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VARIATIONAL APPROACH TO MULTI-TIME CORRELATION FUNCTIONS

R. Balian, SPhT, CEA/Saclay, France

M. Vénéroni, IPN, Orsay, France

1. INTRODUCTION AND OUTLINE

Multi-time correlation functions are common tools in several branches of physics. In many-body prob-

lems, in equilibrium and non-equilibrium statistical mechanics and field theories, one deals with causal

Green’s functions or with linear response functions which are closely connected with two-time correlation

functions. For weakly interacting systems the calculation of these functions relies on perturbation theory.

When the interactions are strong, alternative approaches are needed. Among them, variational methods

have often proved fruitful. The most familiar ones lead to mean-field approximations which provide a simple

understanding of many phenomena; nevertheless, they are ill-suited to the evaluation of correlation func-

tions. In the present paper we propose a more elaborate, but still workable, variational approach. Like any

other variational treatment, it is less systematic than perturbative expansions. Through its flexibility, it is

expected, however, to lend itself to consistent evaluations of multi-time correlation functions for strongly

interacting systems. Variational aspects also exist in diagrammatic methods, where a preliminary step often

consists in choosing the vacuum by minimisation of the classical action. Our procedure will be different; the

quantity that we shall make stationary will be the generating functional itself.

The physical problems that we have in mind are embodied in the following question. At some initial

time t0, possibly equal to −∞, the state of the system is characterized by a given density operator D (t0) . In

statistical mechanics, or in non-zero temperature field theories, it may represent thermal equilibrium as well

as a non-equilibrium situation. It may also be the ground state, in which case D (t0) reduces to a projection

operator. For atomic or nuclear collisions, it may describe the two incoming fragments boosted towards

each other. We wish to determine the time-correlation functions of some set of operators denoted in the

Schrödinger picture by Qj . These may be single field operators, or they may be composite. For instance, in

thermo- or hydrodynamics, they may represent local density or local current operators. In sects. 4, 5, 7 and

8 we shall be mainly interested in single-particle operators Qj that are bilinear in fermionic creation and
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annihilation operators. In the Heisenberg picture, the observables Qj of interest become

QH
j (t′, t0) = U† (t′, t0)QjU (t′, t0) . (1.1)

We have denoted by t′ the usual running time, and the evolution operator U is defined through

dU (t′, t0)
dt′

= −i HU (t′, t0) , U (t0, t0) = 1, (1.2)

with h̄ = 1. The multi-time causal functions, which involve the T -product of an arbitrary number of operators

Qj , are obtained as usual from a generating functional. We shall find it convenient to define the latter as

ϕ{ξ} ≡ ln TrA (t0)D (t0) , (1.3)

where the operator A(t), a functional of the sources ξj (t′) , is

A(t) ≡ T exp

i
∫ ∞
t

dt′
∑
j

ξj (t′)QH
j (t′, t)

 . (1.4)

This operator is unitary and its inverse A† would produce the generating functional for the anticausal

functions. To lowest orders, the expansion of ϕ in powers of the ξ’s yields the single-time expectation values

〈Qj (t′)〉 ≡ Tr QH
j (t′, t0)D (t0) , (1.5)

and the two-time causal functions

Cjk (t′, t′′) ≡ Tr TQH
j (t′, t0)QH

k (t′′, t0)D (t0)− 〈Qj (t′)〉 〈Qk (t′′)〉 , (1.6)

according to

ϕ{ξ} = i

∫ ∞
t0

dt′
∑
j

ξj (t′) 〈Qj(t′)〉

− 1
2

∫ ∫ ∞
t0

dt′dt′′
∑
jk

ξj (t′) ξk (t′′)Cjk (t′, t′′) + ... .
(1.7)

Higher order terms generate the cumulants of the three-time, four-time,... causal functions associated with

the operators Qj . Of course, equal-time correlation functions can be obtained as special cases. It may be

convenient not to normalize D (t0) . A zeroth order term then arises in the expansion (1.7); for instance, if

we take D (t0) = exp(−βH) in statistical mechanics, −ϕ{0}/β is the free energy.
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Our strategy will be based on the use of a variational expression admitting the generating functional

(1.3) as its stationary value. We shall rely on a general method [1, 2] that allows for a systematic construction

of variational principles specifically suited to the optimization of a desired quantity. A prerequisite is the

knowledge of some simple set of equations characterizing this desired quantity, which is here ϕ. It is in

order to obtain such an equation for A (t0) that we have introduced a running time t in our definition (1.4).

Indeed, we shall see in sect. 2 that even though it is a complicated operator, A(t) satisfies the simple linear

differential equation

d
dt
A(t) = i[A(t),H]− iA(t)

∑
j

ξj(t)Qj . (1.8)

As this equation is supplemented by the boundary condition A(+∞) = 1, it must be solved backward in the

time t. For a given set of sources, this yields A (t0) .

The simplicity of the backward differential equation (1.8) for A(t) can be explained by the following

remarks. Usually, the Heisenberg operator (1.1) is regarded as a function of the running time t′, while t0

is just a fixed initial reference time at which the Heisenberg and Schrödinger operators coincide. Let us

instead, in U (t′, t0) and hence in QH
j (t′, t0) , regard t′ as fixed and t0 as the new running time. In terms of

this variable, now denoted as t, the evolution operator U (t′, t) satisfies

dU (t′, t)
dt

= iU (t′, t)H, U (t′, t′) = 1, (1.9)

to be compared with the usual equation of motion (1.2). Likewise, we can characterize the Heisenberg

operator (1.1) as being the solution of the “backward Heisenberg equation” [3]

d
dt
QH
j (t′, t) = i

[
QH
j (t′, t) ,H

]
. (1.10)

As the boundary condition at t = t′ is QH
j (t′, t′) = Qj , and as t′ is posterior to t, the time t runs backward

in (1.10). This equation (1.10) should be compared to the usual, forward, Heisenberg equation. In case

neither Qj nor H depend explicitly on time in the Schrödinger picture, the latter equation, which results

from (1.1) and (1.2), reads

d
dt′
QH
j (t′, t) = −i

[
QH
j (t′, t) ,H

]
, (1.11)

with the boundary condition QH
j (t, t) = Qj at the initial time. In the general case, however, the forward

Heisenberg equation suffers from two defects. (i) For a time-dependent Hamiltonian H (t′) , the operator
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which enters this equation is not H (t′) itself, but its expression in the Heisenberg picture,

HH (t′, t) ≡ U† (t′, t)H (t′)U (t′, t) . (1.12)

(ii) If, moreover, the observableQj (t′) depends explicitly on time in the Schrödinger picture, we must include

its derivative,

∂QH
j (t′, t)
∂t′

≡ U† (t′, t)
dQj (t′)

dt′
U (t′, t) , (1.13)

in the right-hand side of the equation. Altogether, the conventional Heisenberg equation in the general case

has the form

d
dt′
QH
j (t′, t) = −i

[
QH
j (t′, t) ,HH (t′, t)

]
+
∂QH

j (t′, t)
∂t′

, (1.14)

with the boundary condition QH
j (t, t) = Q(t). In spite of its simple formal appearance, the extension (1.14)

of (1.11) is not a closed equation: it is not sufficient for determining the Heisenberg operator QH
j (t′, t) since

it involves two other Heisenberg operators, (1.12) and (1.13), the determination of which in turn requires

the solution of equations similar to (1.14). In other words, (1.14) cannot be a substitute for the equation

of motion (1.2) when either H or Qj are time-dependent. In contrast, when H (t′) and Qj (t′) depend

explicitly on the “observation” time t′, the backward Heisenberg equation (1.10) is simply changed into

d
dt
QH
j (t′, t) = i

[
QH
j (t′, t) ,H(t)

]
. (1.15)

The operator H(t) entering (1.15) is the same as in the Schrödinger picture. As for the explicit time

dependence of the observable, it does not entail any additional term as in (1.14); it is accounted for by the

boundary condition QH
j (t′, t′) = Qj (t′) which supplements (1.15). Thus the backward equation (1.15), a

closed equation for the observable QH
j (t′, t) , is better suited to the Heisenberg picture than the forward

equation (1.14).

The existence of two alternative equations of motion, (1.14) and (1.15), is analogous to the situation in

the theory of continuous Markov processes. There also, the transition probability can be obtained either as

the solution of the forward Kolmogorov equation (better known in physics as the Fokker-Planck equation) or

as the solution of the backward Kolmogorov equation [4]. Moreover, although these equations are in principle

equivalent, the backward Kolmogorov equation possesses simpler mathematical properties [5] and turns out

to be more convenient for some physical applications such as fragmentation [6].
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Returning to our problem, we note that our operator of interest (1.4) depends on the “observation”

times t′ through the sources ξj (t′) , and that it is moreover integrated over t′. The conventional Heisenberg

equation (1.14) is therefore of no use to us. However, apart from being a functional of the sources ξj (t′) , the

operator (1.4) appears as an explicit function of the initial time t, both through the Heisenberg operators

QH
j (t′, t) and through the lower integration bound. As we shall see in sect. 2, the two terms of (1.8) readily

follow from this twofold dependence on t, the first term being a direct consequence of the backward equation

(1.15).

Following the general scheme for building variational principles [1, 2], we shall treat the equation (1.8)

for A(t) as a set of constraints, with which we associate Lagrangian multipliers (sect. 3). We thus find

an expression, eq. (3.2), containing two variational objects: A(t), which simulates A(t) itself, and the

Lagrangian multiplier D(t), which accounts for the equation of motion for A(t). The stationary value of this

expression yields the generating functional (1.3). By restricting the trial classes of A(t) and D(t) so as to

make the calculations feasible, one can find variational approximations for this generating functional.

The original expression (1.3) that we want to evaluate depends only on one unknown quantity, the

operator A (t0) . Nevertheless, in order to achieve a variational formulation, we have been led to introduce

two time-dependent trial operators, A(t) and D(t). While A(t) runs backward in time, D(t) runs forward.

Such a doubling of variables, with two different arrows of time, is of course reminiscent of old approaches

to time-dependent problems [7− 9]. However, our present problem is stated more naturally in the Liouville

space than in the underlying Hilbert or Fock space. For this reason, our two variational objects, A(t) and

D(t), which are dual to each other in the Liouville space, are of different natures: while the former is akin

to an observable, we shall see that the latter is akin to a density operator.

An example, drawn from statistical mechanics of interacting fermions, is given in sect. 4. We take

exponentials of single-particle (s.p.) operators as trial classes for the operators A(t) and D(t) in Fock

space. The variational outcome for the expectation values (1.5) is that of the usual time-dependent Hartree-

Fock (TDHF) theory. However, for the two-time functions (1.6), the result, eq. (4.29), is more elaborate

and involves a “backward RPA equation”, (4.26), related to the standard time-dependent random-phase

approximation. This backward RPA equation is associated with small deviations around the forward TDHF
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equation, and its kernel depends on the solution of the latter. Our variational scheme thus exhibits the

TDHF equation as the s.p. reduction of the Liouville-von Neumann equation, and the backward RPA as

the s.p. reduction of the backward Heisenberg equation (1.10). In contrast to what happens in the complete

Fock space, where H generates both the equations for the states and for the observables, the kernels of the

two corresponding approximate equations differ. Moreover, each of these two equations appears variationally

suited to the evaluation of a specific quantity. In sect. 5 we extend to response functions the results of sect.

4 on causal functions (see eq. (5.3)). The main objective there is to verify that our variational treatment

satisfies a number of consistency requirements. We previously checked in sect. 4 that it satisfies some

conservation laws which are violated by standard mean-field approaches.

In practical cases, the exact initial state D (t0) is intractable and the above procedure must be supple-

mented with some approximation for D (t0) . For instance, in equilibrium statistical mechanics, the canonical

distribution cannot be handled directly for interacting particles. More generally, whether the system is in

equilibrium or not, the initial state usually involves intricate correlations. However, if we write it as

D (t0) ≡ exp(−βH̄), (1.16)

the operator βH̄ is in general a single-particle or a two particle operator, much simpler than D (t0) itself.

Indeed, D (t0) most often describes a situation of, at least partial or local, equilibrium. It is thus obtained

by maximizing the von Neumann entropy −Tr D ln D subject to constraints imposed by macroscopically

controlled data. This procedure leads to the form (1.16), where βH̄ is a linear combination of the simple

observables associated with these data.

There exist several standard approaches [10], perturbative or variational, which allow one to deal ap-

proximately with states of the type (1.16). One class of methods assumes that D (t0) can be generated

dynamically in the form

D (t0) = U (t0, t1)D (t1)U† (t0, t1) , (1.17)

by starting from a simple, uncorrelated, state D (t1) at a time t1 which will eventually tend to −∞. The

correlations existing in D (t0) are thus built up by the evolution from t1 to t0 and they can be evaluated

approximately from (1.17). However, such an approach is suitable only for infinite systems and it is not fully
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under control. It requires that dissipation takes place between t1 and t0, and that the data characterizing

D (t0) are (exact or approximate) constants of the motion, which are introduced through D (t1) . It might

be used in the present context by taking the uncorrelated state D (t1) as our initial condition in sect. 3, and

letting t0 ≡ t1 tend to −∞. Another class of methods by-passes the difficulties associated with the approach

to equilibrium or to quasi-equilibrium. One starts directly from the explicit expression (1.16), and looks for

some manageable approximation for it.

We shall adopt an approach of the latter type. However, we shall not replace D (t0) by an a priori

approximation in our variational treatment of sect. 3. Instead, we shall again determine the approximation

for D (t0) variationally by optimizing the generating functional (1.3) with respect to both A (t0) and D (t0) .

The equations that D (t0) should satisfy are then treated as constraints. We are thus led to merge into a

single variational principle, eq. (6.5), the two sets of equations (1.8) and (6.3) which respectively characterize

the two operators A (t0) and D (t0) entering the generating functional (1.3). We achieve this task in sect.

6. Here again, following the general procedure [1, 2], we introduce Lagrangian multipliers to enforce the

equations characterizing A(t) and D(t). We thus obtain a variational expression that has by construction

the generating functional (1.3) as its stationary value, and where the objects A and D play symmetric roles.

This unifying variational principle is again exemplified with systems of interacting fermions in sect. 7,

where we choose once more exponentials of s.p. operators for the various trial spaces. Here not only the

TDHF and the backward RPA equations, but also the static HF and RPA equations come out naturally from

the variational evaluation of the two-time functions, given by eq. (7.18). Finally, in sect. 8 we apply these

results to systems in equilibrium. It is shown that the variational treatment of sects. 6 and 7, where the

state D (t0) and the operator A (t0) appear on the same footing, provides approximations for the two-time

functions which depend, as they should, only on the time difference and not on the initial time t0. Moreover

these approximations satisfy the fluctuation-dissipation relation, another consistency property of this fully

variational approach.

The general method that we propose is contained in sects. 2, 3 and 6, which can be read independently

of the rest. All the other sections constitute an application to a problem of many-body physics, worked out

both for its own sake and for illustrative purposes. We have omitted some intermediate steps in derivations
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that were close to those already published in refs. [2, 3, 11], where details and a larger bibliography can be

found. Nevertheless, the present paper is self-contained, and it subsumes several partial results established

in these references in a less direct way.

2. A DIFFERENTIAL EQUATION WHICH GENERATES T-PRODUCTS

As already indicated in the introduction, our first step in the evaluation of the generating functional

(1.3) is to write a differential equation for the operator A(t). This operator is a functional of the sources

ξ (t′) , as usual in field theory. It also depends on the time t, which is both the lower bound of integration

in the definition (1.4) of A(t) and the reference time of the Heisenberg operators QH
j (t′, t) . The former

dependence amounts to a cut-off in the sources ξ (t′) at times t′ earlier than t. The expansion of A(t) in

powers of the sources provides the expansion (1.7) of the generating functional (1.3), and it reads

A(t) ≡ T exp

i ∫ ∞
t

dt′
∑
j

ξj (t′)QH
j (t′, t)


= 1 + i

∫ ∞
t

dt′
∑
j

ξj (t′)QH
j (t′, t)

−
∫
t′′>t′>t

dt′dt′′
∑
jk

ξk (t′′)QH
k (t′′, t) ξj (t′)QH

j (t′, t)

− i
∫
t′′′>t′′>t′>t

dt′dt′′dt′′′∑
jk`

ξ` (t′′′)QH
` (t′′′, t) ξk (t′′)QH

k (t′′, t) ξj (t′)QH
j (t′, t) + ... . (2.1)

Let us take the derivative of (2.1) with respect to t, for fixed values of the sources ξj (t′) . A first set of terms

arise from the Heisenberg operators QH
j (t′, t) , which obey the backward Heisenberg equation (1.10). More

generally, a product of any number of operatorsQH
j , such asQH

k (t′′, t)QH
j (t′, t) , orQH

` (t′′′, t)QH
k (t′′, t)QH

j (t′, t) ,

obeys this same equation (1.10). Hence, we find a first contribution to dA/dt equal to i[A,H]. second set of

terms arise from the lower bound of integration; they result from (2.1) by replacing the smallest integration

time t′, which occurs in the last factor of each integrand, by t. Remembering that QH
j (t, t) reduces to the

operator Qj in the Schrödinger picture, we find

d
dt
A(t) = i[A(t),H]− iA(t)

∑
j

ξj(t)Qj , (2.2)

with A(+∞) = 1.
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Note that the entire dependence of A(t) upon the sources is generated solely by the last term of (2.2).

This simple feature can be traced back to our definition (1.4) or (2.1) of A(t), where we have introduced the

reference time of the Heisenberg picture as a lower bound of integration at which the sources are turned on.

Note also that the time-ordering in the definition of A(t) is reflected in the ordering of the operators A(t)

and Qj in the last term of (2.2).

The same idea can easily be extended to the generation of anticausal functions by means of the operator

A†(t) ≡ T̃ exp

−i
∫ ∞
t

dt′
∑
j

ξj (t′)QH
j (t′, t)

 , (2.3)

where T̃ denotes the anti T -product. Provided that
∑
ξjQj is Hermitean, A†(t) is both the inverse and the

Hermitean conjugate of A(t). It satisfies the differential equation

d
dt
A†(t) = i

[
A†(t),H

]
+ i
∑
j

ξj(t)QjA
†(t), (2.4)

which differs from (2.2) through the ordering of the operators in the last term. By combining (2.2) and (2.4),

we obtain the Heisenberg-like equations

d
dt
(
A†A

)
= i[A†A,H −

∑
j

ξjQj ], (2.5)

d
dt
(
AA†

)
= i
[
AA†,H

]
. (2.6)

These equations are trivially satisfied since A(t) is unitary. Nevertheless, the lack of symmetry in the

definition (2.1) of A(t), due to the T -product, is reflected by the presence in (2.5), and not in (2.6), of an

effective Hamiltonian H −
∑
ξjQj depending on time through the sources.

The differential equation (2.2), together with the final boundary condition A(+∞) = 1, characterizes

the operator A(t). When it is solved by running the time t backwards from +∞ to t0, eq. (2.2) is equivalent

with the definitions (1.4) or (2.1). We shall rely on this representation by means of a differential equation

to evaluate the generating functional (1.3). It is noteworthy that two factors have conspired to produce the

simple differential equation (2.2) in terms of a single time t, in spite of the complicated time-dependence

of the sources: (i) the properties of the backward Heisenberg equation (1.10) that were discussed in the

introduction; and (ii) the replacement, in the definition (1.4), of the initial reference time (possibly equal to

−∞) by a running time t.
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3. VARIATIONAL PRINCIPLE FOR THE DYNAMICS OF THE GENERATING FUNC-

TIONAL

We are seeking an expression which reduces at its stationary point to eϕ = Tr A (t0)D (t0) , where A (t0)

is given by the solution of the differential equation (2.2). Since A(t) is complicated, we shall eventually

approximate it by a more tractable expression, A(t), to be determined variationally. In this subsection, we

assume that D (t0) is simple enough so that Tr A (t0)D (t0) can be explicitly calculated in the trial class for

A.

There exists a systematic procedure for constructing variational principles, and hence variational ap-

proximations, especially designed to evaluate some quantity of interest [1, 2]. Let us briefly recall this method.

We want to determine the value f0 ≡ f {xα0 } taken by a given function f {xα} of a set of variables xα at

some point {xα0 } ; this point is determined as the solution of a given set of equations gβ {xα} = 0. In spite

of the fact that the equations gβ {xα} = 0 fully determine {xα0 } , we use a Lagrangian multiplier method.

Namely, we associate with them a set of multipliers λβ and introduce the functional

Φ {xα, λβ} ≡ f {xα} −
∑
β

λβg
β {xα} (3.1)

of the two sets of variables xα and λβ . For unrestricted variations of the point {xα, λβ} , the stationary value

of Φ is seen to be f0. Variational approximations are obtained by restricting the trial spaces for the unknown

quantities {xα} and for the multipliers {λβ} to subspaces such that (3.1) can be explicitly handled. The

doubling of variables thus allows us to find the desired quantity f0 through a definite variational scheme.

Detailed explanations about the procedure can be found in [1, 2].

For the problem at hand the desired quantity f0 is Tr D (t0)A (t0) , and the variables xα are the matrix

elements of a trial time-dependent operator A(t) at each time t ≥ t0. The index α thus stands for both the

time and the pair of indices labelling the matrix A(t) in a fixed basis of the Fock space. The point {xα0 }

represents here the actual operator A(t) defined by (2.1). The equations gβ {xα} = 0 which determine it are

the matrix elements at each time of the differential equation (2.2), and the label β, like α, denotes both time

and matrix indices. The set of Lagrangian parameters λβ constitute a time-dependent operator (for t ≥ t0)

that we denote as D(t). Notice that the set {xα0 } describes A(t) at all times t, whereas the desired quantity
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eϕ = Tr A (t0)D (t0) involves only part of this set, namely A (t0) . The expression (3.1) now takes the form

Φ{A(t);D(t)} = Tr A (t0)D (t0) + Φdyn, (3.2a)

Φdyn ≡ Tr
∫ ∞
t0

dt D(t)

dA(t)
dt

− i[A(t),H] + iA(t)
∑
j

ξj(t)Qj

 , (3.2b)

where Φdyn accounts for the dynamics of A(t). The functional Φ depends on the two time-dependent trial

operators A(t) and D(t) (for t ≥ t0). It is also a functional of the sources ξj(t). It should be made stationary

with respect to variations of A(t) and D(t) subject to the boundary condition

A(+∞) = A(+∞) = 1. (3.3)

We need not assume that D (t0) has unit trace, since multiplying D (t0) by z0 simply adds the irrelevant

constant lnz0 to ϕ.

The stationarity conditions with respect to D(t), for any t ≥ t0, are

Tr δD(t)

dA(t)
dt

− i[A(t),H] + iA(t)
∑
j

ξj(t)Qj

 = 0. (3.4)

In order to vary A(t) we perform an integration by parts in (3.2). We obtain, for t > t0,

Tr δA(t)

dD(t)
dt

+ i[H,D(t)]− i
∑
j

ξj(t)QjD(t)

 = 0, (3.5)

and, for t = t0,

Tr δA (t0) [D (t0)−D (t0)] = 0. (3.6)

For unrestricted variations of D(t), the conditions (3.4) reproduce, as expected from the general expression

(3.1), the constraints gβ{x} = 0 which are here the equations of motion (2.2); together with the boundary

condition (3.3) these equations imply that A (t0) , at the stationary point, equals A (t0) as defined by (1.4).

For unrestricted variations of A(t), the equations (3.5) and (3.6) reduce to

d
dt
D(t) = −i[H,D(t)] + i

∑
j

ξj(t)QjD(t), (3.7)

D (t0) = D (t0) . (3.8)

If there are no sources, (3.7) is just the Liouville-von Neumann equation; hence the Lagrangian multiplier

D(t) coincides, at the stationary point, with the density operator D(t) of the system in the Schrödinger
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picture. Note that this picture has come out from our variational principle, even though we have adopted

the Heisenberg point of view. If however ξj(t) 6= 0, (3.7) is the same equation (2.4) as the one for A†, except

for the boundary condition (3.8) which replaces A†(∞) = 1. Hence, its solution is

D(t) = A†(t)e−iH(t−t0)A (t0)D (t0) eiH(t−t0). (3.9)

When the stationarity conditions are satisfied, the desired characteristic functional ϕ{ξ} is related to the

stationary value of Φ by

ϕ{ξ} = ln Φst. (3.10)

If D(t) were to vary freely, the stationarity conditions (3.5) and (3.6) with respect to A(t) would be

pointless. For practical applications, however, we have to restrict the trial spaces of D(t) and A(t) so as to

be able to calculate (3.2) explicitly. In this case, the best estimate for ϕ is still given by (3.10) when D(t)

and A(t) vary in the restricted spaces. The equations arising from (3.4) then give an approximation for the

time-dependence of A(t), and hence for A (t0) . As illustrated by the example of sect. 4, the variations δD(t)

usually depend upon D(t), and the approximate equations of motion for A(t) therefore involve D(t). We

thus need to determine D(t) within the same approximation scheme, and the equations (3.5), (3.6) become

relevant since they are now coupled to (3.3) and (3.4). Altogether, for restricted variations of A(t) and D(t),

we should solve the set of coupled differential equations (3.4) and (3.5), with the boundary conditions (3.3)

and (3.6). Since (3.3) refers to t = +∞ and (3.6) to t = t0, the equation for A(t) should be solved backward

in time, while the equation for D(t) should be solved forward in time. We have assumed that D (t0) has a

tractable form. It is then natural to suppose that it belongs to the trial class for D(t), so that the solution

of (3.6) is given by (3.8). We shall return to this point in sect. 6.

The equations (3.4) and (3.5) entail some simple consequences when the trial spaces are such that

variations δA proportional to A (δA ∝ A) and δD ∝ D are allowed [3]. In this case, by combining (3.4) and

(3.5), we find that

d
dt

Tr D(t)A(t) = 0. (3.11)

It also results from (3.4) for δD ∝ D that the integrand of (3.2) vanishes, and hence that the approximate
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stationary value of Φ is

eϕ = Φst = Tr A (t0)D (t0) = Tr A(t)D(t), (3.12)

where t is arbitrary. On the other hand, the time-derivatives of A(t) and D(t) obviously belong to the class

of variations δA(t) and δD(t), respectively. Writing the equations (3.4) and (3.5) for such variations and

adding them, we obtain

d
dt

Tr D(t)[A(t),H] = Tr

∑
j

ξj(t)Qj
d
dt

(D(t)A(t))

 . (3.13)

In practice, an approximate variational scheme for evaluating causal correlation functions for a given

initial state D (t0) can thus be developed as follows. After having chosen the relevant operators Qi, we

introduce the functional (3.2). We select for A(t) and D(t) variational spaces which make the calculation

of (3.2) feasible in terms of the trial parameters. (Of course these spaces should be large enough so that

the resulting approximation does not leave out the most important features of the exact solution.) The

optimization of the (time-dependent) trial parameters then yields an explicit form for eqs. (3.3) to (3.6).

The one-time, two-time,... correlation functions come out by expanding the result (3.10) in powers of the

sources ξj(t), according to (1.7). For actual calculations, we shall also expand the stationarity conditions

(3.3) to (3.6), and solve them iteratively. The complications due to their coupling will thus be overcome.

Moreover, we shall find it convenient, when working out the expansion of (3.10), to take advantage of the

stationarity of Φ. In particular, although at its stationarity point the functional (3.2) depends on the sources

both explicitly and through A(t) and D(t), only the explicit dependence contributes to the first derivative

of the generating functional with respect to the ξj(t). We have therefore at the stationarity point of (3.2)

δϕ

δξj(t)
= ie−ϕTrD(t)A(t)Qj = i

Tr D(t)A(t)Qj

Tr D(t)A(t)
, (3.14)

where the last expression follows from (3.12). It has been shown in a similar context (see sects. 3.1 and 5.3

of ref. [11]) that considerable simplifications in the expansion of ϕ can arise from equations such as (3.14).

We shall meet with similar simplifications in the next section.

4. APPLICATION: TWO-TIME CAUSAL FUNCTIONS AND THE BACKWARD RPA
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We now illustrate the formalism of sect. 3 by working out an extension of the mean-field approximation

for a many-body system of fermions. The Hamiltonian, in second quantized form, is

H =
∑
αβ

Bαβ c
†
αcβ +

1
4

∑
αβγδ

〈αβ | V | γδ〉 c†αc
†
βcγcδ, (4.1)

where B includes the kinetic energy and a possible s.p. potential, and where the matrix elements of the

two-body potential (which we shall also denote as V12) are antisymmetrized. We shall be interested in one-

and two-time correlation functions of some given operators Qj . The latter can be s.p. operators of the form

Q ≡
∑
αβ

Qαβ c
†
αcβ , (4.2)

but they can also be more complicated, including, for instance, the Hamiltonian Q0 ≡H.

We assume in the present section that D (t0) is a given independent-particle state, characterized by its

trace z0 and the contraction matrix ρ0 in the s.p. space:

ρ0αβ ≡
1
z0

Tr D (t0) c†βcα. (4.3)

Our purpose is to determine the generating functional (1.3) by means of the variational principle (3.2).

The exact expression (1.4) for A (t0) suggests that we take as trial space for A(t) the set of exponentials

of s.p. operators. This set would contain the exact solution A(t) if all the Qk had the form (4.2) and

if the particles did not interact. Likewise, the exact solution of (3.7), (3.8) for non-interacting fermions

suggests to take for D(t) the same type of trial space, as in any mean-field approximation. However, since

for small values of the sources A(t) is expected to remain close to the unit operator and D(t) close to the

time-dependent Hartree-Fock (TDHF) state, we parametrize differently A(t) and D(t). Namely, we set

A(t) ≡ exp

−`(t)−∑
αβ

Lαβ(t) c†αcβ

 , (4.4)

while we characterize D(t), like D (t0) , by its trace z(t) and its contraction matrix

ραβ(t) =
1
z(t)

Tr D(t) c†βcα. (4.5)

The variational parameters entering (3.2) are therefore `(t), Lαβ(t), z(t) and ραβ(t), with the boundary

conditions

`(∞) = Lαβ(∞) = 0, z (t0) = z0, ραβ (t0) = ρ0αβ , (4.6)
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arising from (3.3) and (3.8).

With this choice for the trial spaces, we are able to write explicitly the functional (3.2), even for finite

values of the sources, by taking advantage of the algebraic properties of exponentials of s.p. operators [3, 11].

Indeed, the products A(t)D(t) and D(t)A(t) are also exponentials of s.p. operators, characterized by their

trace in Fock space,

w(t) ≡ Tr AD = Tr DA = z exp
{
−`+ tr ln

[
1− ρ

(
1− e−L

)]}
, (4.7)

and by the contraction matrices

ρ′αβ(t) ≡ 1
w(t)

Tr DA c†βcα =
1

eL (ρ−1 − 1) + 1
, (4.8)

σ′αβ(t) ≡ 1
w(t)

Tr AD c†βcα =
1

(ρ−1 − 1) eL + 1
. (4.9)

We denoted by tr the trace in the s.p. space, and omitted the t-dependence of `, L, z, ρ. Wick’s theorem then

allows us to write out the s.p. reduction of (3.2) in the form

Φ{`(t), L(t); z(t), ρ(t)} = w (t0)

+
∫ +∞

t0

dt w(t)

−d`
dt

+ tr
1

(ρ−1 − 1) + e−L
de−L

dt
+ iE (σ′)− iE (ρ′) + i

∑
j

ξj(t)Fj (ρ′)

 . (4.10)

The quantity E(ρ) is the Hartree-Fock energy associated with H,

E(ρ) ≡ tr Bρ+ 1
2 tr1tr2V12ρ1ρ2, (4.11)

and Fj(ρ) is likewise obtained from the operator Qj by means of Wick’s theorem in terms of the contractions

ραβ ; in the case of the operator (4.2), we have Fj(ρ) = tr Qjρ. The last term of (4.10), which arises from the

sources, is unsymmetrical with respect to the two sets of contractions (4.8) and (4.9). This lack of symmetry

reflects the fact that we are dealing with causal correlation functions. Would we wish to evaluate anticausal

correlations, replacing the T -product by the anti-T -product everywhere would replace Fj (ρ′) by Fj (σ′) in

(4.10). In the following we shall need to write explicitly the variations of the functional Φ. This will introduce

the matrices W (ρ′) ,W (σ′) and Qj (ρ′) defined by

Wαβ (ρ′) ≡ ∂E (ρ′)
∂ρ′βα

, Qjαβ (ρ′) ≡ ∂Fj (ρ′)
∂ρ′βα

; (4.11′)
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these matrices, which are the s.p. reductions of H and Qj , respectively, depend on ρ and L through the

definitions (4.8) and (4.9) of ρ′ and σ′, and hence on time. In the special case (4.2), Qj(ρ) is just the given

matrix Qj ; in the general case, Qj(ρ) depends on ρ and Fj(ρ) differs from tr Qj(ρ)ρ.

The stationarity of Φ with respect to z(t) is expressed by the vanishing of the integrand of (4.10), which

will yield `(t) through a quadrature. Its stationarity with respect to `(t) is equivalent to (3.11), that is, to

dw/dt = 0, and it provides z(t). Hence, (3.12) reads here

ϕ = ln w(t) (4.12)

for any value of t. By varying ρ and L we find with the above definitions [3]

i
deL

dt
= {W (ρ′)−

∑
j

ξjQj (ρ′)}eL − eLW (σ′) , (4.13)

i
dρ
dt

= (1− ρ){W (ρ′)−
∑
j

ξjQj (ρ′)}ρ− ρW (σ′) (1− ρ), (4.14)

to be solved with the boundary conditions L(∞) = 0, ρ (t0) = ρ0. We are interested in the dependence of

ϕ upon the sources ξj(t); it will be given by (4.12) and (4.7), where the variational parameters (`, L, z, ρ)

depend on the ξ′s through the stationarity conditions. As consequences of (4.13) and (4.14), ρ′ and σ′ satisfy

the TDHF-like equations

i
dρ′

dt
= [W (ρ′)−

∑
j

ξjQj (ρ′) , ρ′], (4.15)

i
dσ′

dt
= [W (σ′) , σ′] ,

dE (σ′)
dt

= 0, (4.16)

which, on account of the relation (3.9) between D(t) and A†(t), correspond to (2.5) and (2.6). Finally, eq.

(3.14), together with (4.8), (4.12) and Wick’s theorem, reduces to

δϕ

δξj(t)
= iFj [ρ′(t)] . (4.17)

According to our general strategy, we now expand this whole set of equations in powers of the sources,

in order to determine the successive terms of (1.7). To lowest order, when there are no sources, we have at

any time L(0) = 0, and hence ρ(0) = ρ′(0) = σ′(0). The equation of motion for ρ(0) is

i
dρ(0)

dt
=
[
W
(
ρ(0)

)
, ρ(0)

]
, ρ(0) (t0) = ρ0, (4.18)
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and (4.17) provides

〈Qj(t)〉 = Fj

[
ρ(0)(t)

]
. (4.19)

Thus, the best variational answer for the expectation value ofQj at the time t is given by the TDHF equation

(supplemented by Wick’s theorem if Qj is not of the s.p. type (4.2)).

To next order, we shall obtain from (4.17) the two-time causal correlations Cjk. This will require the

first-order correction to ρ′, defined as

ρ′(t)− ρ(0)(t) ∼ ρ′(1)(t) ≡ −i
∫ ∞
t0

dt′′
∑
k

ρ′k (t, t′′) ξk (t′′) . (4.20)

Indeed, the identification of (1.7) with (4.17) yields

Cjk (t′, t′′) = −tr Qj (t′) ρ′k (t′, t′′) , (4.21)

where Qj (t′) stands for Qj
[
ρ(0) (t′)

]
. The equation of motion for ρ′k results from the expansion of (4.15).

This introduces the RPA kernel R associated at the time t with ρ(0)(t), and defined by [11][
W
(
ρ(0) + δρ

)
, ρ(0) + δρ

]
αβ
−
[
W
(
ρ(0)

)
, ρ(0)

]
αβ
∼[

W
(
ρ(0)

)
, δρ
]
αβ

+
[
tr V12δρ, ρ

(0)
]
αβ
≡
∑
γδ

Rαβ,δγδργδ.
(4.22)

This kernel acts as a superoperator in the Liouville space, the vectors δραβ of which are identified with

matrices in the s.p. space and are labelled by a pair of indices αβ; we have found it convenient to write the

products such as (4.22) with a twist of indices, since the scalar product of xαβ and yαβ in the Liouville space

is (x | y) ≡ tr xy =
∑
xβαyαβ . It then results from (4.15) that

i
d
dt
ρ′k (t, t′′) = R(t)ρ′k (t, t′′)− i

[
Qk(t), ρ(0)(t)

]
δ (t− t′′) . (4.23)

The equation (4.23) is not sufficient for determining (4.21); indeed, ρ′ does not satisfy a simple boundary

condition, since in its definition (4.8) we have L(∞) = 0 and ρ (t0) = ρ0. Nevertheless, let us write the

equation of motion for Lj , defined by

L(t) ∼ L(1)(t) ≡ −i
∫ ∞
t0

dt′
∑
j

ξj (t′)Lj (t′, t) . (4.24)
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Inserting the expansion of (4.8) and (4.9) into the equation of motion (4.13) for L, we find to lowest order

i
d
dt
Lj (t′, t) =

[
W
(
ρ(0)

)
, Lj

]
+ tr2V12

[
Lj , ρ

(0)
]

2
− iQjδ (t− t′)

= −Lj (t′, t)R(t)− iQj(t)δ (t− t′) , (4.25)

an equation decoupled from (4.23). In the right-hand side, we have recognized the dual of the RPA kernel

(4.22). Since Lj (t′,∞) = 0, we have Lj (t′, t) = 0 for t > t′ and, hence, Lj (t′, t′ − 0) = Qj . Thus, Lj is given

for t < t′ by the solution of

i
d
dt
Lj (t′, t) = −LjR, Lj (t′, t′) = Qj (t′) . (4.26)

We note that the same kernel R occurs in (4.23) and (4.25). This gives rise to the equation

d
dt

tr Lj (t′, t) ρ′k (t, t′′) = −tr Qj (t′) ρ′k (t′, t′′) δ (t− t′)

− tr [Lj (t′, t′′) , Qk (t′′)] ρ(0) (t′′) δ (t− t′′) , (4.27)

which expresses that tr Ljρ′k does not depend on t except for jumps at t = t′ and t = t′′. Moreover, according

to (4.21), the first term in the right side of (4.27) is simply Cjk (t′, t′′) δ (t− t′) . We can therefore obtain

this two-time causal function by integrating (4.27) from t = +∞, where Lj vanishes, down to t0, where ρ′k

is easily deduced from the boundary condition ρ (t0) = ρ0. Indeed, from (4.8), (4.20) and (4.24), we obtain

ρ′k (t0, t′′) ∼ −ρ (t0)Lk (t′′, t0) [1− ρ (t0)] = −ρ0Lk (t′′, t0) (1− ρ0) . (4.28)

For t′′ > t′, the last term of (4.27) is irrelevant since Lj (t′, t′′) = 0, and the integration over t is trivial. We

thus find, using (4.28),

Cjk (t′, t′′) = −tr Lj (t′, t0) ρ′k (t0, t′′)

= tr Lk (t′′, t0) (1− ρ0)Lj (t′, t0) ρ0. (4.29)

This formula is the main result of the present section: the best variational estimate for a two-time causal

correlation function is obtained by (i) solving the TDHF equation (4.18) for ρ(0); (ii) determining the RPA

kernel through (4.22); (iii) calculating Lj (t′, t) and Lk (t′′, t) by means of the differential equation (4.26), run
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backward in time from its boundary condition at t′ or t′′; and (iv) evaluating (4.29), which is the cumulant

of

Tr D0

∑
αβγδ

Lkαβ (t′′, t0) c†αcβLjγδ (t′, t0) c†γcδ. (4.30)

The equation (4.29) encompasses some partial results that were obtained previously [11] for t′ = t′′. A

convenient formula was also derived long ago [12] in the special case when ρ2
0 = ρ0, j = k and t′ = t′′.

Numerical calculations [13−15] relying on it have shown the relevance of the present ideas for the evaluation

of fluctuations in heavy-ion collisions.

The expression (4.29) or (4.30) holds for t′′ > t′, and the ordering of the matrices Lk and Lj reflects

that of the T -product in the definition (1.6) of Cjk. For t′ > t′′, we can obtain Cjk by interchanging the

operators Qj (t′) and Qk (t′′) . We shall check in the end of sect. 5 that this result also follows from (4.21)

and (4.27). For anti-T -products we should reverse the ordering of the matrices in (4.29), consistently with

the replacement of Fj (ρ′) by Fj (σ′) in (4.10). Moreover, (4.29) is consistent with an alternative variational

treatment suited to the equal-time correlation functions (ref.[11], sect. 5). Another consistency requirement

is satisfied: if all the observables Qj are s.p. ones and commute with H, our approximation gives the exact

result since the exact operator A(t) then belongs to our trial class.

Altogether, our variational treatment involves two different approximate s.p. objects, with which are

associated two different approximate equations of motion. On the one hand, ρ(0)(t) appears as the s.p.

reduction of the full density operator D(t). It obeys the TDHF equation (4.18), which is the variational

s.p. counterpart of the exact Liouville–von Neumann equation. The quantity ρ(0)(t) was shown to be

variationally suited to the evaluation of the single-time expectation values (4.19). On the other hand, the

Heisenberg operators QH
j (t′, t) are simulated here by the s.p. operators

∑
αβ Ljαβ (t′, t) c†αcβ . The backward

RPA equation (4.26) obeyed by the latter operators arises as the variational approximation for the backward

Heisenberg equation (1.10) when one wishes to evaluate the two-time functions (4.30).

Thus, although the Schrödinger and Heisenberg equations of motion are equivalent for the exact density

operators and observables, this is no longer true for their s.p. reductions, the TDHF and the backward

RPA equations. The evaluation of the two-time functions (4.29) involves bringing back from t′ (or t′′) to t0

the time t in Lj (t′, t) (or Lk (t′′, t)) by means of the backward RPA equation (4.26), while the single-time
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functions (4.19) require bringing t0 to t by means of the forward TDHF equation (4.18). In particular,

if Qj is a s.p. operator of the form (4.2), the consistent variational answer for 〈Qj(t)〉 is tr Qjρ(0)(t),

and not tr Lj (t, t0) ρ0, as might have been erroneously inferred from (4.30) and from the exact expression

〈Qj(t)〉 = Tr D0Q
H
j (t, t0) . In the TDHF equation, the exact Hamiltonian H is replaced by the effective s.p.

Hamiltonian W depending on time through ρ(0). In the backward RPA-like eq. (4.25), the exact Hamiltonian

H entering the Heisenberg equation (1.10) is replaced by the kernel R, which again depends on time through

ρ(0) but differs from W when the particles interact. These different guises of H are the price we pay for the

s.p. reduction and for the decoupling of the equations.

We can also introduce H, not as the generator of time-translations, but as an operator Q0 ≡H on the

same footing as the other Qj ’s. We then identify the expectation value F0(ρ) with the HF energy E(ρ), and

the s.p. reduction Q0(ρ) of Q0 in the Schrödinger picture with W (ρ). It is easy to check from the equation

of motion (4.18) of ρ(0) that W (t) ≡W
[
ρ(0)(t)

]
evolves according to

i
d
dt
W (t) = −WR, (4.31)

for a time-independent Hamiltonian H. On the other hand, the s.p. reduction L0 (t′, t) of the Heisenberg

operator QH
0 (t′, t) is defined by the backward RPA equation (4.26), and comparison with (4.31) shows that

L0 (t′, t) = θ (t′ − t)W (t). Hence, the s.p. reduction W of the Hamiltonian H is the same in the Schrödinger

as in the Heisenberg picture. This property reflects the identity of the exact H in the two pictures when it is

time-independent (eq. (1.12)). It holds in spite of the time-dependence of W and provides a further test of

consistency for our approximate equations of motion. Furthermore, the replacement of Qj by Q0 = H in our

variational expression for the two-time functions Cjk (t′, t′′) simply replaces Lj (t′, t0) by W (ρ0) in (4.29). We

thus find an approximation for the time correlation function between the Hamiltonian and another operator

Qk, which, satisfactorily, does not depend on the time t′, even though W
[
ρ(0) (t′)

]
does.

The above property is related to energy conservation. Let us also consider the consistency of our

approximation under other symmetry laws, assuming that Qj is conserved, i.e., that it commutes with H.

In such a case, the exact causal function Cjk (t′, t′′) does not depend on t′, although it still depends on t′′.

We thus wish to examine the time-dependence of the matrix Lj (t′, t0) , defined by (4.26). We shall specialize
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to a s.p. operator Qj of the form (4.2), and shall prove that in this case the solution of (4.26) is simply

Lj (t′, t) = Qj . (4.32)

To this aim, we first express how the kernel R, defined in the s.p. Liouville space by (4.22), acts in Fock

space. Let us denote by δρ and by Q a pair of arbitrary test matrices with which we saturate R. According

to (4.22), we have

(Q | R | δρ) = tr Q δ[W (ρ), ρ], (4.33)

where the r.h.s. involves a change of ρ from ρ(0) to ρ(0) + δρ. On the other hand, if we denote by D the

normalized independent-particle density operator corresponding to ρ, we have

tr Q[W (ρ), ρ] = Tr D[Q,H], (4.34)

where Q is the s.p. operator (4.2) associated with the test matrix Q. Altogether, we obtain

(Q | R | δρ) = Tr δD[Q,H]. (4.35)

Applying now (4.35) to Qj , with an arbitrary δρ, we find that QjR = 0, and thence we justify (4.32). The

approximation (4.29) for two-point functions (for t′′ > t′) thus reduces to

Cjk (t′, t′′) = tr Lk (t′′, t0) (1− ρ0)Qjρ0. (4.36)

It is obviously independent of t′, as it should, at least for a s.p. conserved quantity Qj such as momentum

or angular momentum.

5. EXTENSION TO LINEAR RESPONSES

The various two-time functions can be obtained, for the causal functions from the variational expres-

sion (4.29), and for the anticausal functions from a similar expression. In particular, if a time-dependent

perturbation of the form
∑
k ζk(t)Qk, acting after the preparation time t0, is added to the Hamiltonian, the

expectation value of Qj at the time t′ is for small ζ’s obtained by expanding (1.5) in the form

〈Qj (t′)〉 = 〈Qj (t′)〉0 +
∫ ∞
t0

dt′′
∑
k

χjk (t′, t′′) ζk (t′′) + ..., (5.1)
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where 〈Qj (t′)〉0 is the value when there is no perturbation, and where χjk (t′, t′′) is the linear response of

Qj to Qk. As well-known the latter quantity is given by the retarded commutator

χjk (t′, t′′) = −i θ (t′ − t′′) Tr
[
QH
j (t′, t0) ,QH

k (t′′, t0)
]
D (t0) , (5.2)

a formula which can be derived directly, and also variationally [3]. From (4.29) and the similar formula for

anti-T -products, we find for (5.2) the approximation

χjk (t′, t′′) = −iθ (t′ − t′′) tr [Lj (t′, t0) , Lk (t′′, t0)] ρ0, (5.3)

while 〈Qj (t′)〉0 is variationally given by (4.19).

Like the approximation (4.29) for the correlation function (1.6), the approximate response (5.3) can be

interpreted as a s.p. reduction of (5.2), where the backward Heisenberg equation (1.10) for the operators

QH
j in Fock space is changed into the backward RPA for the matrices Lj . We have noted in sect. 4 that

different s.p. reductions occur, depending on the quantity of interest, but that they satisfy several consistency

properties of the one- and two-time functions. We have just found on variational grounds still another s.p.

expression, (5.3), suited to linear responses. It is then natural to wonder whether (5.3) also satisfies some

general consistency requirements which should be obeyed by any reasonable approximation for response

functions.

(i) The exact expression (5.2) remains unchanged if the reference time t0 entering both the state and

the operators is shifted forward to any time t satisfying t′′ ≥ t ≥ t0, the state D (t0) being replaced by its

Schrödinger value at this time t.

We thus wish to perform such a shift in the approximation (5.3). The key point is the following: whereas

ρ(0)(t) evolves according to the unperturbed TDHF equation (4.18) and Lk (t′′, t) according to the backward

RPA (4.26), the commutator of these two matrices follows the forward RPA-like equation (4.23). We check

this by making use of the explicit form (4.25) for LkR, of the Jacobi identity and of the explicit form (4.22)

for Rδρ. We thus obtain

i
d
dt

[
Lk (t′′, t) , ρ(0)(t)

]
= R(t)

[
Lk (t′′, t) , ρ(0)(t)

]
− i
[
Qk(t), ρ(0)(t)

]
δ (t− t′′) , (5.4)
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where, as in sect. 4, we wrote Qk(t) for Qk
[
ρ(0)(t)

]
. We now combine (5.4) with the equation (4.25) for

Lj (t′, t) to find for t′ > t′′ :

i
d
dt

tr Lj (t′, t)
[
Lk (t′′, t) , ρ(0)(t)

]
= −i tr Lj (t′, t)

[
Qk(t), ρ(0)(t)

]
δ (t− t′′) .

(5.5)

Hence, the approximation (5.3) for the linear response can equivalently be written as

χjk (t′, t′′) = −iθ (t′ − t′′) tr [Lj (t′, t) , Lk (t′′, t)] ρ(0)(t), (5.6)

for any t such that t′′ > t ≥ t0. This expression is the s.p. equivalent of property (i): the time t0 of (5.3)

has been replaced in (5.6) by any later time t (smaller than t′′), while the initial contraction matrix ρ0

has been replaced by ρ(0)(t) which follows the TDHF evolution. This confirms that, in our variational s.p.

approximation, TDHF plays the rôle of the Liouville-von Neumann equation while the backward RPA for

Lj and Lk plays the rôle of the backward Heisenberg equation for QH
j and QH

k . Note that, whereas the

expectation value (4.19) ought to be written in the Schrödinger picture and the causal correlation function

(4.29) in the Heisenberg picture, the linear response can be expressed in either picture by letting t = t′′ or

t = t0 in (5.6). Actually, eq. (5.6) with t = t′′ had already been derived variationally (ref. [3], eq. (7.25)),

but without introducing a generating functional.

(ii) If the two times t′ and t′′ tend towards each other, the exact expression (5.2) is just the expectation

value, at the single time t′ = t′′ + 0, of the commutator −i [Qj ,Qk] . We have already constructed for this

quantity two alternative approximations, which we need to compare. On the one hand, if we regard [Qj ,Qk]

as a single operator, we are led through (4.19) to express its expectation value in terms of the contraction

matrix ρ(0) by means of Wick’s theorem, namely

χjk (t′, t′ − 0) = −i F[Qj ,Qk]

[
ρ(0) (t′)

]
. (5.7)

On the other hand, we can let t + 0 = t′′ = t′ − 0 in (5.6) and obtain the equal time commutator in the

approximate form

χjk (t′, t′ − 0) = −i tr [Qj (t′) , Qk (t′)] ρ(0) (t′) . (5.8)

According to its definition (4.11′) , Qj (t′) is obtained from the full operator Qj by contracting all its creation

and annihilation operators except for one pair. Hence (5.8) involves two contractions astride Qj and Qk,

24



one equal to ρ
(0)
αβ (t′) and the second to δαβ , all other contractions lying within Qj or within Qk. Let us

then classify the various terms of (5.7) according to the number of contractions which join Qj and Qk. This

number is even. The terms containing no such contraction cancel out since we have a commutator. The

terms with two such contractions are obviously in one-to-one correspondence with the terms of (5.8). The

two expressions (5.7) and (5.8) thus differ only if (5.7) involves four, or six, ... contractions between Qj and

Qk. Altogether, the two approaches provide, satisfactorily, the same result for the equal-time commutator

whenever one at least of the operators Qj or Qk is a s.p. operator.

(iii) The two-time response functions arise from expanding (5.1) in powers of the ζk’s up to first-order.

Alternatively, we can try to evaluate directly 〈Qj (t′)〉 , without carrying out this expansion, by regarding

this quantity as a single-time expectation value reached after an evolution governed between the times t0

and t′ by the Hamiltonian H̃ ≡H +
∑
ζk(t)Qk. This very question was already answered in sect. 4 by eq.

(4.19), which is valid even if the Hamiltonian H̃ is time-dependent. To be consistent we thus need to show

that (5.1) and (5.3) can equivalently be obtained as the first two terms of the expansion in powers of the ζ’s

of

〈Qj(t′)〉 = Fj [ρ̃(t′)] = Fj

[
ρ(0)(t′)

]
+ tr Qj

[
ρ(0)(t′)

]
ρ̃(1)(t′), (5.9)

where ρ̃ ≡ ρ(0) + ρ̃(1) is itself expanded up to first-order in the ζ’s (rather than in the sources as in sect. 4).

The matrix ρ̃(t) evolves according to the TDHF equation associated with the Hamiltonian H̃, namely

i
dρ̃
dt

=
[
W̃ , ρ̃

]
, W̃ ≡W [ρ̃(t)] +

∑
k

ζk(t)Qk [ρ̃(t)] , (5.10)

with the initial condition ρ̃ (t0) = ρ0.

To check this consistency property, we need to push the time t in (5.6) up to t′. The existence for

Lk (t′′, t) of the jump −Qk(t) at t = t′′, and the fact that Lk (t′′, t) = 0 for t > t′′, suggest to introduce

a matrix L̂k (t′′, t) which vanishes for t < t′′ and is equal to Qk(t) for t = t′′ + 0, thus continuing Lk

smoothly. The sum Lk + L̂k satisfies the homogeneous equation id
(
Lk + L̂k

)
/dt = −

(
Lk + L̂k

)
R. The

same calculation as in (5.4) and (5.5) now shows that tr Lj (t′, t)
[
Lk (t′′, t) + L̂k (t′′, t) , ρ(0)(t)

]
is constant

over the whole interval t′ > t ≥ t0. By letting t = t′, we find

χjk (t′, t′′) = −i tr
[
L̂k (t′′, t′) , ρ(0) (t′)

]
Qj (t′) . (5.11)
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Due to the jump in L̂k, the commutator satisfies the differential equation

i
d
dt

[
L̂k (t′′, t) , ρ(0)(t)

]
= R

[
L̂k, ρ

(0)
]

+ i
[
Qk, ρ

(0)
]
δ (t− t′′) , (5.12)

analogous to (5.4); it vanishes for t < t′′, in particular for t = t0. In order to check the property (iii) we insert

(5.11) into (5.1) and compare the result with (5.9). It remains to show that the first-order contribution (in

the ζ’s) of the solution ρ̃ of (5.10) can be identified with

ρ̃(t′)− ρ(0)(t′) ∼ ρ̃(1)(t′) = −i
∫ ∞
t0

dt′′
[∑

k

ζk (t′′) L̂k (t′′, t′) , ρ(0)(t′)

]
. (5.13)

Let us therefore expand (5.10). From the definition of R, we find

i
dρ̃(1)(t)

dt
= Rρ̃(1) +

[∑
k

ζk(t)Qk(t), ρ(0)(t)

]
, (5.14)

with ρ̃(1) (t0) = 0. Comparison of the differential equations (5.12) and (5.14), and of the associated boundary

conditions, completes the proof of (5.13) and hence of the property (iii).

(iv) The consistency between the causal functions and the response functions is related to the symmetry

of the former in the interchange of the times t′, t′′ and of the observable indices j, k. This symmetry was not

obvious on the expression (4.21), and we have only derived the expression (4.29) of Cjk (t′, t′′) for t′′ > t′.

Let us now turn to the case t′ > t′′ > t0. When bringing t′ back to t0 in (4.21), we meet with the jump of

Ljρ
′
k at t′ = t′′, which is described by the last term of (4.27). We thus have, for t = t′′ − 0,

Cjk (t′, t′′) = −tr Lj (t′, t) ρ′k (t, t′′) + tr [Lj (t′, t) , Qk(t)] ρ(0)(t). (5.15)

As a function of t, in the range t′′ > t ≥ t0, the first term of (5.15) is constant according to (4.27) while its

second term is constant according to (5.5). (The latter is directly related to χjk since it accounts for the

change in the time-ordering of QH
j and QH

k when t′ becomes larger than t′′.) Letting t = t0 in (5.15) and

using (4.28), we finally find for t′ > t′′

Cjk (t′, t′′) = tr Lj (t′, t0) ρ0Lk (t′′, t0) (1− ρ0) + tr [Lj (t′, t0) , Lk (t′′, t0)] ρ0

= tr Lj (t′, t0) (1− ρ0)Lk (t′′, t0) ρ0. (5.16)

This result complements (4.29), and the expected symmetry is verified.
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6. THE INITIAL STATE PROBLEM: A VARIATIONAL APPROACH

The variational principle of sect. 3 is manageable only if the initial state D (t0) has a sufficiently simple

form. In the illustrative application of sects. 4 and 5, we assumed that D (t0) had an independent-particle

form; this made the explicit calculation of Tr A (t0)D (t0) feasible. Unfortunately, in realistic problems

(which involve the ground state of many-body systems, the Boltzmann-Gibbs distribution in equilibrium

statistical mechanics, or the initial state for non-equilibrium situations) not only the evolution but also the

exact density operator D (t0) are complicated. As already mentioned in the introduction, a possible approach

consists in replacing this state D (t0) by some simple approximation chosen a priori. For instance, if we wish

to apply the formalism of sect. 4 to grand canonical equilibrium, we might replace the actual distribution

D (t0) = exp(−βH + αN) by its standard mean-field approximation; the s.p. density matrix ρ0 entering

our formulae would then refer to the static HF density.

This procedure, however, is unsatisfactory. Though the HF density ρ0 is variational, it optimizes only

the thermodynamic potential. It has no reason to provide for D (t0) the variational approximation that

is best suited for the evaluation of the generating functional (1.3), even if we remain within the s.p. trial

class. More generally we wish to construct, by means of the general method of refs. [1, 2], a single variational

principle for eϕ = Tr A (t0)D (t0) in which both A (t0) and D (t0) will be replaced by trial objects A (t0) and

D (t0) , to be determined approximately so as to optimize ϕ. This variational principle should encompass

the determination of A (t0) by means of the equation of motion (2.2) as above and, simultaneously, the

determination of D (t0) by means of another appropriate equation.

As was already noted, the exact state D (t0) need not be normalized and we shall write it as exp(−βH̄).

Usually, in contrast to D (t0) , H̄ will be a rather simple operator. In ground state problems, H̄ is identical

with the Hamiltonian H, and β is infinite. For a grand canonical state, H̄ is H − µN and β is the inverse

temperature. For non-equilibrium problems, the logarithm −βH̄ of the initial state D (t0) is some operator

which does not commute with H. For atomic, molecular or nuclear collisions, it includes, in addition to

the Hamiltonians of the two incoming fragments, a term −v · P where v is the relative velocity and P the

relative momentum operator [13− 15].

In order to apply the general scheme recalled in sect. 3, we need a simple constraint forcing the
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variational state D (t0) to lie as close as possible to exp(−βH̄). One or other variant of this technique can

be used. A first possibility, proposed in ref. [11] for the evaluation of equal-time correlations, consists in

imposing on M≡ −lnD (t0) the constraint

M− βH̄ = 0. (6.1)

The variables {xα} of sect. 3 then include, in Fock space, both the matrix elements of A(t) at each time and

those of M, while {xα0 } stands for both A(t) and βH̄. The constraints gβ include the equations (2.2) and

(6.1) for A(t) and D (t0) ; the Lagrangian multipliers {λβ} include D(t), as above, plus a matrix B associated

with (6.1). The generating functional eϕ is thus given as the stationary value of

Tr A (t0) e−M + Tr B(M− βH̄) + Φdyn, (6.2)

where Φdyn is the same as (3.2b).

Rather than extending this procedure to the present problem of the evaluation of multi-time functions,

we propose here an alternative method which leads to a more symmetric and more convenient variational

formulation. In analogy with the representation of A(t) as the solution of the differential equation (2.2), we

build up the exponential form exp(−βH̄) of D (t0) by means of the Bloch equation

d
du

exp(−uH̄) + H̄exp(−uH̄) = 0, (6.3)

where u runs from 0 to β. We introduce therefore a trial operator intended to approximate exp(−uH̄) and

denoted as D(t), where the complex time t ≡ t0 + i(β − u) runs from t0 + iβ to t0 while D(t) runs from 1

to D (t0) (fig. 1). The equation (6.3) will be our simple constraint determining D(t) variationally. We shall

regard the segment t0 + iβ, t0 as the continuation of t0,∞ and denote this segment by t0 + iβ < t < t0.

Such a replacement of temperature variables by imaginary time variables is commonly used in perturbation

theory [10]; it will also prove convenient in our variational context. The use of the same notation D(t),

that represents for t > t0 the Lagrangian multiplier associated with the equation for A(t) as in the previous

variational expression (3.2), and that also represents for t = t0 + i(β − u) the solution of (6.3), will be made

clearer by eqs. (6.8) and (6.9); it should not be a source of confusion.
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To account for the equation (6.3), which, together with the boundary condition

D (t0 + iβ) = 1, (6.4)

characterizes D(t) for t0 + iβ < t < t0, we introduce a Lagrangian multiplier operator depending on t. For

the sake of symmetry, we denote here again this operator by the same notation A(t) as the operator defined

for t > t0 by (2.2). Hence, we now introduce the functional

Ψ = Tr A (t0 + 0)D (t0 + i0)− Tr
∫ t0

t0+iβ

dt A(t)
[

dD(t)
dt

+ iH̄D(t)
]

+ Φdyn, (6.5)

where Φdyn is the same as in (3.2b), and where A(t) and D(t) are constrained to satisfy the boundary

conditions A(∞) = 1 and D (t0 + iβ) = 1. The stationary value of Ψ under arbitrary variations of the

operators A(t) and D(t), with t lying either on the segment t0 + iβ < t < t0 or on the half-line t > t0 of

the complex plane, provides eϕ. Our notation allows us to match the two integrals of (3.2b) and (6.5) into

a single one along the complex L-shaped contour of fig. 1, after an integration by parts. Note, however,

that the rôles of the operators A(t) and D(t) are interchanged along the two sections of this contour: the

unknown quantities {xα} are D(t) for t0 + iβ < t ≤ t0 and A(t) for t ≥ t0, while the Lagrangian multipliers

{λβ} are A(t) for t0 + iβ < t < t0, and D(t) for t > t0. (We might have written iD(t)H̄, instead of iH̄D(t),

in the integral of (6.5); this alternative choice would not affect the final results of sects. 7 and 8.)

For restricted trial spaces, the stationarity conditions for t > t0 are the same as (3.4), (3.5) and they

involve the sources. For t0 + iβ < t < t0 they read

Tr δA(t)
[

dD(t)
dt

+ iH̄D(t)
]

= 0, (6.6)

Tr δD(t)
[

dA(t)
dt

− iA(t)H̄
]

= 0. (6.7)

The stationarity of (6.5) with respect to A (t0 + 0) and to D (t0 + i0) yields the matching conditions

Tr δA (t0 + 0) [D (t0 + 0)−D (t0 + i0)] = 0, (6.8)

Tr δD (t0 + i0) [A (t0 + 0)−A (t0 + i0)] = 0. (6.9)

The solution of (6.8), (6.9) simply expresses that both D(t) and A(t) are continuous at t0. Our choice of

notations anticipated this property.

29



Although the symmetry introduced between A and D and between the two parts of the contour is

convenient, it is solely formal. Note that, when expanding the equations in powers of the sources, A(t) will

be close to 1 only for t > t0. For t = t0 + i(β − u), the exact solution of (6.7) is

A(t) = A (t0) exp[−(β − u)H̄], (6.10)

and it has a finite non-trivial limit when the sources are turned off, in which case A (t0) = 1.

As in sect. 3, it can be convenient to choose trial spaces such that the variations δD(t) ∝ D(t) and

δA(t) ∝ A(t) are allowed. The approximation for ϕ resulting from (3.4), (3.5), (6.6) and (6.7) is then given

by

ϕ ' ln Tr A(t)D(t), (6.11)

for arbitrary t on the complex integration path, since (3.11) holds everywhere. Moreover, we can use again

(3.14) to simplify the calculation of one- and two-time functions.

The functional (6.5) is our basic tool for evaluating multi-time correlation functions. It accounts not only

for the time evolution, as in sect. 3, but also for our knowledge of the initial state D (t0) . The approximation

D (t0) which follows from our scheme is expected to be an improvement on a priori approximations of the

same form. Indeed, we construct it variationally by selecting within the trial class that state D (t0) which

optimizes the generating functional ϕ, our quantity of interest. For a practical calculation, after having made

an ansatz about the quantities A(t) and D(t) as in sect. 3, we need to write the differential equations (3.4),

(3.5), (6.6), (6.7) for A(t) and D(t) along the contour t0 + iβ < t < t0, t > t0, with the mixed boundary

conditions D (t0 + iβ) = 1, A(∞) = 1. In order to solve these equations, we can again proceed by recursion

while expanding the generating functional (6.11) or (3.14) in powers of the sources, so as to find eventually

the one-time, two-time, ... functions.

We shall illustrate this procedure by the example of sect. 7. The explicit form of the stationarity

conditions will show us that the approximate initial state D (t0) depends on the sources, in contrast to the

exact D (t0) . This fact may look surprising since the sources ξ(t) will be turned on at later times. Actually,

the approximate equations for A(t) and D(t), derived by restricting the trial spaces and then by optimizing

the variational expression (6.5) for ϕ, are coupled. Such a coupling lets D (t0) depend on the values of
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A(t) for t > t0, and hence on ξ(t). It is owing to this dependence that we obtain consistently non-trivial

approximate correlation functions from a restricted class for A(t) and D(t), such as the independent-particle

class of sect. 7. The situation is reminiscent of broken invariances. For instance, the BCS approximation

permits a description of superconductivity by means of a simple variational state in which the conservation

of the particle number is broken, in contrast to the exact state.

7. APPLICATION: VARIATIONAL ASPECT OF THE STATIC RPA

We now apply the formalism of sect. 6 to the fermion system of sect. 4. We first take the operator

H̄ characterizing the initial state D (t0) = exp(−βH̄) as arbitrary, and shall specialize to grand canonical

equilibrium in sect. 8 by letting H̄ = H−µN . In order to build for D (t0) and A (t0) an approximation that

is suited to the evaluation of Tr D (t0)A (t0) , we rely on the variational principle (6.5), and take the same

trial class for A(t) and D(t) as in (4.4), (4.5) and (4.6). This will provide us with a new extension of the

mean-field approximation. We use the same notations as in sect. 4, in particular the definitions (4.7) and

(4.8) of w(t) and ρ′(t), but now the times can lie on either part, t0 + iβ < t < t0 or t > t0, of the integration

contour of fig. 1. We obtain

Ψ{l(t), L(t); z(t), ρ(t)} = w (t0)

−
∫ t0

t0+iβ

dt w
[

1
z

dz
dt

+ tr
(

1
ρ
ρ′ − 1

)
1

1− ρ
dρ
dt

+ iĒ (ρ′)
]

+ Φdyn,
(7.1)

where the last term Φdyn is the same integral as in (4.10). We have denoted the Wick expression for

Tr D(t)A(t)H̄ by Ē (ρ′) and shall write W̄ (ρ′) for ∂Ē/∂ρ′. In a grand canonical equilibrium, Ē(ρ) reduces

to E(ρ)− µ trρ and W̄ (ρ) to W (ρ)− µ.

The stationarity conditions for ρ and L are the same as (4.14) and (4.13) on the half-line t > t0; for

t0 + iβ < t < t0, they take the form

i
dρ
dt

= (1− ρ)W̄ (ρ′) ρ, (7.2)

i
deL

dt
= W̄ (ρ′) eL. (7.3)

The other stationarity conditions are the vanishing of the integrand of (7.1), the constancy of w(t), and the

continuity of ρ, z, L and l across t0. We shall make use below of the equations

i
dρ′

dt
=
[
W̄ (ρ′) , ρ′

]
,

dĒ (ρ′)
dt

= 0, (7.4)
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dσ′

dt
= 0, (7.5)

which hold for t0 + iβ < t < t0 and are consequences of (4.8), (4.9), (7.2) and (7.3). We shall also use

equation (4.17) for ∂ϕ/∂ξ, which remains valid.

To zeroth order in the source terms, the solution of the equations (7.2) and (7.3), with the boundary

conditions ρ (t0 + iβ) = 1
2 (a consequence of D (t0 + iβ) = 1) and L (t0) = 0, is

ρ(0) (t0 + iβ − iu) =
1

euW̄0 + 1
, (7.6)

L(0) (t0 + iβ − iu) = (β − u)W̄0, (7.7)

where W̄0 is defined by the static HF equation

W̄0 = W̄ (ρ0) , ρ0 =
1

eβW̄0 + 1
. (7.8)

The quantity ρ′(0) is a constant, equal to ρ0 for t0 + iβ ≤ t ≤ t0, while ρ(0) = ρ′(0) obeys the TDHF equation

(4.18) for t > t0. Hence, 〈Qj (t′)〉 is approximated variationally by (4.18), (4.19). This approximation consists

in using Wick’s theorem with contractions given as follows: the s.p. density matrix ρ(0)(t) evolves between

t0 and t′ according to the TDHF equation associated with H, whereas the initial condition ρ(0) (t0) = ρ0 is

the static HF density (7.8) associated with H̄.

To next order, we have worked out in sect. 4 the equations for t > t0 and the results obtained there

still hold. We again introduce the RPA kernel R which involves the TDHF s.p. density ρ(0)(t). From R we

obtain Lj (t′, t0) and Lk (t′′, t0) as above by running the backward RPA equation (4.26). However, a new

feature appears now at this order since our approximate initial state ρ (t0) is no longer the HF density ρ0

but involves the shift:

ρ (t0)− ρ0 ∼ ρ(1) (t0) ≡ −i
∫ ∞
t0

dt′′
∑
k

ρk (t0, t′′) ξk (t′′) . (7.9)

The correction ρ(1) (t0) is introduced by the variational method in the process of optimizing the two-point

functions, while the HF density ρ0 optimizes only the expectation values 〈Qj (t′)〉 . Its existence implies that

the quantity ρ′k (t0, t′′) entering the expressions (4.29) or (5.15) for Cjk (t′, t′′) is no longer given by (4.28)

but by

ρ′k (t0, t′′) = ρk (t0, t′′)− ρ0Lk (t′′, t0) (1− ρ0) . (7.10)
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The additional term ρk (t0, t′′) should in principle be derived from the expansion of the equations (7.2) and

(7.3) that couple ρ(t) and L(t) for t0 + iβ ≤ t ≤ t0. Their solution is complicated by the mixed boundary

conditions,

ρk (t0 + iβ, t′′) = 0, L (t0) = −i
∑
k

∫
dt′′ξk (t′′)Lk (t′′, t0) , (7.11)

which refer to both ends of the time interval, and by the fact that L(t) is not small for t ≡ t0 + i(β − u),

0 ≤ u ≤ β when the sources ξ are small, as is seen from (6.10) or (7.7). However, we shall show that the

explicit determination of (7.10) does not require the full solution of these equations (7.2) and (7.3). First,

the expansion of (7.4) yields the equation for ρ′k (t, t′′) along t0 + iβ ≤ t ≤ t0,

i
dρ′k
dt

= R̄ρ′k, (7.12)

where R̄ is the RPA kernel (4.22) associated with H̄, W̄0 and ρ0. (It reduces toR, associated withH,W
(
ρ(0)

)
and ρ(0), for grand canonical equilibrium.) The solution of (7.12) then provides

ρ′k (t0, t′′) = e−βR̄ρ′k (t0 + iβ, t′′) . (7.13)

On the other hand, since ρ (t0 + iβ) = 1
2 commutes with L (t0 + iβ) , we have

ρ′k (t0 + iβ, t′′) = σ′k (t0 + iβ, t′′) . (7.14)

We now take advantage of (7.5) and write

σ′k (t0 + iβ, t′′) = σ′k (t0, t′′) . (7.15)

Finally, comparing the expansions of (4.8) and (4.9) at t = t0 yields

σ′k (t0, t′′) = ρ′k (t0, t′′)− [Lk (t′′, t0) , ρ0] , (7.16)

and hence we find from eqs. (7.13) to (7.16)

ρ′k (t0, t′′) = − 1
eβR̄ − 1

[Lk (t′′, t0) , ρ0] . (7.17)

We shall not consider here the question of the vanishing eigenvalues of R̄, in spite of the importance of this

problem in situations with broken invariance.
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We are now in position to write the expression of the two-time function which accounts for the correction

(7.9) optimizing the approximate initial state. We denote this new result as C̄jk (t′, t′′) so as to distinguish

it from the approximation Cjk (t′, t′′) given by (4.29), (5.16), obtained by assuming the initial state to be

uncorrelated and characterized by the s.p. density ρ0. We find C̄jk (t′, t′′) by inserting (7.10) into the first

line of (4.29) for t′′ > t′, or into (5.15) for t′ > t′′. We thus obtain our final expression

C̄jk (t′, t′′) = tr Lj
1

eβR̄ − 1
[Lk, ρ0] , t′′ > t′, (7.18a)

= tr Lj
1

1− e−βR̄
[Lk, ρ0] , t′ > t′′, (7.18b)

where Lj and Lk stand for Lj (t′, t0) and Lk (t′′, t0) , respectively. This result, also expressed by

C̄jk (t′, t′′) = 1
2 tr Lj

(
coth 1

2βR̄ ∓ 1
)

[Lk, ρ0] , t′′ <> t′ , (7.18)

encompasses all the previous mean-field approximations that we wrote for correlation functions of interacting

fermions. Here, both the evolution and the initial state are determined variationally. In addition to the HF

equation (7.8) for ρ0 and to the backward dynamical RPA used to evaluate Lj (t′, t0) and Lk (t′′, t0) , the

formula (7.18) involves the static RPA kernel R̄ associated with ρ0. A new, doubly variational, aspect of

the RPA thus emerges naturally from our approach: the RPA occurs both statically and dynamically in our

variational approximation for the two-time functions. Remember however that, within the present variational

framework, the single-time functions, as well as the thermodynamic functions for grand canonical equilibrium

(or the ground state energy), are given consistently by the static and dynamic HF approximations. Moreover,

we look here for a stationary value of Ψ, not for a minimum or a maximum. These features contrast with

efforts to relate the static RPA to the Rayleigh-Ritz principle [16].

Let us conclude this section with a few additional remarks. Note first that pure state problems corre-

spond to a limit β −→∞ in (7.18). On the other hand, for static problems, to evaluate the initial correlations

between the observables Qj in the state D (t0) , we let in the above result t′ = t′′ ± 0 = t0; in this case,

Lj (t′, t0) and Lk (t′′, t0) should simply be replaced in (7.18) by Qj and Qk. For arbitrary t′ and t′′ the

expression (7.18) accounts both for the dynamics at times later than t0, through the equations of motion

(4.26), and for the correlations already existing in the state D (t0) , through R̄. In order to analyze the latter
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point, we split R̄ according to (4.22) into two parts,

R̄ = R̄0 +
(
R̄ − R̄0

)
. (7.19)

The first part,

R̄0αβ,γδ ≡ W̄0αδδγβ − δαδW̄0γβ , (7.20)

describes the commutator with W̄0, as R̄0 acts according to

R̄0· =
[
W̄0, ·

]
= −

(
·R̄0

)
. (7.21)

Using this definition together with (7.8), we can readily check that the expression (4.29), (5.16) can also be

written as

Cjk (t′, t′′) = 1
2 tr Lj

(
coth 1

2βR̄0 ∓ 1
)

[Lk, ρ0] , t′′ <> t′. (7.22)

Comparison with (7.18) shows that the two-time function Cjk associated with an independent-particle state

D (t0) is recovered by replacing R̄ by R̄0 in C̄jk. Thus, the contribution to C̄jk arising from the correlations

between particles in the initial state is described by the second part R̄ − R̄0 of (7.19). To write this second

part, it is convenient to introduce [17] two simpler superoperators: (i) an antisymmetric one,

C̄αβ,γδ ≡ i (ρ0αδδγβ − δαδρ0γβ) , (7.23)

which describes in the Liouville space the commutator with ρ0,

C̄· = −i [·, ρ0] = −
(
·C̄
)
, (7.24)

and (ii) a symmetric superoperator

V̄αβ,γδ ≡
∂2Ē (ρ0)
∂ρ0βα∂ρ0δγ

, (7.25)

which acts on an arbitrary vector δρ according to V̄δρ = δW̄ and reduces to 〈αγ | V | δβ〉 when H̄ reduces

to the Hamiltonian (4.1) plus, possibly, s.p. operators. We then have

R̄ − R̄0 = iC̄V̄. (7.26)
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The above formal expressions are useful to check the symmetry of (7.18) in the interchange of (j, t′) and

(k, t′′) . If we introduce the s.p. entropy S = −tr ρ0lnρ0 − tr (1− ρ0) ln (1− ρ0) and its associated metric

tensor [18]

Ḡ0αβ,γδ ≡ −
∂2S (ρ0)

∂ρ0βα∂ρ0δγ
, δρ Ḡ0δρ = −d2S, (7.27)

we obtain [11,17]

R̄ =
i

β
C̄Ḡ, Ḡ = Ḡ0 + βV̄, (7.28)

where Ḡ is symmetric and C̄ is antisymmetric. By rewriting the causal function (7.18) in the Liouville space

as

C̄jk = 1
2

(
Lj
∣∣(cotg 1

2 C̄Ḡ ∓ i
)
C̄
∣∣Lk) , t′′ <> t′, (7.29)

we exhibit its symmetry.

The second term of (7.22) or (7.29) accounts for the time-ordering in the definitions of Cjk or C̄jk.

Only this term survives in the evaluation of a commutator. Hence, the linear response has in the present

approximation the same form as (5.3). Even though the static HF density (7.8) is not variationally suited

to the evaluation of two-time causal functions, it turns out to optimize not only the single-time expectation

values but also the retarded linear responses. All the consistency properties of sect. 5 are therefore satisfied

by the expression (7.18). We shall moreover see in sect. 8 that (7.18) fulfils the fluctuation-dissipation

theorem.

8. A SPECIAL CASE: MULTI-TIME FUNCTIONS AT EQUILIBRIUM

Until now the initial state D (t0) = exp(−βH̄) was arbitrary. Let us now specialize to thermodynamic

equilibrium, taking H̄ = H − µN . In this case 〈Qj(t)〉 should be time-independent, and the two-time

function C̄jk (t′, t′′) should depend only on the time difference t′ − t′′. The first property is easily seen from

(4.19), since the TDHF density ρ(0)(t) arising from the HF equilibrium state ρ0 remains constant when[
W̄0, ρ0

]
= 0 and W (ρ) = W̄ (ρ) + µ.

However, as we shall see, the approximation (4.29) for the two-time function, Cjk (t′, t′′) , with the HF

choice for ρ0, is not satisfactory. Indeed let us evaluate the change of (4.29) under a shift δt of both times t′

and t′′, keeping t0 fixed. Since ρ(0)(t) = ρ0 does not depend on time, the kernel R = R̄ also remains constant.
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In the equation (4.26) for Lj (t′, t0) , the shift t′ 7→ t′ + δt therefore amounts to a change t0 7→ t0 − δt of the

initial time, and it produces a change in Lj equal to

δLj = −iLjRδt =
1
β
LjCGδt, (8.1)

where we used (7.28). The symmetry of G and the antisymmetry of C imply that (8.1) is also equal to

δLj = −β−1GCLjδt. We can thus write the shift in Lk as

δLk = − 1
β
GCLkδt. (8.2)

Inserting now (8.1) and (8.2) into the expression (7.22), equivalent to (4.29), for the two-time function and

making use of the definitions (7.24) and (7.28), we find the variation of Cjk under the time-shift δt :

δCjk =
δt

2β
(
Lj
∣∣CG (cotg 1

2CG0 ∓ i
)
C −

(
cotg 1

2CG0 ∓ i
)
CGC

∣∣Lk)
= 1

2δt
(
Lj
∣∣[CV, cotg 1

2CG0

]
C
∣∣Lk) . (8.3)

The explicit form of (8.3),

δCjk = iδt tr12V12

{
[(1− ρ0)Ljρ0]1 [(1− ρ0)Lkρ0]2 − [ρ0Lj (1− ρ0)]1 [ρ0Lk (1− ρ0)]2

}
, (8.4)

shows that δCjk does not vanish in general. In contrast to the exact two-time function, the approximation

(4.29) is affected by the shift δt of the two times t′ and t′′ with respect to t0. Thus, the approach of sects.

3 and 4 entails a spurious dependence on the initial time when the exact equilibrium state is replaced by

its standard HF approximation. (Related pathologies occur in TDHF calculations for heavy-ion collisions;

in particular, they do not reproduce the spreading of the wave packet and are not compatible with angular

momentum analysis.)

Let us show that this defect of the standard mean-field theories is cured by the approach of sects. 6 and

7, which incorporates a consistent variational determination of the approximate state at the time t0. Indeed,

the same calculation as in (8.3), starting from (7.29) rather than from (7.22), yields

δC̄jk =
δt

2β
(
Lj |CG(cotg 1

2CG ∓ i)C − (cotg 1
2CG ∓ i)CGC|Lk

)
= 0, (8.5)
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owing to the identity of the two kernels R and R̄ and to the symmetry properties of C and G.

We can apprehend the above consistency of the approximation (7.18), or (7.29), for the two-time function

by interpreting this equation in perturbation theory, with W as an unperturbed Hamiltonian. Then G0 = Ḡ0

describes a particle-hole propagator. According to (7.28), the factor cothβR̄/2 in (7.18) or (7.29) describes

an iteration of the hole-particle interaction V with the propagator G0. Such an iteration is represented by

chain (or ring) diagrams along the segment t0 + iβ, t0. Likewise, the solution of the equation of motion (4.26)

for Lj or Lk, which involves the kernel R, is represented by chain diagrams for real times t > t0. The identity

of R and R̄ allows us to match the two-time sheets, thus resulting in a single type of diagrams over the

whole interval t0 + iβ < t <∞.

This consistency can also be exhibited algebraically, rather than diagrammatically, as we now demon-

strate. Let us rewrite in a simpler way the approximation (7.18) for the causal functions in the case when

D (t0) describes a grand canonical equilibrium. It is then convenient to introduce the function of τ ≡ t′− t′′,

defined for both τ > 0 and τ < 0 by

Tr QH
j (t′, t0)QH

k (t′′, t0)D (t0)− 〈Qj〉 〈Qk〉

≡ 〈Qj(τ)Qk〉 = 〈QjQk(−τ)〉 .
(8.6)

(The expectation value Tr QH
j (t′, t0)D (t0) ≡ 〈Qj〉 is here time-independent.) This function is a building

block for all the two-time functions. Its Fourier transform satisfies the relation∫ +∞

−∞
dτ eiωτ 〈Qj(τ)Qk〉 = eβω

∫ +∞

−∞
dτ eiωτ 〈QkQj(τ)〉 . (8.7)

The fluctuation-dissipation theorem readily follows by rewriting (8.7) in terms of the expectation values

of the commutator and of the anticommutator of Qj(τ) and Qk. A variational approximation to (8.6) is

provided by (7.18b) for τ > 0. We write it out more explicitly by solving formally the equation (4.26) for

Lj (t′, t0) . Since R = R̄ is now independent of time, we have for t′ > t0

Lj (t′, t0) = Qje−iR(t′−t0). (8.8)

Taking then advantage of the fact that our approximate expression C̄jk (t′, t′′) depends only on τ = t′ − t′′,

we let t′′ = t0, and the insertion of (8.8) into (7.18b) yields for τ > 0

〈Qj(τ)Qk〉 = tr Qj e−iRτ
1

1− e−βR
[Qk, ρ0] . (8.9)
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Likewise, the insertion of (8.8) into (7.19a) yields for τ < 0

〈QkQj(τ)〉 = tr Qj e−iRτ
1

eβR − 1
[Qk, ρ0] . (8.10)

In fact, both (8.9) and (8.10) hold for arbitrary signs of τ, as can be seen by considering anticausal rather

than causal functions.

The form (8.9), (8.10) of our approximate results makes it easy to verify that they satisfy some general

properties of the exact two-time functions. The fact that (8.9), (8.10) depend only on the time difference

t′ − t′′ is obvious, although it was not in the original formula (7.18). Moreover, by changing τ into −τ and

interchanging j and k in (8.10), we should find (8.9); the check is easy, though not completely trivial.

Our approximation also fulfils the fluctuation-dissipation relation, or equivalently the identity (8.7). To

verify this, we note that the eigenvalues of R are real provided the HF state is stable [17]. Thus, the Fourier

transforms of (8.9) and (8.10) simply involve 2πδ(ω − R) instead of e−iRτ . Hence, the Bose-like factors of

(8.9) and (8.10) can be replaced by
(
1− e−βω

)−1 = eβω
(
eβω − 1

)−1 and by
(
eβω − 1

)−1
, respectively, which

yields (8.7).

Finally, the invariance under translation of the initial time can be shown to hold for our whole set of

approximate multi-time functions. For both variational principles (3.2) and (6.5), the shift δt changes all

the sources ξj (t′) into ξj (t′ − δt) and hence produces a change in the stationary value of Φ or Ψ equal to

δeϕ = −iδt Tr
∫ +∞

t0

dt D(t)A(t)
∑
j

Qj
dξj(t)

dt

= iδt Tr
∫ ∞
t0

dt
∑
j

ξj(t)Qj
d
dt

(D(t)A(t))

= −iδt Tr [D (t0) ,A (t0)]H, (8.11)

where we made use of (3.13). In the approximation of sects. 3 and 4 this change had no reason to vanish:

in the example of interacting fermions, it is equal to

δϕ = iδt {E [σ′ (t0)]− E [ρ′ (t0)]} . (8.12)

However, according to the variational determination of the state D (t0) of sects. 6 and 7, the quantities

E [ρ′ (t0)] and E [σ′ (t0)] are now related to Ē by

E [ρ′ (t0)] = Ē [ρ′ (t0)] + µ tr ρ′ (t0) , (8.13)
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E [σ′ (t0)] = Ē [σ′ (t0)] + µ tr σ′ (t0) , (8.14)

since H̄ = H − µN . The equations (7.4), (7.5) imply that Ē (ρ′) and Ē (σ′) do not change between t0 + iβ

and t0. From

ρ′ (t0 + iβ) = σ′ (t0 + iβ) =
1

eL(t0+iβ) + 1
, (8.15)

we find that Ē [ρ′ (t0)] = Ē [σ′ (t0)] . The equality of tr ρ′ and tr σ′ completes the proof that δϕ, still given

by (8.12), vanishes. Thus, the approximate multi-time correlation functions do not show any spurious

dependence on the initial time t0, provided they are consistently evaluated through the approach of sect. 6

where both the operator A (t0) and the state D (t0) are determined variationally.

9. CONCLUSION

In sects. 4 and 7 we have derived variationally an approximate expression, eq. (7.18), for two-time

correlation and response functions in systems of interacting fermions. Our formalism is suited to both equi-

librium and non-equilibrium situations; it accounts simultaneously for the initial state and for the dynamics.

We made use of techniques from many-body physics and field theory. One of our approximations consisted

in choosing as trial states the same independent-particle class as in the conventional mean-field theories.

The latter theories, however, yield trivial results for correlation functions; in fact, they are not intended for

this purpose, since the variational criterion determining their approximate state is the optimization of only

the thermodynamic functions.

The reason why we find more elaborate results, in spite of the independent-particle form of the trial

states, lies in our use of a new variational principle (sects. 3 and 6), constructed in accordance with a quite

general scheme. This principle directly provides the quantity of interest, namely the generating functional

for the multi-time correlation functions, as the stationary value of the expression (6.5). This expression

contains a trial time-dependent density-like operator, and also its dual, a time-dependent observable-like

operator. Within a restricted trial space, the stationarity conditions lead to coupled equations for these

dual quantities. An explicit iterative solution is obtained by expanding in powers of the sources, so as to

evaluate the one-time, two-time, ... functions. It is through these features that our variational principle

partly overcomes the restriction imposed on our trial space.
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As expected, the HF and TDHF approximations are recovered for single-time functions, but our ex-

pression (7.18) for two-time correlation functions involves in addition two RPA-type kernels, one associated

with the dynamics, the other with the initial state. There exist many paths which lead to the RPA; here,

both forms of the RPA are obtained mechanically within a consistent independent-particle scheme, and

they acquire together a variational status — although they correspond to a stationary point and not to an

extremum.

We have demonstrated in sects. 4, 5 and 8 that our approach satisfies several requirements imposed

by consistency, invariance or conservation laws, which are violated by standard mean-field approximations.

This supports the idea that a significant improvement is provided by the unified treatment of sects. 3 and 6.

Indeed, we gained in consistency because our variational principle was specifically designed for the evaluation

of generating functionals: this linked the optimization of the dynamics with that of the initial state.

Additional support for this variational approach is furnished by numerical calculations based on earlier

partial results [12]. In particular, eq. (4.29) has been applied to heavy ion collisions in the special case when

t′ = t′′ and ρ2
0 = ρ0. These computations [13–15], which led to a better agreement with experiment, have

revealed the importance of the corrections introduced by the present method.

Although we have dwelt on an illustrative example from many-body theory, our method is by no means

restricted to systems of interacting fermions or to collisions of complex objects. The problem stated at the

beginning of the introduction is quite general, and the variational formalism that we set up in sects. 2, 3

and 6 should prove useful in domains other than statistical mechanics. For instance, variational treatments

akin to ours have been devised in quantum mechanics. In particular, variational approximate solutions of

one-dimensional time-dependent Schrödinger equations have been numerically tested [19]. On the other

hand, simple models of quantum mechanics have been investigated as a first step towards a non-perturbative

approach to quantum field theory [20]. Other applications have also been worked out for off-equilibrium

quantum field theories in a cosmological context [21]. Being systematic and general, the formalism of sects.

3 and 6 opens new prospects in these directions, as it relies on the generating functional, a basic tool in field

theory, and as it is tailored to non-zero temperature situations [10].

This formalism can also be translated to deal with classical statistical mechanics. The operators Qj
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are then replaced by random variables, the traces by integrals over the many-particle phase space, and the

backward Heisenberg equation (1.10) by “backward Hamilton equations” written with Poisson brackets,

while D (t0) is now the initial density in phase. On may thus imagine applications to topics such as plasma

physics, turbulence, or the large scale structure of the Universe (in which case the quantities of interest are

the correlations between the positions of the galaxies). An independent-particle approach corresponding to

that of sects. 4 and 7 would generate to lowest order the Vlasov equation instead of TDHF, and (for charged

particles) the Debye-Hückel or Poisson-Boltzmann equation instead of the HF approximation; however, for

two-time functions, it would lead to more elaborate results, analogous to (7.18) and involving the classical

counterparts of the static and dynamic RPA.

Finally, the flexibility of the approach allows for a combination of variational and perturbative ap-

proximations (see ref. [20] and sect. 2.4 of ref. [2]), a question that we have not touched upon in this

paper.

We wish to thank Hubert Flocard and John Gillespie for their critical readings of our manuscript.
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FIGURE CAPTION

Figure 1: The complex t-plane. The sources ξj (t′) and the Hamiltonian H refer to real times t′ > t0, while

H̄ ≡ −ln D0/β refers to times between t0 + iβ and t0. The equations (3.4) and (6.7) for A(t) should be

solved backward in time from t = +∞ down to t0 then to t0 + iβ, while the equations (6.6) and (3.5)

for D(t) run from t0 + iβ to t0 then to +∞.
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