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Abstract. Evidence is presented from numerical magneto-hydrodynamical simulations for the existence of magnetic
activity in late-type giant stars. A red supergiant with stellar parameters similar to that of Betelgeuse (α Orionis)
is modeled as a “star-in-a-box” with the high-order “Pencil Code”. Both linear kinematic and non-linear saturated
dynamo action are possible: the non-linear magnetic field saturates at a super-equipartition value corresponding
to surface magnetic field of field strengths up to ∼ 500 Gauss. In the linear regime two different modes of dynamo
action are found with exponential growth rates of ∼ 4 and 25 years, respectively. It is speculated that magnetic
activity of late-type giants may influence dust and wind formation and possibly lead to the heating of the outer
atmospheres of these stars.
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1. Introduction

There are indications from both dynamo theory and ob-
servations that some late-type giant stars such as red su-
pergiants and asymptotic-giant-branch stars (AGB stars)
may harbor magnetic fields. On the theoretical side, it has
been suggested that non-spherically symmetric planetary
nebulae (PNe) formed during late stages of AGB star evo-
lution may be a result of the collimating effect of a strong
magnetic field: Blackman et al. (2001) studied interface
dynamo models similar to mean field theory’s solar αω-
dynamo and found that the generated magnetic surface
fields typically could be ∼ 400 Gauss, strong enough to
shape bipolar outflows, producing bipolar PNe, while also
braking the stellar core thereby explaining the slow ro-
tation of many white dwarf stars. Also using mean field
dynamo theory Soker & Zoabi (2002) propose instead an
α2ω dynamo due to the slow rotation of AGB stars render-
ing the ω-effect ineffective. They find that the magnetic
field may reach strengths of ∼ 100 Gauss, significantly
less than that found by Blackman et al. (2001). On the
one hand, they believe that the large-scale field is strong
enough for the formation of magnetic cool spots (see also
Soker & Kastner 2003 on AGB star flaring). These spots in
turn may regulate dust formation, and hence the mass-loss
rate, but the authors argue that they cannot explain the
formation of non-spherical PNe (see also Soker 2002): on
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the other hand, the locally strong magnetic tension could
enforce a coherent flow that may favor a maser process.

On the observational side of things, maser polarization
is known to exist in circumstellar envelopes of AGB stars
(e.g. Gray et al. 1999, Vlemmings et al. 2003, and recently
Sivagnanam 2004) and X-ray emission has been observed
from some cool giant stars (e.g. Hünsch et al. 1998 and
Ayres et al. 2003). These observations are generally taken
as evidence for the existence of magnetic activity in late-
type giant stars (cf. Soker & Kastner 2003).

The cool star Betelgeuse (a.k.a. α Orionis) is an ex-
ample of an abundantly observed late-type supergiant
that displays irregular brightness variations interpreted
as large-scale surface structures (e.g. Lim et al. 1998 and
Gray 2000). It is one of the stars with the largest apparent
sizes on the sky—corresponding to a radius in the interval
600–800 R⊙. Freytag et al. (2002) performed detailed nu-
merical 3-d radiation-hydrodynamic (RHD) simulations of
the convective envelope of the star under realistic physical
assumptions, while trying to determine if the star’s known
brightness fluctuations may be understood as convective
motions within the star’s atmosphere: the resulting mod-
els were largely successful in explaining the observations
as a consequence of giant-cell convection on the stellar sur-
face, very dissimilar to solar convection. Dorch & Freytag
(2002) performed a kinematic dynamo analysis of the con-
vective motions in the above model (i.e. not including the
back-reaction of the Lorentz force on the flow) and found
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that a weak seed magnetic field could indeed be exponen-
tially amplified by the giant-cell convection on a time-scale
of about 25 years.

This paper reports on full non-linear magneto-
hydrodynamical (MHD) numerical simulations of dynamo
action in a late-type supergiant star with fundamental
stellar parameters set equal to that of Betelgeuse. The
paper is organized as follows: Section 2 contains a descrip-
tion of the numerical model, code and setup, Section 3 de-
scribes and discusses the results, the convective flows and
dynamo action, and Section 4 contains a short summary
and conclusion.

2. Model

The 3-d MHD equations are solved for a fully convective
star. This is an example of a “star-in-a-box” simulation,
where the entire star is contained within the computa-
tional box. The computer code used is the “Pencil Code”
by Brandenburg & Dobler1. The code has been employed
in several astrophysical contexts including e.g. hydromag-
netic turbulence (see Brandenburg & Dobler 2002, Dobler
et al. 2003 and Haugen et al. 2003). The numerical method
performs well on many different computer architectures
especially on MPI machines, and uses 6th-order spatial
derivatives and a 2N -type 3rd-order Runge-Kutta scheme.
The code has a “convective star” module that allows the
solution of the non-linear MHD equations by the numer-
ical pencil scheme in a star with a fixed radius R and
mass M. The code solves the following general form of the
compressible MHD equations:
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where Eq. (1) is the mass continuity equation and Eq. (2)
is the equation of motion. Here ̺ is density, u the fluid
velocity, t is time, D/Dt ≡ ∂/∂t + u · ∇ is the comoving
derivative, cS is the sound speed, s is the entropy, Φ is
the gravity potential, j = ∇ × B/µ0 the electric current
density, B the magnetic flux density, ν is kinematic vis-
cosity, and S is the traceless rate-of-strain tensor. Eq. (3)
is the induction equation where A is the magnetic vector
potential, B = ∇× A the magnetic flux density, η is the
magnetic diffusivity, and µ0 the magnetic vacuum perme-
ability. Eq. (4) is the energy, or rather entropy equation,
where T is temperature, cp the specific heat at constant
pressure, H and C are explicit heating and cooling terms,

1 http://www.nordita.dk/data/brandenb/pencil-code/

and K is the thermal conductivity (radiation is not taken
into account in MHD).

Variables are computed in terms of R and M so
that e.g. the unit of the star’s luminosity L becomes
M
R (GM/R)

3

2 . In the present case these fundamental pa-
rameters are set to R = 640 R⊙ and M = 5 M⊙ yielding
a luminosity of L = 46000 L⊙, consistent with current
estimates of Betelgeuse’s size, mass and luminosity. The
model employs a fixed gravitational potential Φ, an inner
tiny heating core entering into Eq. (4) through H, and an
outer thin isothermally cooling spherical surface at r = R
(corresponding to C in Eq. 4), with a Newtonian cooling
time scale set to τcool = 1 year corresponding to the typ-
ical convective turn-over time in the model of Freytag et
al. (2002).

Due to constraints on computer time and resolution
the true thermodynamic range of the star can not be rep-
resented and the surface is cooled at a temperature that
is 4.5 times higher than Betelgeuse’s effective tempera-
ture which is about Teff = 3500 K (various estimates exist
in the literature, see e.g. Freytag et al. 2002). The fixed
gravity is approximately given by a 1/r-potential (as in
Freytag et al. 2002) and initially the star expands result-
ing in a slight decrease of 1.4% of the mean mass density,
subsequently it re-contracts by roughly 0.1%. Betelgeuse is
only slowly rotating and a rotational frequency was chosen
corresponding to a surface rotational velocity of 5 km/s,
yielding a large Rossby number. Although a strong differ-
ential rotation deep within the star can not be ruled out,
this type of internal rotation is not included in the present
model.

Models with different numerical resolutions have been
run for testing: in this paper the results come from a
model with 1283 uniformly distributed grid points yielding
a spatial resolution of ∆x = 15R⊙ the physical size of the
box being R3. The models were computed at the Danish
Center for Scientific Computing Horseshoe 512 cpu Linux
cluster typically allocating between 16 and 32 cpus.

Boundary conditions on the computational box are
anti-symmetric for components of the vector fields u and
B in the direction of the component (yielding a vanish-
ing value at the boundary) and symmetric across the
boundary in the direction perpendicular to the compo-
nent (yielding a vanishing gradient across the bound-
ary). Boundary conditions for the density ln ρ are anti-
symmetric with respect to an arbitrary value across all
boundaries (yielding a vanishing second derivative), and
the boundary condition for the entropy s/cp corresponds
to a constant temperature at the boundary.

2.1. Magnetic Reynolds number

Dynamo action by flows are often studied in the limit of in-
creasingly large magnetic Reynolds numbers Rem = ℓU/η,
where ℓ and U are characteristic length and velocity scales.
Most astrophysical systems are highly conducting yielding
small magnetic diffusivities η, and their dimensions are
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huge resulting in huge values of Rem. Betelgeuse is not an
exception and most parts of the star are better conducting
than the solar photosphere that has a magnetic diffusivity
of the order of η ≈ 104 m2/s:

0 200 400 600 800
Radius (in solar radii)

100

1000

10000

<
η

>
 (

m
2
/s

)

Fig. 1. Diffusivity: average radial magnetic diffusivity η
(m2/s) in the model of Betelgeuse as a function of radial
distance in solar radii R⊙. Adopted from Dorch & Freytag
2002.

Figure 1 shows the average Spitzer’s resistivity as a
function of radius in the model of Betelgeuse by Freytag et
al. (2002). Spitzer’s formula (e.g. Schrijver & Zwaan 2000)
assumes complete ionization and hence the precise values
of η are uncertain in the outer parts of the star, where the
atmosphere borders on neutral. There is some uncertainty
connected also with defining the most important length
scale of the system, but preliminarily taking ℓ to be 10%
of the radial distance R from the center (a typical scale of
the giant cells), and U = uRMS along the radial direction
yields Rem = 1010–1012 in the interior part of the star
where R ≤ 700 R⊙.

In the present case we cannot use that large val-
ues of Rem (partly due to the fact that we are employ-
ing a uniform fixed diffusivity η), but rely on the re-
sults from generic dynamo simulations indicating that re-
sults converge already at Reynolds numbers of a few hun-
dred (e.g. Archontis, Dorch, & Nordlund 2003b, 2003a).
Furthermore, Dorch & Freytag (2002) obtained kinematic
dynamo action in their model of a magnetic Betelgeuse
at Rem ∼ 500. Here we use an η that is about 108

times too large compared to the estimated surface value
in Betelgeuse, leading to a magnetic Reynolds number of
Rem ∼ 300.

3. Results and discussion

There is some disagreement as to what one should require
for a system to be a “true” astrophysical dynamo. Several
ingredients seem to be necessary: the flows must stretch,
twist and fold the magnetic field lines (e.g. Childress &
Gilbert 1995); reconnection at Rem ≫ 1 must take place to

render the processes irreversible; weak magnetic field must
be circulated to the locations where flow can do work upon
it (cf. Dorch 2000); and finally, the total volume magnetic
energy Emag =

∫

V
B2/2µ0dV must increase (the linear

regime) or remain at a constant saturation amplitude on
a long time scale (the non-linear regime). These points
are based largely on experience from idealized kinematic
and non-linear MHD dynamo models; e.g. Archontis et al.
(2003b, 2003a). This paper deals mainly with the question
of the exponential growth and saturation of Emag.

Fig. 2. Simulated surface intensity snapshots at four dif-
ferent instants, time = 256, 347, 457 and 494 years (from
upper left to lower right).

3.1. Convective flows

Although not the main topic of this paper, it is appropri-
ate to discuss here also the properties of the convective
flows in the model, since these ultimately supply the ki-
netic energy forming the basic energy reservoir for any
dynamo action that might be present. It is not expected
that the flows match exactly what is found in more realis-
tic RHD simulations, but at least a qualitative agreement
should be inferred since the fundamental parameters of
this MHD model and the RHD model of Freytag et al.
(2002) are the same.

The velocity is initialized with a random flow with a
small amplitude. Rapid large scale convection cells develop
throughout the star: the giant cell convection is evident in
both the thermodynamic variables, such as temperature
and gas pressure, as well as in the flow field. The obser-
vational equivalent however, is the surface intensity. Since
the model does not incorporate realistic radiative transfer
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(as opposed to the model of Freytag et al. 2002), only a
simulated intensity can be derived. Using a frequency in-
dependent LTE source function a simulated intensity Isim
can be defined as:

Isim(y, z) =

∫ R

0

σT(x, y, z)4e−τ(x,y,z)dτ(x, y, z), (5)

τ(x) =

∫ x

0

κ0ρ(x, y, z)dx, (6)

where T is temperature, τ is a measure of optical depth
along one of the axes (here the radial line of sight direc-
tion is taken to be the grid x-axis), ρ is mass density,
κ0 is a constant gray opacity and σ is Stefan’s constant.
Figure 2 shows simulated intensity snapshots at four dif-
ferent instances: the typical contrast between bright and
dark patches on the surface is 20–50%, and only 2–4 large
cells are seen at the stellar disk at any one time corre-
sponding to a hand full of cells covering the entire surface.
The primary physical reason for the large scale of the con-
vective cells relative to the Sun is the much larger pressure
scale height in the surface layers, cf. Schwarzchild (1975).
The simulated intensity is in qualitative agreement with
the RHD models of Freytag et al. (2002): the surface is
not composed of simply bright granules and dark inter-
granular lanes in the solar sense—sometimes the pattern
is even the reverse of this—e.g. in Figure 2 the simulated
intensity snapshot at time t = 457 years, the cool dark
area in the center of the stellar disk is actually a region
containing an upward flow.

Fig. 3. Powerspectrum of u2(k) at time = 457 years, and
a line corresponding to Kolmogorov scaling (dashed line).
The vertical lines, from left to right, denote the wavenum-
bers corresponding to the computational box size k0, the
stellar radius kR, and the Nyquist frequency kNy (the nu-
merical resolution).

More quantitatively, the kinetic power-spectrum (Fig.
3) illustrates that there is much more power on large scales
than on the small scales of the velocity field: below a
wavenumber of k ∼ 20 (based on the box size in units
of the star’s radius) power is decreasing fast, but at larger

scales the power is proportional to k−2/3 corresponding
to normal Kolmogorov scaling, the inertial range spans
however only roughly one order of magnitude. In conclu-
sion the large-scale convective patterns are then typically
larger than 15–30% of the radius, and are actually often
on the order of the radius in size. The corresponding ra-
dial velocities range between 1–10 km/s in both up and
down flowing regions.

There are at least three different evolutionary phases
of convection in the simulations, depending on the level
of the total kinetic energy Ekin of the convection motions:
initially there is a transient of about 30 years after which
the RMS velocity field reaches a level where it fluctuates
around a value of about 800 m/s (this corresponds to the
kinematic phase of the dynamo, where the flow is unaf-
fected by the presence of the still weak magnetic field,
see below). During the rest of the simulation after about
290 years, the RMS speed measured in the entire box
decreases to 500 m/s (when the energy in the magnetic
field becomes comparable to the kinetic energy density).
During the stretch of the simulation however, the maxi-
mum speed in the computational box fluctuates around a
constant value of about 90 km/s. The flows are not partic-
ularly helical and the mean kinetic helicity is on the order
of 10−6 m/s2. Mean field αω-type solar dynamos do not
produce large-scale fields if the kinetic helicity is less than
a certain value (cf. Maron & Blackman 2002) and hence
we cannot expect a large-scale toroidal field in the solar
sense to be generated.

Fig. 4. Linear regime: energy as a function of Betelgeusian
time in years. The upper almost horizontal line is total
thermal energy Eth (dashed-dotted), middle curve with
wiggles is total kinetic energy Ekin (dotted), and lower full
curve is Emag. The three thin dashed lines corresponding
to exponential growth with characteristic time-scales of
3.8, 25 and ∞ years.
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Fig. 5. Transition to the non-linear regime: RMS mag-
netic field B in the whole computational box in Gauss as
a function of Betelgeusian time in years. The upper curve
is the equipartition field strength Beq corresponding to the
average kinetic energy density of the fluid motions (dot-
ted curve) and the lower full curve is the actual RMS field
strength B (full curve). The dashed thin curve correspond
to growth times of 25 years and a horizontal reference line
at a field strength of 100 Gauss.

3.2. Dynamo action

In an earlier kinematic study of Betelgeuse using a com-
pletely different numerical approach (Freytag et al. 2002
and Dorch & Freytag 2002), dynamo action was obtained
when the specified value of Rem was larger than approx-
imately 500 and at lower values of Rem the total mag-
netic energy decayed. In the present case Rem is of the
same order of magnitude and we find an initial clear ex-
ponential growth over several turn-over times, and many
orders of magnitude in energy. Figure 4 shows the evolu-
tion of Emag as a function of time, for the first 225 years
(in Betelgeusian time): once the giant cell convection has
properly begun the magnetic field is amplified and we en-
ter a linear regime of exponential growth. There are two
modes of amplification in the linear regime; the initial
mode with a growth rate of about 4 years, which in the
end gives way to a mode with a smaller growth rate corre-
sponding to a time-scale of 25 years. This is a slightly un-
usual situation, since normally modes with smaller growth
rates are overtaken by modes with larger growth rates (cf.
Dorch 2000); the explanation is that while both modes are
growing modes, only the one with the largest growth rate
is a purely kinematic mode—while the exponential growth
of the second mode is linear it is not kinematic—the pres-
ence of the magnetic field is felt by the fluid through the
back-reaction of the Lorentz force in Eq. (2) becoming im-
portant. This quenches the growth slightly and henceforth
one can refer to the second mode as a “pseudo-linear”
mode.

No exponential growth can go on forever and even-
tually the magnetic energy amplification must come to
a halt: the question is then whether the magnetic field

retains a more or less constant saturation value, or if it
dissipates. The latter is only possible if the non-linear
mode is a decaying mode that corresponds to a negative
growth rate. In case of saturation the typical field strength
is expected to be on the order of the equipartition value
corresponding to equal magnetic and kinetic energy den-
sities. Figure 5 shows the RMS magnetic field strength
BRMS within the entire model star as a function of time
for ∼ 800 Betelgeusian years: the pseudo-linear mode as
well as the mode in the non-linear regime are shown. The
RMS magnetic field saturates at a value slightly above
the RMS equipartition field strength Beq =

√

µ0 〈ρu2〉 ∼
90–100 Gauss, corresponding to a value of about 120–130
Gauss. In terms of total energy this means that the mag-
netic energy Emag is above equipartition with the kinetic
energy Ekin by approximately a factor of two. Hence the
field cannot be said to be extremely strong, but it is not
particularly weak in most parts of the star either. What
may be interesting from an observational point of view is
the strength of the field at the surface. In the non-linear
regime the field strength at the sphere with radius r = R
can be up to ∼ 500 Gauss, while in the interior going
downwards in the star the field strength rises and can
be as high as a few kG: the strongest intermittent mag-
netic structures almost completely quenches the velocity
field in these regions that are small-scale compared to the
scale of the convection; i.e. the local field can be far above
equipartition. The downward increase of the field strength
is analogue to the flux pumping effect that has been found
in the solar context (cf. Dorch & Nordlund 2001).

Fig. 6. Distribution of magnetic field strength: PDF for
the magnetic field |B| (in kG) at time = 732 years within
the non-linear saturated regime.

3.3. Magnetic structures

It is interesting to examine the geometry of the mag-
netic field that the saturating non-linear dynamo gen-
erates since this could be relevant for the influence of
the field on e.g. asymmetric dust and wind formation.
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Fig. 9. An illustration of the unsigned magnetic field strength |B| at the spherical surface r = R of the model star
using an orthographic map projection. The darkest patches correspond to a maximum field strength of 500 Gauss
(black on the continuous scale bar). From a snapshot at time = 695 years. The views are centered on longitudes of
100o (left) and −100o (right). The grid indicated has a longitudinal spacing of 40o and a latitudinal spacing of 20o.
The numerical resolution of the map is 1802 grid points.

Fig. 7. Energy spectra of the magnetic energy den-
sity B2/2µ0(k) (solid curve) and kinetic energy density
1
2ρu2(k) (dashed curve) at time = 512 years, and a line
corresponding to a power-law with an exponent of -2/3
(dashed-dotted line). The vertical lines, from left to right,
denote the wavenumbers corresponding to the computa-
tional box size k0, the stellar radius kR, and the Nyquist
frequency kNy (the numerical resolution).

Qualitatively speaking the field becomes concentrated into
elongated structures much thinner than the scale of the gi-
ant convection cells, but perhaps due to the very irregular
nature of the convective flows, no “intergranular network”
is formed in the solar sense. On the one hand, at times
magnetic structures coincide with downflows, but not as a

Fig. 8. Magnetic filling factor as a function of radius (solid
curve): shown is the relative volume that is occupied by
a field stronger than 1% of the maximum magnetic field
strength at time = 695 years, which is 1.4 kG. Also shown
is the average field 〈B〉 scaled to fit the maximum of the
filling factor (dashed curve).

general rule. On the other hand, strong fields are seldomly
located within the general upflow regions.

Figure 6 shows the PDF of the magnetic field: the
distribution is a typical signature of highly intermittent
structures, i.e. only a very small fraction of the volume
carries the strongest structures and the probability of find-
ing a vanishing field strength at a random point in space,
is far greater than finding strong fields.
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Fig. 10. A 3-d volume rendering of magnetic field lines
(white) and flux ropes (dark structures). Also show is a
isosurface (transparent) at the surface temperature value.

An energy spectrum reveals that the magnetic struc-
tures are well resolved with little power at the Nyquist
wavenumber kNy = π/∆x, and that the power at the
largest wavenumbers k ∼ 100 is two-orders of magni-
tude smaller than that at the largest scales (see Figure
7). Maximum power is obtained on the largest scales cor-
responding to wavenumbers of a few, while there is a dip at
k ∼ 7 corresponding to the scale of the radius, where the
power is minimum. The power on scales k ≈ 10–20 is flat
leaning towards being proportional to k−2/3 correspond-
ing to Kolmogorov scaling, and at small-scales k >∼ 50
power steeply drops: magnetic structures in the non-linear
regime are then large by solar standards, but smaller than
the giant convection cells that show increasing power to-
wards large scales.

Blackman 1996 argues that in turbulent dynamos the
magnetic filling factor would be of the order 1/β (β being
the ratio of gas pressure to magnetic pressure) so that for
relatively weak fields the filling factor would be small. This
is partly the case in the present model where the average
field is weak field above the stellar surface where it has a
low filling factor (see Fig. 8): However, the filling factor
scales very well with the average field strength 〈B〉, not
with 1/β.

Figure 9 is a map of the spherical surface at r = R in
terms of magnetic energy in the non-linear regime: there
are both dark patches of strong magnetic field, e.g. a 500
Gauss region at longitude around 80o and latitude 50o

north of the equator, and large areas with a vanishing field
(e.g. at longitude 80o on the equator). On this map the
areal magnetic filling factor is ∼55% for |B| > 50 Gauss,
while it is only ∼0.6% for |B| > 500 Gauss. However, this
mapping does not represent any physical surface of the

star. Due to the fact that the actual upper boundary con-
sists of a few large cells the surface cannot be captured by a
simple sphere with radius R; this is illustrated by a volume
rendering (Fig. 10) of the isosurface at the cooling tem-
perature. E.g. in the upper left corner of Figure 10 there
is a “hill” in the temperature isosurface and further large
“slopes” can be seen across the star in this illustration.
In the latter figure, the magnetic field lines illustrate that
there is a slight trend inside the star, looking through the
partly transparent surface, towards a radial orientation of
the magnetic field, while the strong fields near the surface
of the star are predominantly horizontally aligned. This
was also observed by Dorch & Freytag (2002) and may be
a generic trade of giant-cell fully convective slowly rotat-
ing stars.

4. Summary and conclusion

In summary three different modes of dynamo action are
recognized:

1. A relatively fast growing linear mode with an expo-
nential growth time of ∼ 4 years.

2. A relatively slowly growing pseudo-linear mode with
an exponential growth of ∼ 25 years.

3. A saturated non-linear mode operating a factor of two
above equipartition (through-out the star).

More modes may of course exist but these must then have
very low growth rates and/or very small initial amplitudes
since they have not appeared in the simulations. It is worth
noting that in case 2) of the pseudo-linear mode, the same
value of the growth time (around 25 years) was found in
the previous purely kinematic dynamo models Dorch &
Freytag (2002) although they employed a different com-
putational method. This may in fact not be so strange,
since the growth rate in a kinematic dynamo is set in part
by the convergence of the flow across the field lines −∇⊥·u
and if the flows are similar so should the growth rates be.

Based on the results presented here, it is not possible
to state conclusively if Betelgeuse actually has a magnetic
field, since such a field is unobserved. However, one may
conclude that it seems possible that late-type giant stars
such as Betelgeuse can indeed have presently undetected
magnetic fields. These magnetic fields are likely to be close
to or stronger than equipartition yielding surface strengths
on the order of 500 Gauss at maximum; this may be dif-
ficult to detect directly, due to the relatively small filling
factors of the strong fields, but even the moderately strong
fields may have influence on their immediate surroundings
through altered dust, wind and mass-loss properties. The
formation of dust in the presence of a magnetic field will be
the subject of a subsequent paper along the lines presented
here: the “Pencil Code” has recently been augmented with
modules for radiation and dust modeling.

The dynamo of the late-type giant studied here may be
characterized as belonging to the class called “local small-
scale dynamos” another example of which is the proposed
dynamo action in the solar photosphere that is sometimes
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claimed to be responsible for the formation of small-scale
flux tubes (cf. Cattaneo 1999). However, in the case of
Betelgeuse this designation is less meaningful since the
generated magnetic field is both global and large-scale,
but because of the slow and non-differential rotation, no
large-scale solar-like toroidal field is formed although the
situation might be different in more rapidly rotating AGB
stars.

It is interesting to note that very recently Lobel et al.
(2004) published spatially resolved spectra of the upper
chromosphere and dust envelope of Betelgeuse. Based on
various emission lines they provide evidence for the pres-
ence of warm chromospheric plasma away from the star
at around 40 R. The spectra reveal that Betelgeuse’s up-
per chromosphere extends far beyond the circumstellar
envelope. They compute that temperatures of the warm
chromospheric gas exceed 2600 K. The presence of a hot
chromosphere lead this author to speculate on the possible
connection to coronal heating in the Sun, which is likely
to be magnetic in origin and caused by flux braiding mo-
tions in the solar photosphere (cf. Gudiksen & Nordlund
2002): it remains to be proven whether a similar process
could be operating in late-type giant stars.
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F.-J. 1998, A&A, 330, 225

Lim, J., Carilli, C.L., White, S.M., Beasley, A.J., and Marson,
R.G. 1998, Nature, 392, L575

Lobel, A., Aufdenberg, J., Dupree, A.K., Kurucz, R.L,
Stefanik, R.P. and Torres, G. 2004, in IAU symposium 219,
ASP, http://arxiv.org/abs/astro-ph/0312076, in press

Maron, J. and Blackman, E.G. 2002, ApJ, 566, L41
Schwarzchild, M. 1975, ApJ, 195, 137
Schrijver, C. and Zwaan, C. 2000, Solar and Stellar Magnetic

Activity, CAPS, 34, Cambridge
Sivagnanam, P. 2004, MNRAS 347, 1084
Soker, N. 2002, MNRAS 336, 826
Soker, N. and Kastner J. 2003, ApJ 592, 498
Soker, N. and Zoabi, E. 2002, MNRAS 329, 204
Vlemmings, W.H.T., van Langevelde, H.J., Diamond, P.J.,

Habing, H.J. and Schilizzi, R.T. 2003, A&A 407, 213


