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Abstract

This study draws the interest of system identification to the exper-
imental modelling of in vitro uptake kinetics of photosensitising agents
(PS) into cancer cells. The proposed identification methodology must
be usable and valid for every PS. Therefore, three PSs characterized by
opposing chemical and biological properties have been selected: (1) PC:
a second generation photosensitising agent conjugated via a spacer to a
VEGF receptor-specific heptapeptide, (2) Ce6: Chlorin e6, and (3) TPP:
TetraPhenylPorphyrin. Experiments have been carried out with two rates
(2% and 9%) of foetal bovin serum in the culture medium and one cancer
cell line U87 a human malignant glioma. Difficulties of such an appli-
cation are triple: (i) lack of data, (ii) low signal-to-noise ratio and (iii)
’poor’ stimulus signals. The proposed identification methodology deals
with the design of experiments, the selection of a model structure, the
estimation of the model parameters and the estimation of the parameter
uncertainties. The photosensitiser uptake phenomenon is described by a
first-order transfer function. Estimates of the time constant and the static
gain provide quantitative information about the uptake rate and yield of
the PS. The parameter uncertainty is described by confidence regions in
parameters space. This representation is presented as an efficient way to
discriminate the uptake characteristics of different photosensitisers. This
representation also emphasizes the effects of some biological factors, such
as the serum rate, on the uptake yield1.

1Draft version of the article printed in Biomedical Signal Processing and Control
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1 Introduction

Photodynamic therapy (PDT) (Moser (1998)) is an emerging therapy for dis-
plastic tissues such as cancers. This therapy involves selective uptake and re-
tention of a photosensitive drug (photosensitiser, PS) in a tumour, followed by
irradiation with light at an appropriate wavelength. Photosensitisers are pho-
toactive compounds such as for instance porphyrins and chlorins. The activated
photosensitiser is thought to produce singlet oxygen at high doses and thereby
to initiate apoptotic and necrotic death of tumour. In current clinical practice,
photodynamic therapy is carried out with prescribed drug doses and light doses
as well as fixed drug-light intervals and illumination fluence rates. These doses
are determined from a physical model, see e.g. (Patterson et al. (1990); Hetzel
et al. (2005)), defined by [R] = ks · b · ǫ · Iλ · T · [Pi] ·Φ · f where: [R] is a thresh-
old concentration of oxidising events radicals that needs to occur in a sensitive
location within a cancer cell to elicit the cascade toward cell death. Iλ is the
irradiance on the tissue surface, T is the exposure time of treatment light and
[Pi] is the concentration of intracellular photosensitive drug. ks is the backscat-
ter factor due to reflected light from underlying tissue, b is a conversion factor,
ǫ is the extinction coefficient of photosensitive drug, Φ is the quantum yield for
conversion of activated drug to oxidising radicals, which usually depends on the
oxygen concentration dissolved in the cells and f is the fraction of generated
oxidising radicals, which attack sensitive cellular sites, while the fraction (1−f)
of the radicals attack lesser sites and have minor effect. Despite its current use
in clinical applications, several polemical points can be addressed against this
model.

• Firstly, the simplified physical model, previously given, implies a simple
reciprocity of photosensitiser concentration and light. Nevertheless, sev-
eral experiments have shown contradictory results (Moesta et al. (1995)).
Moreover Potter et al. have shown that a reduction in photosensitiser con-
centration during treatment, e.g. PS photodegradation, is an important
consideration (Potter (1986)).

• The term (Φ) is function of oxygenation but is usually a unknown factor
during PDT (Dysart et al. (2005)).

• Sites of photodamage mainly depend on the location of the PS in the
cell. Sites of action for singlet oxygen in PDT include mitochondria, en-
doplasmic reticulum, Golgi apparatus, lysosomes, DNA and lipid mem-
branes (Henderson and Dougherty (1992)). Some of them are critical
sites. Unfortunately, this physical model does not take into account the
intracellular location of PS.
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• Moreover, most of quantities, such as Iλ and [Pi], are time dependent (Dysart
et al. (2005)).

This paper focuses on the latter point and more precisely the intracellular
uptake kinetics of PS, or in other terms, the rate of photosensitising molecules
being incorporated and accumulated by living cancer cells according to incuba-
tion terms (Barberi-Heyob et al. (2004)). The delivery control of the photosensi-
tising agent into the cancer cells is one of the major factors which directly affect
the therapeutic efficiency of the photodynamic therapy (PDT) (Moser (1998);
Bonnett (2000)). Many investigations have focused on the relationship between
the molecular structure of PS and their extent of uptake by artificial membranes
and cells. These have included porphyrins (Oenbrink et al. (1988)) and struc-
turally related compounds, such as phtalocyanines (Margaron et al. (1996)),
chlorines and pyropheophorbides (Henderson et al. (1997)). These studies con-
cluded that the intracellular uptake could not be predicted from the chemical
properties. The current knowledge about the uptake kinetics of PS into target
cells is usually described by a few data points obtained during in vitro kinet-
ics experiments. However, this class of non-parametric models is not very well
suited to the analysis, prediction and design of the PS uptake phase during
PDT. The FDA’s2 2004 Critical Path Report proposed, among other solutions,
the increased use of model-based approaches to drug development, including
pharmacokinetic and pharmacodynamic (PK/PD) modeling.

The determination of a parametric model describing the uptake kinetics of
photosensitising agents into living cells by extracting information from obser-
vations of input and output variables is a system identification problem (Ljung
(1987); Walter and Pronzato (1997)). Several papers have been reported for the
application of system identification techniques to pharmacokinetics modelling
problems (Feng et al. (1996); Gomeni et al. (1988); Cobelli et al. (2000); Delforge
et al. (2000); Sparacino et al. (2000); Audoly et al. (2001)). In particular, let
us cite works of N. D. Evans et al. in (Evans et al. (2004, 2005)) in which a
mathematical model for the in vitro kinetics of the anti-cancer agent topotecan
is proposed. However, topotecan is not a photosensitiser and system identifi-
cation issues met in this study mainly come from the difficulty to accurately
measure the temporal evolution of the intracellular PS concentration. Indeed,
in practice [Pi](t) is measured by a spectrofluorimeter but the latter induces a
photobleaching process of the PS. The term photobleaching refers to the process
by which the chromophoric structure of the PS is degraded by absorbed light
energy (Niedre et al. (2003)). As PS can be photobleached after light exposure,
repeated experimentations for the same biological sample are not conceivable.
In other terms, one biological sample with PS cannot be used for consecutive
measurements of [Pi]. Collecting nt data points of the kinetics then requires
to repeat nt times the same experiment (nt biological samples) with identical
initial conditions. To avoid the time consuming and the too high cost of such
an experiment set up, nt is generally kept small, i.e. nt ≤ 10. This limitation

2U.S. Food and Drug Administration
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on nt is also true for ne the number of repeated kinetics experiments. The sec-
ond difficulty is the low signal-to-noise ratio. The latter point is due to a great
measurement variability when working on living cells which are very sensitive to
external disturbances. This variability of measurements is increased by the fact
that data points are extracted from different biological samples in order to avoid
the PS photobleaching phenomenon. Thirdly, the choice of the stimulus signal
is restricted to step signals which correspond to the amount of PS injected into
the culture medium wells at time t = 0. Indeed, changing the concentration of
the PS in a culture medium is not as simple as modifying the current or voltage
of an electric actuator.

The system identification problem addressed in this paper deals with the pa-
rameter estimation of continuous-time models from a small set of non uniformly
sampled data characterized by low signal-to-noise ratios. No identification study
has been applied to the in vitro uptake kinetic responses of PS into living cancer
cells yet. The main contributions of this paper are twofold: (1) to assess the
applicability of a ’classical’ system identification technique to in vitro uptake
data of three different PSs and (2) to propose a new representation of the PS
uptake characteristics based on the estimated model parameters. Each step of
the system identification methodology is presented: the design of experiments,
the selection of a model structure, the estimation of the model parameters, the
estimation of the parameter uncertainties and a biological interpretation of the
results.

2 PS uptake kinetics modeling

The measurement variable y of the intracellular PS concentration [Pi]
∗ is the

variable to explain while the administrated PS concentration [Pa] is the input
variable. The protein concentration (or serum rate) [Se] and the PS type are
regarded as two input factors which are kept constant during the experiments.
In in vitro experimental conditions, the uptake phenomenon of PS into cancer
cells can be described by a mass balance equation,

QPa(t) = QPi(t) + QPx(t). (1)

where QE denotes the quantity (mol) of the specie E ∈ {Pa, P i, Px}. Px
is the extracellular PS and is not measured in this study. t is the time vari-
able. Concentrations are given by [Pa](t) = QPa(t)/V , [Px](t) = QPx(t)/Vx,
[Pi](t) = QPi(t)/Vi, where V, Vx and Vi denote the global, extracellular and
intracellular volumes. It is assumed that the measurement variable provided
by the spectrofluorimeter is proportional to the intracellular PS concentration,
i.e. y(t) ∝ [Pi](t). The input-output relationship between y(t) and [Pa](t) is
described at each sampling time instant tj by

y(tj) = yM(tj ,p, [Pa]) + e(tj) (2)

where yM is the output variable of the model M(t,p, [Pa]). p is the parameter
vector of the model and e(t) corresponds to the output error. {e(tj)}

nt

j=1
is
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Figure 1: Material of the in vitro experiments, [Pi] denotes the intracellular
concentration of PS and y is the measurement of this concentration

assumed to be an independent and identically distributed sequence of gaussian
variables e(tj) ∼ N (0, σ2

e) .

3 Design of experiments

3.1 Material and method

Fig.1 depicts the basic material used in in vitro experiments for studying the up-
take kinetics of a photosensitising agent into living cells. Specific details about
the preparation of the solutions were given in (Barberi-Heyob et al. (2004);
Tirand et al. (2006)). Cancer cells are seeded in 250µL culture wells and are
exposed at time t0 = 0 to a step signal [Pa](t) = 1µM of photosensitising
drug. The output variable y(t) is provided by a spectrofluorimeter at times
tj ∈ {1, 2, 4, 8, 18, 24} (hour). However, the spectrofluorimeter affects the bi-
ological state of the photosensitising drug through a photobleaching process.
Each culture well then becomes unusable after measurement. Consequently, to
measure the intracellular PS concentration at nt different time instants, it is
necessary to repeat the same experiment in nt different culture wells, as illus-
trated in Fig.2. This problem would also occur if the measurement system was
a high performance liquid chromatograph. The cancer cell line used for this
application study is U87 a human malignant glioma.

The route by which a PS enters in cells depends on its physicochemical
properties, e.g. its hydrophobicity/hydrophilicity; the type, number and ar-
rangement of its charged groups; the presence of a central atom in the tetrapyr-
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role structure; its aggregation state etc. For these reasons, the experiments were
carried out for three different PSs: (1) PC: a second generation photosensitising
agent (5-(4-carboxyphenyl)-10,15,20-triphenyl-chlorin, TPC) conjugated via a
spacer (6-aminohexanoic acid, Ahx) to a VEGF (Vascular Endothelial Growth
Factor) receptor-specific heptapeptide (TPC-Ahx-ATWLPPR) (Tirand et al.
(2006)), (2) Ce6: Chlorin e6, and (3) TPP (TetraPhenylPorphyrin). We re-
cently reported the synthesis and in vitro efficacy of a new peptide-conjugated
PS (referred to hereafter as PC) having affinity for endothelial cells of the tumor
neovasculature by targeting the Vascular Endothelial Growth Factor (VEGF165)
receptor neuropilin-1 (NRP-1), and not the type 2 VEGF receptor (VEGFR-
2/KDR), as previously thought, through its peptidic moiety (Tirand et al.
(2006)). PC displayed enhanced uptake and photodynamic properties in en-
dothelial cells, compared to its non-conjugated counterpart TPC. The proposed
identification methodology must be usable and valid for every PS. Therefore,
we selected three PSs characterized by opposing chemical and biological prop-
erties. TPP and PC are hydrophobic PSs. Actually, the value of the octanol/
PBS distribution coefficient log DpH7.4 was equal to 2.6 ± 0.2, arguing for the
hydrophobic character of PC (for details see (Tirand et al. (2007))). We previ-
ously used TPP as reference compound and demonstrated its hydrophobicity, in
a first study describing the synthesis and the photodynamic activity in vitro of 4-
carboxyphenylporphyrin-folic acid conjugates (Schneider et al. (2005)) and in a
second one, studying the influence of structural modifications induced by sym-
metric or asymmetric glycoconjugation on photophysical properties and pho-
tosensitivity in vitro (Di Stasio et al. (2005)). Hydrophobicity/hydrophilicity
properties of Ce6 were opposed compared to TPP and PC (Rosenkranz et al.
(2000)).

The cell lines have been grown in two different culture medium: the first
one is supplemented with 2% and the second one with 9% foetal bovin serum
in order to assess the effect of the serum rate to the uptake kinetics. All these
uptake kinetics experiments have been repeated three times.

3.2 Experimental data

Fig. 5 and 6 show six estimation data sets corresponding to the uptake kinetic
responses of three PS (PC,Ce6,TPP) in two different culture medium ([Se] = 2%
and [Se] = 9%). Each uptake kinetic response is a step response obtained with
[Pa](t) = 1µM . In these graphs, the solid line plot denotes the mean response
over the three experiments. Each data point, described by a circle, a star or a
triangle, is extracted from measurements performed during the three repeated
experiments. Some outliers have been removed. Note that the variation between
two samples measured at the same time can reach almost 100%, i.e. a signal-
to-noise ratio estimated to RSB ≈ 0dB.
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Figure 3: Test of linearity for PS=PC

3.3 Test of linearity

Three preliminary experiments have been carried out to measure at tj = 24 h
the intracellular PS concentration for three different values (0.1, 1, 5 µM) of
the input step signal [Pa]. Results, presented in Fig. 3, exhibit a quasi-linear
relationship between y(tj = 24) and [Pa] over a range [0.1 − 5]µM for one PS.
Each experiment has been repeated six times; each outcome is described by a
cross (+). The full line consists of the median values of the sextuplets. The
dotted line, used as reference, is the least-squares line. It clearly appears that
nonlinear model structures, e.g. Hammerstein-Wiener models, are not necessary
in this case study. Similar results have been obtained for the two other PSs.

4 Selection of a model structure

This part deals with the determination of a parsimonious model structure (M(p))
among a set M of candidate model structures. The dynamical behavior of [Pi](t)
can be explained by the two distinct biological phenomena: an uptake kinetics
and a release kinetics of PS. In this paper, first-order model structures are used
to described these two phases. Indeed, given the objectives of this study and
the few number of available data points, this simplified model structure is suited
to the experimental modeling of the PS uptake kinetics. Moreover, the model
parameters, i.e. the time constant T and the static gain k are meaningful for
the biologist. Indeed, they directly answer to two important questions asked by
the biologist: (i) what is the PS uptake rate and (ii) what is the final yield of
the PS uptake phenomenon, i.e. the ratio between the absorbed dose and the
administrated dose of PS ? This first-order model structure is thus well suited to
the purpose of this study. Two transfer functions Gu(s) and Gr(s) are proposed
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for the description of the uptake and release kinetics respectively.

Gu(s) =
ku

1 + Tus
and Gr(s) =

kr e−τrs

1 + Trs
. (3)

(ku, kr) and (Tu, Tr) denote the static gains and the time constants of the uptake
and release kinetics. τr is the time-delay of the release phase and s is the Laplace
variable. According to the PS, the release kinetics can sometimes be neglected
in comparison with the magnitude of the uptake kinetics. Consequently, two
model structures are candidate,

M1 : yM1(s) = Gu(s) · [Pa](s), (4)

if the release kinetics is negligible or

M2 : yM2(s) = (Gu(s) − Gr(s)) · [Pa](s) otherwise. (5)

The selection between M1 and M2 can be performed by model choice crite-
ria. A synoptic presentation of various available criteria of model structures in
system identification, e.g. the Root Mean Squared Error (RMSE), the Akaike’s
Information Criterion (AIC), the Final Prediction Error (FPE), the F-test (or
rather the χ2 test), the Bayesian information criterion (BIC), are presented
in (Söderström (1977); Walter and Pronzato (1997)). But for very small sample
sizes, none of these criteria is recommended. In practice, when the ratio of the
numbers of observations to parameters is lower than 40:1, it is better to use
AICc (Burnham and Anderson (2002)) a variation of AIC defined by :

JAICc = JAIC + 2np(np + 1)/(N − np − 1), (6)

with np = dim(pi), i ∈ {1, 2} and JAIC = 1/2·ln(σ̂2

ei
)+1/N ·dim(pi). N = nt·ne

and σ̂2
ei

denotes the empirical estimate of the error variance, defined by

σ̂2

ei
=

1

N

N∑

j=1

(y(tj) − ŷMi
(tj ,pi))

2, (7)

over the ne repeated experiments composed each of nt data samples3. The
model selection criterion is defined by :

M̂(p̂) = arg min
Mi∈M

min
pi∈Pi

JAICc(Mi(pi)). (8)

One rule of thumb says that the difference between the AICc value for two mod-
els is meaningful if this difference is greater than about 10, then the worse model
can be neglected in the selection process, see (Burnham and Anderson (2002)).

3In theory, Eq. (7) is correct provided that the variance σ
2
e

is estimated independently.
Unfortunately in this application study, the number of data samples is too small to get an
independent estimate of σ

2
e
. As a consequence, the computation of σ̂

2
e

is probably less accurate
herein
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Figure 4: Output error method for a parallel model

For each model structure, p̂i is obtained by a non linear least squares estima-
tor, as shown in Fig.4. Results of the model structure selection are gathered
in Tab. 1. J denotes the output mean square error. Minimal values of crite-
ria are indicated by bold typeface. According to JAICc, the most parsimonious
model structure is always M1. By examining more carefully the values of J and
the estimated step responses presented in fig. 5(b) and 6(b), it clearly appears
that the uptake-release model structure (M2) better fits the uptake responses
of the Chlorin e6 than M1. This result implies that the release process is more
significant with this PS than with the other ones.

Table 1: Model selection results
J JAICc

M1 M2 M1 M2

PC-2 0.0769 0.0672 -1.6992 3.0103
Ce6-2 4.1023e-04 2.6875e-04 -4.3109 0.2515

TPP-2 5.5964e-04 5.6261e-04 -4.1558 0.6206
PC-9 0.0676 0.0676 -1.7827 3.0123
Ce6-9 6.4916e-05 5.8003e-05 -5.2327 -0.5153

TPP-9 1.0398e-04 1.0758e-04 -4.9972 -0.2068
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Figure 5: Uptakes responses for [Se] = 2%, measured responses (solid line) and
models responses (dotted lines)
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Figure 6: Estimated responses for [Se] = 9%, measured responses (solid line)
and models responses (dotted lines)

5 Parameter estimation

The parameter estimation relies on the output error method for a parallel model
as shown in Fig. 4. The implementation of the least-squares estimator is based
on a Levenberg Marquardt algorithm. Parameter estimates are given in table 2.
Figures 5 and 6 compare the measured (mean values) and estimated step re-
sponses of M1 (dashdot (-.) plots) and M2 (dashed (–) plots) for the two values
of [Se].

Table 2: Estimation results
[Se] = 2% [Se] = 9%

ku Tu ku Tu

PC 0.3782 3.7845 0.3067 6.4516
Ce6 0.0136 0.4062 0.0070 0.3894
TPP 0.0210 1.2139 0.0108 1.7213
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6 Model validation

Given the experimental conditions (lack of data and low signal-to-noise ratio),
the model validation is an open problem. Firstly, the noise assumption (gaus-
sian and i.i.d. stochastic process) cannot be checked. Indeed, the number of
residual realizations (ne · nt = 18 pts) is too small to get a relevant histogram.
Moreover, the measurement variability between two experiments (due in par-
ticular to the high sensitivity of living cells to external disturbances) is so high
that any cross-validation test is not meaningful at all. In perspective, it would
be interesting to assess recent alternative estimation approaches like the interval
analysis Jaulin et al. (2001) or the Leave-out Sign-dominant Correlation Regions
proposed by Campi and Weyer in Campi and Weyer (2006). Main advantages
of such approaches is that they rely on less restrictive assumptions about the
stochastic properties of the output error.

7 Parameter uncertainty

Because of the low signal-to-noise ratio, determining the optimal value of the
parameters with respect to a chosen criterion is not enough. The relevance of the
parameter analysis requires to evaluate the uncertainty associated with those
estimates. Herein, parameters uncertainty is described by confidence regions,
noted Rα, defined in Hamilton et al. (1982); Walter and Pronzato (1997) as
follows:

Rα =

{
p ∈ R

np |
eT (p)Π(p)e(p)

npσ̂2
≤ Fα(np, N − 1)

}
(9)

Rα defines a 100(1 − α)% confidence region for the parameters. Fα(n1, n2)
denotes a Fisher-Snedecor distribution with n1 and n2 degrees of freedom.
e(p) = y − ŷM(p) is the output error vector ∈ R

N . y and ŷM are defined
by

y = (y1(t1), · · · , y1(tnt), · · · , yne
(t1), · · · , yne(tnt)) (10)

ŷM = (ŷM,1(t1), · · · , ŷM,1(tnt), · · · , ŷM,ne
(t1), · · · , ŷM,ne(tnt)) (11)

where yk(tj) denotes the jth data sample collected during the kth experiment
(k ∈ {1, · · · , ne}). The orthogonal projection matrix Π(p) is given by:

Π(p) = SŷM
(ST

ŷ
M

· SŷM
)−1ST

ŷ
M

, (12)

where SŷM
= ∂ŷM(p)/∂pT is the sensitivity function (gradient) of the output

model in respect with the parameter vector. The estimated noise variance4 is

4For the same reasons than Eq. (7), the computation of σ̂
2 is less accurate than theoretically

expected since its independent estimation is not possible in this practical framework.
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Figure 7: Locations of PSs in the Tu − ku parameter space

given by:

σ̂2 =
1

N − 1

nt∑

j=1

ne∑

k=1

(y(tj,k) − ȳj)
2

ȳj =
1

ne

ne∑

k=1

y(tj,k). (13)

ne refers to the number of repeated experiments. The 95% confidence regions
of parameters for the three PS and for the two serum rates are presented in
Fig. 7 and 8. The interest of 95% confidence regions is to allow a more robust
comparative analysis (holding account of uncertainties) than a study only based
on the parameter estimates.

8 Comparative study

8.1 Comparative study of PS

Fig. 7 shows the locations of confidence regions in the Tu − ku parameter space.
Whatever the value of the serum rate, Fig. 7(a) and 7(b) show that compar-
atively to Ce6 and TPP, the confidence regions of PC are located towards the
high values of ku. More precisely, the uptake yield of PC is about 15 to 30
larger than the ones of Ce6 and TPP. This result is not surprising because PC
is especially designed to target cancer cells like U87.

8.2 Comparative analysis of the serum effect

Figure 8 shows the effects of the serum rate on ku and Tu. In Fig. 8(b) and 8(c),
the increase of [Se] causes the shift of confidence regions towards the low values
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Figure 8: Serum effect on the model parameters

of ku. On the other hand, no change is observed about Tu (no vertical shift
of confidence regions). The fall of ku caused by the increase of [Se] is also
perceptible for PS in Fig. 8(a). A main difference between PC and the two
other PSs concerns the extent of uncertainty for Tu. Indeed, a vertical shift
and a dilation of the PS-confidence region is observed in Fig. 8(a). This result
confirms that Tu is increasing with [Se], particularly for PC. These results,
obtained for three PSs, are in accordance with the results presented in (Bastogne
et al. (2006)), in which an inversely proportional relationship between the static
gain and the serum rate was identified for PS=Ce6 applied to another cancer
cell line: HT29A4, a human colon cancer cell line.

One of the parameters widely influencing photophysical and pharmacologi-
cal behaviour of PSs is their aggregation state. In aqueous media like culture
media, most of the tetrapyrrolic PSs form dimers and higher micelle-like ag-
gregates. Since more than twenty years, binding to proteins was believed to
be an important factor for PSs cellular uptake (Hilf et al. (1983)). Actually,
during interactions with proteins, a hydrophobic sensitizer dissociates from an
aggregate and binds to protein molecules. Moreover, the type of protein-carrier
governs the delivery of sensitizer to the tumor cells (Jori and Reddi (1993)).

9 Conclusion

This study draws the interest of system identification to the experimental mod-
elling of in vitro uptake kinetics of photosensitising agents into cancer cells. Ex-
periments have been carried out with three different photosensitisers (1) TPC-
Ahx-ATWLPPR: a second generation photosensitising agent conjugated via a
spacer to a VEGF receptor-specific heptapeptide, (2) Ce6: Chlorin e6, and (3)
TPP (TetraPhenylPorphyrin), two rates (2% and 9%) of foetal bovin serum in
the culture medium and one cancer cell line U87 a human malignant glioma.
Difficulties of such an application are triple: (i) lack of data, (ii) low signal-to-
noise ratio and (iii) ’poor’ stimulus signals. The first two issues are mainly due to
the measurement system, a spectrofluorimeter, which affects the biological state
of the photosensitising drug through a photobleaching process. Unfortunately
currently, there is no alternative way to measure the intracellular concentra-

14



tion of photosensitising agents in living cells. The system identification problem
addressed in this paper concerns the parameter estimation of continuous-time
models from a small set of non uniformly sampled data characterized by low
signal-to-noise ratios. The proposed identification methodology deals with the
design of experiments, the selection of a model structure, the estimation of
the model parameters and the estimation of the parameter uncertainties. The
photosensitiser uptake phenomenon is described by a first-order transfer func-
tion. Estimates of the time constants and the static gains provide quantitative
information about the uptake rates and yields of the PSs respectively. The
parameter uncertainty is described by confidence regions in parameters space.
This representation is presented as an efficient and robust way to discriminate
the uptake characteristics of different photosensitisers by holding account of
uncertainties. In this application, this representation emphasizes the effects of
the serum rate on the uptake yield. This application also stresses in these re-
stricted experimental conditions that model validation is still an open problem.
Future investigations should be oriented towards the development of small sam-
ple statistics and their application to pharmacokinetic and pharmacodynamic
modelling.
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