Our results done from time ¢ = 0 until time ¢ = 10000 are shown on figure 1 and

indicate that r; has a power law decay
Ty n~ t_e

with

QIsing ~ 37

The log-log plot gives a straight line from time ¢ ~ 3 to £ ~ 10000 and we estimate
the error bar to be about .02 . For the 1-d Ising model, it is well known [17], [18]
that the average length /(1) of domains increases as t'/2. Therefore, one could also
write 1y ~ [(1)™" with 6’ = 26.

We repeated the same calculation for the ¢-state Potts model [19], [20] again for
a system of N = 100000 spins and for times up to 10000. In this case each spin is
given initially a random integer value between 1 and ¢g. Then the updating rule is
that at each time step At, a site 7 is chosen at random and the spin \S; becomes equal
to the value of either its left neighbor or its right neighbor with equal probability.
As in the Ising case, we take periodic boundary conditions.

Our results (r; versus t) obtained for ¢ = 3,5,10 and oo are shown on Figure 1
( for ¢ = oo, all the spins in the initial configuration are in a different state; one can
take for example S; = 7). For the Potts model, as for the Ising case, they indicate

that r; decays like a power law and our estimates for the exponent 6 are:

Hq:;g ~ 53
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9q=10 ~ 82

Oq=co ~ 1.0

Here again the log-log plot gives a straight line for times ¢ > 5. Since r; decreases
as ¢ increases, the number of spins which have never flipped becomes so small, for
the system size that we considered, that the data are noisy. As for the Ising case we
estimate our error bar to be about £.02.

We see that the exponent  seems to vary with ¢g. This is reminiscent of what
we already found in the simple geometrical growth model of reference [12] where 6’
was varying from .1750759... to 1 when ¢ changes from 2 to oc.

We did not find a way of calculating the exponent 8 for general values of q. The
case ¢ = oo can however be easily understood from a simple domain wall argument.
When ¢ = oo, one can think of the domain walls as being particles on the line
performing a Brownian motion with the reaction rule that when two particles meet,
they merge into one particle: A+ A — A. Any given site does not flip between
time 0 and time ¢ if and only if it has been visited by neither the first particle on its
right nor the first particle on its left. It is a well known fact of random walk theory
that the probability p; that a site is not visited by a random walker at its right
decays like p; ~ t='/2. Then if we want a site to be visited neither by the particle
at its right nor by the particle at its left, one gets r;, = p? and this leads to § = 1.
Unfortunately, it is not easy to extend this idea to general ¢ because depending on
the Potts states of domains, one has either A+ A — 0 or A+ A — A and this means
that sometimes the closest particle at the right (or at the left) of a given site might
disappear before it reaches that site.

One can measure the number of spins which flipped only once between time 0
and time t. Figure 2 shows for the 1-d Ising model a log-log plot of the density of
spins which did not flip and of the density of spins which flipped only once. The
results indicate that the power law decay is the same for the two quantities and it

is reasonable to expect that the density of spins which flip exactly n times with n



fixed as t = oo would decay with the same exponent.

One can also try to repeat the above calculations in higher dimensions. We
present in Figure 3 the results obtained for the 2-d Ising model. In dimension 2,
we used a system of 300? sites and the range of time was 0 to 10000. We observe
again a power law decay of the density r; of spins which have never flipped, with an
exponent § ~ .224.03 . This estimate is done over the range 5 < ¢ < 1000. As usual
the short time results should be eliminated because they are non-universal. Also, we
believe that the late time data are not too reliable because the characteristic length
of the domains starts to be comparable to the system size. One could try to measure
the exponent @ in higher dimension but we expect finite-size effects to become more
and more serious as the dimension increases. This is again because the characteristic
length of domains increases as ¢'/? in all dimensions, whereas the linear dimension
of the system one can simulate obviously decreases with dimension. So the range of
times which are not affected by finite size effects decreases with dimension.

In this letter, we have presented numerical results indicating that for the 1-d Ising
and Potts models, the density of spins which have never flipped has an interesting
power law decay with time and the exponents seem to be non-trivial. In the case
g = oo, a simple argument proves that the exponent 6 is equal to 1, in agreement
with the numerical data.

When one thinks of the dynamics as a Brownian motion of the domain walls,
one realizes that the problem is closely related to reaction diffusion models [18], [20].
For example the Ising case corresponds to an initial situation where all sites are
occupied by B particles and where the domain walls are represented by A particles.
The dynamics is that the particles A are random walkers whereas particles B do
not move, with the reactions A + A — 0 (the annihilation of domain Walls) and
A+ B — A+ 0 as the non-moving sites disappear whenever they are visited by
domain walls. The case of the Potts model corresponds to having in addition the

possibility that A + A — A. A great deal of work has been done recently to



understand the critical exponents which characterize the long time behavior of the
density in these reaction diffusion models [1], [2], [4], [3], [5], [6], [21] and it would
be interesting to know whether the methods [22], [23], [24], [25] which have been
developped for these systems could be used to predict the values of § that we have
measured from our data shown in figure 1. The higher dimensional cases however
would require a different approach as the domain walls are extended objects (lines
or surfaces) rather than points.

As the case ¢ = oo is understood, one could try to calculate the exponent 6
using a large g expansion. Another interesting question would be to extend the
notion of non-moving spins to non-zero temperature. At non-zero temperature, the
number of non-moving spins decays exponentially in all dimensions. However when
the characteristic size of domains becomes larger than the equilibrium correlation
length, one can associate to each site in the system the phase it is in (except perhaps
for the sites too close to a domain boundary) and one can count the number of time

steps a site spends in a given phase.
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Figure Captions

1. Figure 1: log-log plot of the density r; of spins which have never flipped versus
time for several one dimensional Potts models (of course, ¢ = 2 corresponds to
the Ising model). For all choices of ¢, the number of states of the Potts model,
ry has a power-law decay with an exponent which depends on ¢g. For large ¢,

the large t data become noisy because the system size is not big enough.

2. Figure 2: log-log plot of the density of spins which have never flipped and of
the density of spins which flipped only once, for the 1-d Ising model. These

two densities seem to have the same power law decay in the long time limit.

3. Figure 3: the density r; of spins which have never flipped for the 2-d Ising

model.



