
HAL Id: hal-00165817
https://hal.science/hal-00165817

Preprint submitted on 27 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Operator Non-Availability Periods
Nadia Brauner, Gerd Finke, Vassilissa Lehoux-Lebacque, Christophe Rapine,

Chris Potts, Vitaly Strusevich

To cite this version:
Nadia Brauner, Gerd Finke, Vassilissa Lehoux-Lebacque, Christophe Rapine, Chris Potts, et al..
Operator Non-Availability Periods. 2007. �hal-00165817�

https://hal.science/hal-00165817
https://hal.archives-ouvertes.fr

Operator Non-Availability Periods

N. Brauner, G. Finke, V. Lehoux-Lebacque, C. Rapine

C. Potts, V. Strusevich

July 27, 2007
version-3

Abstract. In scheduling literature, the notion of machine non-availability periods is well
known, for instance for maintenance. In our case of planning chemical experiments, we have
special periods (the week-ends, holidays, vacations) where the chemists are not available.
However, human intervention by the chemists is required to handle the starting and termination
of the experiments. This gives rise to a new type of scheduling problems, namely problems
of finding schedules that respect the operator non-availability periods. These problems are
analyzed on a single machine with the makespan as criterion. Properties are described and
performance ratios are given for list scheduling algorithms.

Keywords. One-machine scheduling, operator non-availability, complexity, list algorithms

1 Introduction

This study started with an industrial project that we carried out with the Institut Français du
Pétrole (IFP) (see [3] for a detailed description). Lengthy and costly chemical experiments had
to be conducted. The problems of scheduling those experiments had many features that could
be addressed by the classical scheduling approaches, for instance, batch processing (heating of
chemicals) and batch compatibility issues (in our case, equal heating temperatures). But we
were also faced with a new aspect. After the heating procedure, a chemist (an operator) had
to be present for the very sensitive handling of the material for the further automated analysis
and for a (short) setup to prepare the next experiment. Since in practice the operator is not
always available due to breaks, rest periods, week-ends, alternative scheduled activities etc., a
new type of scheduling models with operator non-availability intervals has to be considered.

The main concepts of this new model can be formally defined as follows.

Definition 1 An operator non-availability (Ona) period of length ∆ corresponds to an open
time interval (s, s + ∆) in which a job may neither start nor complete. A job that starts either
before or at time s and completes either after or at time s + ∆ is said to cover the Ona period
and is a called a crossover job or a straddling job.

The main problem that we study in this paper uses the following data:

• n jobs J1, J2, . . . , Jn to be processed on a single machine, where job Jj is of duration pj ;

• K ≥ 1 Ona periods (K may be a constant or K may be variable and part of the input);

• sq is the starting time of the q-th Ona period, q = 1, 2, . . . , K;

• ∆q is the duration of the q-th Ona period, q = 1, 2, . . . , K.

1

In any feasible schedule S, all Ona periods must be respected, and we are looking for a
schedule S∗ that minimizes the makespan, i.e., the maximum completion time. For schedule
S, the makespan is denoted by Cmax(S), and extending the standard scheduling notation we
denote the problem of finding S∗ by 1 |Ona(K)|Cmax.

To our best knowledge, the scheduling model with Ona periods has not been studied before;
however, it appears to be relevant to some previously known models, including models with a
single server and the models with machine non-availability intervals.

A specific feature of the models with a single server is that each processing operation in the
initial (setup) phase of its processing needs to be attended by the operator (server); after the
setup is done the operation may run unattended. Scheduling problems with a single server have
been studied in multi-machine environments and the main issue is the resolution of conflicts
that arise when operations scheduled on different machines compete for the server. See [4, 2]
for reviews of recent results in this area on parallel machines. Notice that in all known models
of this type the server is assumed to be permanently available.

Another class of models similar to the one considered in this paper focuses on machine
non-availability (Mna) intervals. In the most general setting, for each machine we are given
a collection of fixed time intervals during which no processing activity may take place. These
intervals can be attributed to scheduled machine maintenance and check-ups, lunch breaks etc.
Traditionally, there are several scenarios of handling the jobs affected by an Mna interval.
Under the non-resumable scenario, a job that cannot be completed before an Mna interval
restarts from scratch, while under the resumable scenario, the processing of a job is interrupted
by the Mna and is resumed when the machine becomes available again. See [7] for the most
recent survey of the results on scheduling with the Mna intervals.

Especially relevant to our study is the problem of minimizing the makespan on a single
machine with K ≥ 1 Mna intervals under the non-resumable scenario, which we denote by
1 |Mna(K)|Cmax.

The main emphasis of this paper is on design and analysis of approximation algorithms for
problem 1 |Ona(K)|Cmax. Recall that a polynomial-time algorithm that creates a schedule with
makespan at most r ≥ 1 times the optimal value is called an r−approximation algorithm. If a
problem admits an r−approximation algorithm, it is said to be approximable within a factor r.
We call performance ratio ρA of an algorithm A the worst-case ratio bound of A, i.e. the
infimum of all r such that A is an r-approximation. A family Aε of (1 + ε)−approximation
algorithms is called a fully polynomial-time approximation scheme, or an FPTAS, if for any
fixed ε > 0, the running time of Aε is polynomial in the length of the problem input and 1/ε.

Throughout the paper, we assume that the jobs are indexed in the SPT order, i.e., in non-
decreasing order of their processing times p1 ≤ p2 ≤ . . . ≤ pn. For a set Q ⊆ N = {1, 2, . . . , n}
of job indices, define p(Q) =

∑

j∈Q pj , where for completeness p(∅) = 0. In order to exclude a
trivial case, we also assume that p(N) > s1; otherwise all jobs can be scheduled before the first
Ona period.

In our consideration, we use a well-known integer programming problem, the subset-sum
problem. As a decision problem (denoted by SubsetSum), it can be formulated as follows:
given n numbers a1, a2, . . . , an and a bound B, does there exist a subset I ⊆ {1, 2, . . . , n} such
that

∑

j∈I aj = B? As an optimization problem (denoted by MaxSubsetSum), it is usually
formulated as a version of the knapsack problem

Maximize
∑n

j=1 ajxj

Subject to
∑n

j=1 ajxj ≤ B

xj ∈ {0, 1}, j = 1, 2, . . . , n

(1)

The problem MaxSubsetSum is NP-hard, can be solved in pseudo-polynomial time and
admits an FPTAS. Notice that for a maximization problem, one has to replace r = 1+ ε by r =

1
1+ε

in the definition of an FPTAS. See [5] for a comprehensive account on the MaxSubsetSum

problem and methods of its exact and approximate solutions.

2

2 Single Ona Period

In problem 1 |Ona(1)|Cmax, given n jobs and a single operator non-availability period of
length ∆ located at (s, s+∆), we have to find a schedule S∗ that minimizes the makespan. For
problem 1 |Ona(1)|Cmax, we may distinguish two types of instances:

• Type 1: all processing times are smaller than ∆: pj < ∆ for all j;

• Type 2: some processing times are smaller than ∆, while others are greater than ∆.

For the instances of Type 1, since all processing times are shorter than ∆, there will be no
straddling jobs, i.e., no processing activity takes place during the Ona period. The Ona

period is effectively an Mna period and problem 1 |Ona(1)|Cmax is equivalent to problem
1 |Mna(1)|Cmax. The latter problem is proved NP-hard in [6].

Our main emphasis is of course on Type 2 instances of problem 1 |Ona(1)|Cmax. We first
give a dominance property.

Lemma 1 For problem 1 |Ona(1)|Cmax with pn ≥ ∆, there exists an optimal schedule with the
longest job Jn covering the Ona period.

Proof: Consider an optimal schedule S∗ with makespan Cmax(S
∗). Suppose that, in sched-

ule S∗, job Jn is not straddling.
Let E be the set of ‘early’ jobs that terminate before time s. Assume that Jn is located in

set E. Without loss of generality, job Jn is scheduled last among the jobs of this set. If the
interval (s, s + ∆) is not covered by any job, we can delay the starting time of job Jn so that
it completes at time s + ∆ (covering the interval) without changing Cmax(S

∗). If some job Jx

with px ≤ pn is straddling, then job Jx immediately follows job Jn and we can interchange Jn

with Jx without changing Cmax(S
∗).

Assume now that job Jn is contained in the set E′ of jobs that start after the Ona period,
i.e., no earlier than time s + ∆. Without loss of generality, job Jn is scheduled first among
the jobs of set E′. If (s, s + ∆) is not covered by any job, we can start job Jn at time s and
decrease the starting times of all other jobs in set E′ accordingly, thereby decreasing Cmax(S

∗).
If some job Jx with px ≤ pn is straddling, then job Jx immediately precedes job Jn and we can
interchange Jn with Jx without changing Cmax(S

∗).

Theorem 1 Problem 1 |Ona(1)|Cmax is NP-hard.

Proof: We prove the theorem by establishing a polynomial reduction of the SubsetSum prob-
lem to the decision version of problem 1 |Ona(1)|Cmax. Recall that only the Type 2 instances
of problem 1 |Ona(1)|Cmax have to be considered.

Given an arbitrary instance of the SubsetSum problem, define an instance of problem
1 |Ona(1)|Cmax with n jobs of lengths pj = aj ; j = 1, 2, . . . , n; and add an extra job n + 1
with pn+1 =

∑n

j=1 aj + 1. Define ∆ =
∑n

j=1 aj + 1, the Ona interval (B, B + ∆) and a bound

D =
∑n+1

j=1 pj .
It is easily verified that a schedule S with Cmax(S) ≤ D exists if and only if the Sub-

setSum problem has a solution. Indeed, Cmax(S) = D if and only if in S there is no
intermediate idle time and job n + 1 is assigned to the time interval [B, B + ∆]. The set of in-
dices of the jobs that are completed by time B defines a solution to the SubsetSum problem.

Although the problem 1 |Ona(1)|Cmax is NP-hard in the general case, some instances can
be solved in polynomial time.

Remark 1 If
∑n

j=2 pj ≤ s, problem 1 |Ona(1)|Cmax is polynomially solvable.

3

Proof: Recall that p(N) > s. Notice that the inequality
∑n

j=2 pj ≤ s implies that
∑n−1

j=1 pj ≤
s. If pn ≥ ∆, by Lemma 1, we may assume that Jn is the straddling job in an optimal schedule,
and we sequence the other jobs before s. In this case, the makespan is max {p(N), s + ∆},
which cannot be reduced.

Otherwise, if pn < ∆, then there is no straddling job in an optimal schedule and the smallest
total processing after the Ona period is equal to p1. Schedule jobs J2, J3, . . . , Jn before the
Ona period and start J1 at time s+∆. This gives the smallest possible makespan of s+∆+p1.

Theorem 2 For problem 1 |Ona(1)|Cmax there exists an FPTAS.

Proof: We show how an FPTAS for MaxSubsetSum can be used to develop an FPTAS
for 1 |Ona(1)|Cmax. To any instance I of 1 |Ona(1)|Cmax, we associate the instance f(I) of
MaxSubsetSum composed of n integers of values pi and a bound B = s. Let E∗ be the index
set of an optimal solution of the MaxSubsetSum instance, while the index set found by an
FPTAS applied to the same instance is denoted by Eε. By definition, p(Eε) ≥ p(E∗)/(1 + ε).

We construct a schedule S for the instance I of 1 |Ona(1)|Cmax from a solution E of the
MaxSubsetSum f(I) instance in an obvious way: place the jobs of E in any order before s,
shifted to the left. The remaining jobs follow as early as possible, starting with Jn. Note that
the schedule S has a makespan Cmax(S) = s + ∆ + p(N) − p(E) if pn < ∆ and Cmax(S) =
p(N) + max {s + ∆ − (p(E) + pn) , 0} otherwise. It implies that an optimal solution E∗ for
MaxSubsetSum gives an optimal schedule S∗ for the corresponding scheduling problem. The
schedule associated with Eε is denoted by Sε.

If pn < ∆, then one has Cmax(Sε) − Cmax(S
∗) = p(E∗) − p(Eε).

Consider now the case pn ≥ ∆. If s + ∆ ≤ p(Eε) + pn, then Cmax(S
∗) = Cmax(Sε) = p(N)

and hence Cmax(Sε) − Cmax(S
∗) = 0.

Otherwise, if s + ∆ ≥ p(Eε) + pn, then Cmax(Sε) − Cmax(S
∗) ≤ p(E∗) − p(Eε) since by

definition one has Cmax(S
∗) ≥ p(N) + s + ∆ − (p(S∗) + pn).

In all cases, Cmax(Sε) − Cmax(S
∗) ≤ p(E∗) − p(Eε) ≤ p(E∗)ε/(1 + ε) ≤ εs ≤ εCmax(S

∗), as
required.

Notice that the preceding proof implies that problem 1 |Ona(1)|Cmax is solvable in pseudo-
polynomial time, since the MaxSubsetSum problem can be solved by a pseudo-polynomial-time
dynamic programming algorithm.

3 Multiple Ona Periods

In this section, we design and analyze methods to approximate problem 1 |Ona(K)|Cmax with
K > 1 Ona periods.

Recall that the corresponding problem with machine non-availability periods is hard to
approximate. As shown in [1], the general 1 |Mna(2)|Cmax problem is not approximable within
a constant factor, i.e., for a constant r there is no r−approximation algorithm unless P 6= NP.
This, however, holds if the length of the periods is allowed to be considerably longer than
the total processing requirements. To address problems that are more practically relevant,
throughout this section we assume that the length of any (either machine or operator) non-
availability period does not exceed the total processing time.

Definition 2 We say that the periods are bounded if the following inequality holds

∆q ≤ p(N), for 1 ≤ q ≤ K (2)

One of the reasons why we use p(N) in (2) is that this value is a trivial lower bound for the
makespan.

4

In the remainder of this section, for each problem 1 |Ona(K)|Cmax and 1 |Mna(K)|Cmax with
K > 1, we analyze the worst-case performance of approximation algorithms that employ the
popular concept of algorithms based on priority lists. These algorithms scan the jobs according
to a certain sequence (a list) and take decisions regarding the assignment of a job from the list
on the machine; once a job is scheduled it is removed from the list.

• Algorithm FF (First Fit): Schedule the first job in the current list to start as early as
possible. Notice that in the current partial schedule, the Ona periods may have created
idle intervals large enough for this job to be placed before the end of the partial schedule.

• Algorithm LS (List Scheduling): As soon as the machine becomes available at some
instant, check the current list and add a job to the partial schedule that can start earlier
than the other jobs, breaking ties by selecting the job that is sequenced earlier in the list.

Algorithm FF does not search the list and takes the first available job; however it allows
this job to be scheduled in the internal part of the current partial schedule, without increasing
its makespan. On the other hand, Algorithm LS searches the current list to find the jobs that
would start as early as possible, but not before the completion time of the last job in the current
partial schedule.

In all schedules considered in this section the starting time of each job cannot be further
reduced; schedules of this structure are called semi-active. Notice that the schedules found by
algorithms FF and LS are semi-active.

We start with analyzing semi-active schedules for problem 1 |Mna(K)|Cmax with K machine
non-availability intervals.

For a given schedule S, we define the largest integer k ≤ K such that Cmax(S) ≥ sk + ∆k.
Let x1 denote the idle time before the first non-availability period and xq the idle time that
occurs between the (q − 1)-th and the q-th periods, 1 ≤ q ≤ k. Since the schedule is assumed
to be semi-active, there is at most one such idle period between two consecutive periods.

Clearly the inequality

Cmax(S) ≤ p(N) +

k
∑

q=1

xq +

k
∑

q=1

∆q (3)

holds for any schedule.
By assumption, each ∆q is no larger than the total processing time p(N). Notice that for

any semi-active schedule, each xq must be smaller than the largest processing time pn, otherwise
we would have found a job that fits into the corresponding idle interval. Therefore, we have

xq ≤ pn ≤ C∗
max, for 1 ≤ q ≤ k (4)

Proposition 1 For problem 1 |Mna(K)|Cmax with bounded machine non-availability periods,
the inequality Cmax(S)/Cmax(S

∗) ≤ 2K holds for semi-active schedules S, and there are lists
for which this bound is tight asymptotically for K ≥ 2, even if the schedule is found either by
Algorithm FF or Algorithm LS.

Proof: Consider an optimal schedule S∗. We have

Cmax(S
∗) ≥ p(N) + ∆1

It follows from (3) that

Cmax(S) − Cmax(S
∗) ≤

k
∑

q=2

∆q +

k
∑

q=1

xq

Therefore with (4) we get

Cmax(S) − Cmax(S
∗) ≤ (k − 1) p(N) + kpn ≤ (2K − 1) Cmax(S

∗)

5

and the required bound follows.
To verify that the bound of 2K is tight, take a small positive ε such that K ε < 1 and define

the following instance of problem 1 |Mna(K)|Cmax with two jobs:

• two jobs J1 and J2 with p1 = ε and p2 = 1;

• ∆1 = (K − 1)ε and ∆q = 1,s for 2 ≤ q ≤ K;

• s1 = 1 and sq = sq−1 + ∆q−1 + 1 − ε = (2q − 2) + (K − q)ε, for 2 ≤ q ≤ K.

In an optimal schedule, job J2 is scheduled before the first Mna period, and job J1 is
scheduled immediately after that period, so that Cmax(S

∗) = 1 + Kε. Consider the list
(J1, J2). Based on this list, all three schedules, semi-active, algorithm FF, algorithm LS
yield the same schedule S. Since sq − (sq−1 + ∆q−1) = 1 − ε for each q, 2 ≤ q ≤ K,
it follows that in schedule S, job J2 may only start after the last non-availability interval,
so that Cmax(S) = (2K−1)+1 = 2K. As ε → 0, the ratio Cmax(S)/Cmax(S

∗) approaches 2K.

We now turn to problem 1 |Ona(K)|Cmax with operator non-availability periods. Since
scheduling with Ona periods includes more possibilities (an Ona period may be covered by a
job), it is reasonable to expect an improvement of the worst-case performance of list scheduling
algorithms, compared to a ratio 2K valid for the problem with machine non-availability periods.

Recall that we have, for an optimal schedule S∗, the inequalities Cmax(S
∗) ≥ p(N) > s1.

Proposition 2 For problem 1 |Ona(K)|Cmax with bounded operator non-availability periods,
the bound Cmax(S)/Cmax(S

∗) ≤ 2K holds for all semi-active schedules S, and there are lists for
which this bound is tight asymptotically for K ≥ 2, even if the schedule is found by Algorithm FF.

Proof: We know that
∆q ≤ p(N) ≤ Cmax(S

∗), 1 ≤ q ≤ K
x1 + ∆1 ≤ s1 + ∆1 ≤ Cmax(S

∗)

Semi-active schedules S satisfy (3) and (4). Hence,

Cmax(S) ≤ Cmax(S
∗) + Cmax(S

∗) + 2(K − 1)Cmax(S
∗) ≤ 2KCmax(S

∗)

We now prove that this bound is tight. Take an arbitrary ∆ and a sufficiently small ε, 4ε < ∆,
and define the following instance of problem 1 |Ona(K)|Cmax with two jobs (see Figure 1):

• p1 = ε, p2 = ∆ − ε/2;

• ∆1 = ∆ − ε, ∆q = ∆, for 2 ≤ q ≤ K;

• s1 = 0, sq = sq−1 + ∆q−1 + ∆ − 2ǫ, for 2 ≤ q ≤ K.

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
��
��

∆1

∆ − ǫ ∆ − 2ǫ

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

∆2

∆ ∆ − 2ǫ

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

∆3

∆

Figure 1: Ona periods for the instance that achieves the ratio of 2K

An optimal schedule S∗ is associated with the sequence (J2, J1), provided that J2 starts at
time zero, so that Cmax(S

∗) = ∆ + ε
2 = p(N).

6

Using list (J1, J2), Algorithm FF results in a schedule S with Cmax(S) = sK + ∆ + p2, since
job J2 is too small to overlap any of the Ona periods starting from the second one, and is too
big to be placed between any two of those Ona periods. Thus, Cmax(S) = ∆−ε+(K−1)(2∆−
2ǫ) + ∆ − ε/2 = 2K(∆ − ε) + ε/2.

Therefore, we have

Cmax(S)

Cmax(S∗)
=

2K(∆ − ε) + ε/2

∆ + ε/2
−→ε→0 2K

as required.

We now show that schedules found by Algorithm LS are closer to the optimum than an
arbitrary semi-active schedule. Let us call ρL the performance ratio for algorithm LS associated
with list L.

Theorem 3 Consider problem 1 |Ona(K)|Cmax with bounded operator non-availability periods.
Then, ρL = 2(K − 1) holds for any K ≥ 4.

We prove this theorem by means of several lemmas.

Lemma 2 For all lists L and any K ≥ 2, the performance ratio ρL satisfies ρL ≥ 2(K − 1).

Proof: Take an arbitrary ∆ and a sufficiently small ε, and define the following instance of
problem 1 |Ona(K)|Cmax with two jobs (see Figure 2):

• p1 = ε, p2 = ∆ + ε/2;

• ∆1 = ∆; ∆2 = ε; ∆q = ∆ + ε, for 2 ≤ q ≤ K;

• s1 = ε; s2 = ∆ + ε; s3 = 2∆ + ε; sq = sq−1 + 2∆ + ε, for 4 ≤ q ≤ K.

��
�

��
�

��
�

��
�

��
�

��
�

��
��

∆1

ǫ ∆

��
��

∆2

ǫ

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
��

∆3

∆ − ǫ ∆ + ǫ

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�

∆4

∆ ∆ + ǫ

Figure 2: Ona periods for the instance that achieves the ratio of 2K − 1

An optimal schedule S∗ starts with J2 at time ε/2 and places J1 without idle time, so that
Cmax(S

∗) = ∆ + 2ε.
Independent of the two possible lists, (J1, J2) and (J2, J1), algorithm LS places job J1 at

time 0. Then the second job J2 can only start after the last Ona period so that

Cmax(SL) = (K − 1)(2∆ + ε) + ε/2 for each K ≥ 2

Therefore,
Cmax(SL)

Cmax(S∗)
−→ε→0 2(K − 1)

for each K ≥ 2.

Lemma 3 For all instances such that the optimal schedule S∗ finishes after the second Ona

period, every semi-active schedule S verifies Cmax(S)
Cmax(S∗) ≤ 2(K − 1) for each K ≥ 2.

7

Proof: Consider a semi-active schedule S with idle times xq, q = 1, 2, . . . , k. We know that

∆q ≤ p(N) ≤ Cmax(S
∗), 1 ≤ q ≤ K

x1 + ∆1 + x2 + ∆2 ≤ Cmax(S
∗)

Using (3) and (4), we get

Cmax(S) ≤ p(N) + Cmax(S
∗) +

K
∑

q=3

(xq + ∆q) ≤ (2 + 2(K − 2))Cmax(S
∗)

and the lemma follows.

It remains to consider the case where an optimal schedule completes between the first two
Ona periods. For completeness, we also include here the case K = 1 with s2 = +∞.

Lemma 4 For the set I of instances for which an optimal schedule S∗ completes between the
first two Ona periods (i.e. s1 + ∆1 ≤ Cmax(S

∗) ≤ s2), every list schedule, restricted to I,
verifies ρL ≤ 3K/2 for K ≥ 1.

Proof: Let Jl be the last job scheduled in a list schedule SL. We know that the processing
time of job Jl must be larger than the length of any machine idle interval xq.

We first show that if schedule SL is not optimal, then pl ≤
1
2Cmax(S

∗). This means that the
duration of the job scheduled last in SL is at most a half of the optimal makespan. We split
our consideration into two cases.

Case 1. Assume that the first Ona period is covered in SL. Notice that if no idle time
occurs before s1 (i.e., x1 = 0), clearly SL is optimal since p(N) ≤ s2. Otherwise, in SL there
exists a machine idle interval [t, t + x1], where t + x1 < s1. The processing time of any job
that remains to be scheduled by Algorithm LS at time t is larger than s1 − t and smaller than
s1 + ∆1 − t. Hence, any job Jj with the processing time larger than ∆1 has an earliest date
s1 +∆1 −pj when it can be scheduled to overlap the first Ona period. Algorithm LS will select
the job that may start earlier than the other candidates, i.e., it will select a job Jβ with the
largest processing time among the remaining jobs to become the crossover job for the first Ona

period and to be completed at time s1 + ∆1. Note that the jobs Jβ and Jl are different, since
otherwise Cmax(S) = s1 + ∆1 and this schedule is optimal. Thus, Cmax(S

∗) ≥ pβ + pl ≥ 2pl.
Case 2. Assume now that the first Ona period is not covered in SL. Since it was not

possible to schedule Jl to overlap ∆1, we have pl < ∆1. If in an optimal schedule S∗ the first
Ona period is covered by some job Jα, then due to pα ≥ ∆1 > pl we have that Cmax(S

∗) ≥
pα + pl ≥ 2pl. Otherwise, if the first Ona period is not covered in an optimal schedule S∗, then
Cmax(S

∗) ≥ p(N) + ∆1 ≥ 2pl.
Now let us denote by A the total length of the machine idle intervals in schedule SL in

interval [0, s1 +∆1]. It is clear that A ≤ x1 +∆1 ≤ Cmax(S
∗). Since job Jl cannot start earlier,

we get

Cmax(S) ≤ p(N) + A +

k
∑

q=2

(xq + ∆q) ≤ p(N) + A + (K − 1)(pl + p(N))

≤ 2Cmax(S
∗) + (K − 1)Cmax(S

∗)/2 + (K − 1)Cmax(S
∗) ≤

(

3

2
K +

1

2

)

Cmax(S
∗)

The latter estimate can be further improved by noticing that in fact

p(N) + A ≤ 2Cmax(S
∗) − pl (5)

provided that SL is not optimal. To see this, consider again the following cases:

8

• If the first Ona period is covered in SL, then we simply have A ≤ x1 ≤ pl. Using the fact
that pl ≤ Cmax(S

∗)/2, we get p(N) + A ≤ Cmax(S
∗) + pl ≤ 2Cmax(S

∗) − pl.

• If the first Ona period is not covered in an optimal schedule S∗, then Cmax(S
∗) ≥ p(N)+

∆1. Hence, p(N) + A ≤ Cmax(S
∗) + x1 ≤ Cmax(S

∗) + pl ≤ 2Cmax(S
∗) − pl.

• The only remaining case occurs if the first Ona period is covered in an optimal schedule,
and not in schedule SL. As above, let Jα be the crossover job for the first Ona period
in schedule S∗, and let [t, t + x1] be the first machine idle interval in schedule SL. Since
Cmax(S

∗) ≤ s2 and pα ≥ ∆1, the only reason why the first Ona period is not covered
in SL is that every job with the processing time larger than ∆1, including job Jα, has
been scheduled before time t. This implies that pl < ∆1 ≤ pα ≤ t ≤ s1−x1 and we obtain
that Cmax(S

∗) ≥ s1 + ∆1 ≥ pα + x1 + ∆1 ≥ pl + A, so that (5) follows immediately.

Using (5), we derive

Cmax(S) ≤ (2Cmax(S
∗) − pl) + (K − 1)(pl + Cmax(S

∗)) ≤
3

2
KCmax(S

∗)

Since 3K/2 ≤ 2(K−1) for K ≥ 4, Lemma 4 completes the proof of Theorem 3. The obtained
results can be summarized as follows.

Theorem 4 For problem 1 |Ona(K)|Cmax with bounded operator non-availability periods, the
following bounds hold for all lists L

• ρL ≤ 3/2 for K = 1;

• 2 ≤ ρL ≤ 3 for K = 2;

• 4 ≤ ρL ≤ 4.5 for K = 3;

• ρL = 2(K − 1) for K ≥ 4.

We now show that the bound 2 on the performance ratio found for list scheduling algorithms
for K = 2 also holds for any polynomial time algorithm.

Theorem 5 Problem 1 |Ona(2)|Cmax with bounded operator non-availability periods is not ap-
proximable within a factor smaller than or equal to 2, unless P = NP.

Proof: We prove that a polynomial-time r−approximation algorithm A for problem
1 |Ona(2)|Cmax with r ≤ 2, if it exists, would solve to optimality an NP-complete problem,
namely Partition, which is a version of the SubsetSum problem with B =

∑

j aj/2.
Given an arbitrary instance of Partition, we construct an instance I of problem

1 |Ona(2)|Cmax with p(N) =
∑n+1

i=1 pi ≥ max {∆1,∆2} and with n + 1 jobs J1, . . . , Jn, Jn+1

as follows: the processing times are pj = aj , for all j ∈ {1, 2, . . . , n}, and we add an extra job
pn+1 = max aj + 1. The two Ona intervals are (B, B + pn+1) and (p(N), 2p(N)).

Observe, as in the proof of Theorem 1, that Partition has a solution if and only if,
for the constructed instance I of problem 1 |Ona(2)|Cmax, an optimal schedule S∗ satisfies
Cmax(S

∗) = p(N). Due to the second Ona period occurring at time p(N), which can not be
overlapped, it implies that any schedule for a negative instance of Partition has a makespan
strictly greater than 2p(N). Now assume that there exists an r-approximation algorithm A
with r ≤ 2, returning the value Cmax for the instance I. If I is constructed from a negative
instance of partition, then Cmax > 2p(N). If I is constructed from a positive instance of
partition, then Cmax ≤ rCmax(S

∗) ≤ 2p(N). Hence, algorithm A can decide Partition in
polynomial time, which implies P = NP.

Notice that this result excludes the case ρl = 2 for K = 2 in Theorem 4.

9

4 λ-bounded periods

So far, we have considered bounded periods, i.e. p(N) ≥ ∆ = maxK
q=1 ∆q. This is a rather weak

condition. There are instances where none of the periods can be covered. The poor performance
ratio for list schedules may in part be due to this fact. In order to increase the number of covered
periods, we define λ-bounded periods by the condition :

p(N) ≥ λ ∆

The previous theory refers now to 1-bounded periods.

Lemma 5 For instances with λ-bounded periods, λ large enough, semi-active schedules have a
performance ratio not greater than 2.

Proof: Let λ > sK

∆ . Then C∗
max ≥

∑

pj > (sK

∆)∆ = sK and C∗
max ≥ sK + ∆K. Therefore,

Cmax ≤ sK + ∆K +
∑

pj ≤ 2C∗
max.

Theorem 6 For problem 1|Ona(K)|Cmax with λ-bounded periods, list scheduling algorithms
have a performance ratio satisfying

ρL ≤ 1 +
2K

λ

In particular, we get a constant bound ρL ≤ 3 for λ ≥ K. Also the makespan of any list
schedule tends to C∗

max as λ → ∞. Previously, we had λ = 1. Here we obtain the bound
ρL ≤ 1 + 2K which is weaker than the ones in Theorem 4.

Proof: Consider a list schedule. Let Ai denote the inactivity period in [si−1 + ∆i−1, si + ∆i)
with s0 = 0, ∆0 = 0. Since we consider only semi-active schedules, we have at most one such
period per interval.

pj

∆i−1

si−1

t

∆i

si

∆i+1

si+1

· · · ∆l

sl

tl

Figure 3: Position of idle times

Let t ∈ [si−1 + ∆i−1, si] be the beginning of an inactivity period Ai. Suppose job Jj of
length pj is the first job placed after time t in the schedule. Since Jj cannot start at t, we must
have t + pj = tl ∈ (sl, sl + ∆l) for some l ≥ i. We may distinguish two cases (See Figure 3).

(1) Interval ∆i is covered by Jj . Then sl + ∆l − tl ≤ si − t and the length of Ai satisfies
|Ai| = sl + ∆l − tl < ∆l.

(2) ∆i is not covered by Jj . Then sl + ∆l − tl > si − t and also si − t < ∆l. Hence
|Ai| = si − t + ∆i ≤ ∆i + ∆l.

In all cases, we have |Ai| ≤ 2∆. Therefore, Cmax ≤
∑

|Ai| +
∑

pj ≤ 2K∆ +
∑

pj ≤
(1 + 2K/λ)p(N) ≤ (1 + 2K/λ)C∗

max which completes the proof.

6

3 2 3 2 3

Figure 4: An example with a task that cannot finish in [0, sK]

10

Increasing the value of λ is usually the result of adding more jobs and big jobs. However, it
is always possible to construct large jobs, larger than the ONA periods, that cannot be placed
and finish in interval [0, sK], see example in Figure 4. If such a job exists, then C∗

max > sK
and we obtain, as in the proof of Lemma 5, the performance bound of 2 for any semi-active
schedule. We add a final remark. Even if all jobs Jj have processing times pj ≥ ∆q for all
q ∈ {1, 2, . . . ,K}, where K cannot be reduced, we are not sure that all ONA periods are covered
in an optimal solution (see Figure 5).

92 13 14 17 19 22 25 28 31 33 36

J1 J2 J3 J4

J4 J3 J2 J1

46

45

Figure 5: An example with an ONA period not covered in the optimal solutions

5 Conclusion

We have introduced a new scheduling model, in which the operator non-availability periods have
to be respected. The resulting class of problems has richer combinatorial features than schedul-
ing problems with the traditional machine non-availability periods. We establish properties and
performance ratios for list scheduling algorithms. Still, there is a wide range of problems for
further study. This includes proving tightness of all known ratios and the search of improved
approximation algorithms. We also generalize the concept of bounded periods to so-called λ-
bounded periods and obtain list algorithms with constant performance ratios. Problems with
other objective functions and in other machine environments are also worth studying.

Acknowledgement

This research has been financed in part by the INTAS network 03-51-5501. We also thank N.
Mete, M.Sc. student in Grenoble, for having constructed the example in Figure 5.

References

[1] J. Breit, G. Schmidt, V.A. Strusevich, Non-preemptive two-machine open shop scheduling
with non-availability constraints Mathematical Methods of Operations Research 34 (2003)
217–234.

[2] P. Brucker, C. Dhaenens-Flipo, S. Knust, S.A. Kravchenko, F. Werner, Complexity results
for parallel machine problems with a single server, Journal of Scheduling, 5 (2002) 429-457.

[3] V. Lebacque, N. Brauner, B. Celse, G. Finke, C. Rapine. Planification d’expériences dans
l’industrie chimique. In: Colloque IPI 2006, Allevard, France, 2006.

[4] N.G. Hall, C. Potts, C. Sriskandarajah. Parallel machine scheduling with a common server.
In Discrete Applied Mathematics, 102 (2000) 223-243.

[5] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems, Springer, Berlin et al., 2004.

[6] C.-Y. Lee, Machine scheduling with an availability constraint, Journal of Global Optimiza-
tion 9 (1996) 395–416.

11

[7] C.-Y. Lee, Machine scheduling with availability constraints, in J. Y.-T. Leung (Editor),
Handbook of Scheduling: Algorithms, Models and Performance Analysis, Chapman &
Hall/CRC, London, 2004, pp. 22-1 – 22-13.

12

