

Synthesis and X-ray characterization of Li(1–2x)NixTiO(PO4) (0

B. Manoun, Abdelaziz El Jazouli, Pierre Gravereau, Jean-Pierre Chaminade

▶ To cite this version:

B. Manoun, Abdelaziz El Jazouli, Pierre Gravereau, Jean-Pierre Chaminade. Synthesis and X-ray characterization of Li(1-2x)NixTiO(PO4) (0

HAL Id: hal-00165790 https://hal.science/hal-00165790

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Synthesis and X-ray characterization of $Li_{(1-2x)}Ni_xTiO(PO_4)$ (0 $\leq x \leq 0.50$)

B. Manoun^{a)} and A. El Jazouli

Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M'Sik Boulevard Idriss El Harti, Sidi Othman B.P. 7955 Casablanca, Morocco

P. Gravereau and J. P. Chaminade

Institut de Chimie de la Matière Condensée de Bordeaux, 87, Av. du Dr. Schweitzer 33608 Pessac cedex, France

(Received 14 March 2003; accepted 26 May 2003)

 $Li_{(1-2x)}Ni_xTiO(PO_4)$ oxyphosphate powders were prepared from dilute solutions of NiCl_{2.6}H₂O, Li₂CO₃, (NH₄)₂HPO₄, and TiCl₄ in ethanol. The final temperature was 850 °C. $Li_{(1-2x)}Ni_xTiO(PO_4)$ oxyphosphates with $0 \le x \le 0.10$ crystallize in the orthorhombic system with space group Pnma, while those with $0.10 \le x \le 0.25$ crystallize in the monoclinic system with space group P2₁/c.

Key words: oxyphosphates, X-ray diffraction, $Li_{(1-2x)}Ni_xTiO(PO_4)$

I. INTRODUCTION

Interest in titanium phosphates, both in glassy and crystalline forms, as ionic conductors or nonlinear optical materials, has led to a large number of studies. The structures of $Ni_{0.50}TiO(PO_4)$ (P2₁/c space group), $Li_{0.50}Ni_{0.25}TiO(PO_4)$ $(P2_1/c \text{ space group})$ and LiTiO(PO₄) (Pnma space group) have been determined using powder X-ray diffraction for all three compounds (Gravereau et al., 1999; Manoun et al., 2002; Robertson et al., 1994; Manoun et al., 2003, in progress) and using single crystal XRD for $LiTiO(PO_4)$ (Nagornyi et al., 1991). Solid solution between LiTiO(PO₄) and $Ni_{0.50}TiO(PO_4)$ was envisaged as a way to create cation deficiency in LiTiO(PO₄): $Li_{(1-2x)}Ni_xTiO(PO_4)$. A structural study of this series showed a limited solid solution between these two compounds. Our aim in this paper is to describe the preparation and characterization by X-ray diffraction of $Li_{(1-2x)}Ni_xTiO(PO_4)$ materials.

II. EXPERIMENTAL

 $Li_{(1-2x)}Ni_xTiO(PO_4)$ oxyphosphate powders were prepared from dilute solutions of NiCl₂ 6H₂O (I), Li₂CO₃ (II), $(NH_4)_2$ HPO₄ (III), and TiCl₄ in ethanol (IV). The slow addition of (IV) in a (I) + (II) + (III) mixture (with stirring) at room temperature induced precipitation. After drying at about 100 °C, the resulting amorphous powder was progressively heated up to 850 °C for 48 h. The final products were analyzed by XRD. The diffraction data were collected at room temperature on a Phillips PW 3040 ($\theta - \theta$) diffractometer: Bragg-Brentano geometry; diffracted-beam graphite monochromator; CuK α radiation (40 KV, 40 mA); Soller slits of 0.02 rad on incident and diffracted beams; divergence slit of 1°; antiscatter slit of 1°; receiving slit of 0.05 mm; holder surface was corrected with a razor blade; sample spinner used; using steps of 0.02° (2 θ) over the large angular range $10-120^{\circ}$ (2 θ) with a fixed counting time of 20 or 30 s. Rietveld's profile analysis method was employed for refinements using the program FULLPROF (Rodriguez-Carvajal, 1990).

III. RESULTS AND DISCUSSION

Figure 1 shows the X-ray powder diffraction patterns of $\text{Li}_{(1-2x)}\text{Ni}_x\text{TiO}(\text{PO}_4)$ ($0 \le x \le 0.25$). For the composition x =0.10, the pattern is similar to that of $LiTiO(PO_4)$. In $Li_{0.60}Ni_{0.20}TiO(PO_4)$, the peak observed at $2\theta \approx 13.85^{\circ}$ is not compatible with the Pnma space group. This peak is more intense in the pattern for Li_{0.50}Ni_{0.25}TiO(PO₄). Structural refinements of $Li_{(1-2x)}Ni_xTiO(PO_4)$ (0 $\leq x \leq 0.50$) were undertaken on the powder data by the Rietveld method (Manoun et al., 2003, in progress). They showed a solid solution in the domain $0 \le x \le 0.25$, with orthorhombic symmetry for $0 \le x \le 0.10$ and with monoclinic symmetry for 0.10 $< x \le 0.25$. Li_{0.50}Ni_{0.25}TiO(PO₄) is the limit of the solid solution. Compositions with 0.25 < x < 0.50 gave a mixture of Li_{0.50}Ni_{0.25}TiO(PO₄) and Ni_{0.50}TiO(PO₄). Table I shows the results obtained from the Rietveld profile analysis method for $Li_{(1-2x)}Ni_xTiO(PO_4)$.

Indexing of X-ray powder diffraction patterns for these compositions was performed by means of the computer program DICVOL (Boultif and Louër, 1991). The first 20 peak positions [25 peaks for $Li_{0.60}Ni_{0.20}TiO(PO_4)$], with a maximal absolute error of 0.03° (2 θ), were used as input data. The unit cell parameters were refined (Table I) using the complete powder diffraction data sets (Tables II, III, IV, V). Intensities given in Tables II, III, IV, and V were obtained from the "observed intensities" of the Rietveld refinement.

All the observed reflections for the compositions $x \le 0.10$ could be indexed in the space group Pnma (No. 62) in which phosphorous cations were located on the tetragonal sites (4c), the titanium cations were located on the octahedral sites (4c), and nickel and lithium cations were located on the octahedral sites (4a).

All the observed reflections for the compositions 0.10 $< x \le 0.25$ could be indexed in the space group P2₁/c (No. 14). Phosphorous cations were located on the tetragonal sites (4e), titanium cations were located on the octahedral sites

^{a)} Author to whom correspondence should be addressed; electronic mail: manounb@fiu.edu. Current address: Center for the Study of Matter at Extreme Conditions, U.P., VH-140, Miami, Florida 33199.

Figure 1. X-ray powder diffraction patterns of $Li_{(1-2x)}Ni_xTiO(PO_4)$ (x=0;0.10;0.20;0.25).

(4e), and nickel and lithium cations were located on the octahedral sites (2b) and (2a).

The structure of the compositions $0 \le x \le 0.25$ is based on a three-dimensional anionic framework constructed of chains of alternating TiO₆ octahedra and PO₄ tetrahedra, with the lithium and nickel atoms, distributed randomly except for x=0.25, in cavities in the framework. The dominant structural units in the compositions are chains of tilted corner-sharing TiO₆ octahedra running parallel to one axis. The parameters of the compositions $0 \le x \le 0.10$ are very close to those of the compositions $0.10 < x \le 0.25$ ($a_m \approx b_o$, $b_m \approx c_o$, $c_m \approx a_o$, $\beta_m \approx 90^\circ$). Figure 2 shows the cell parameter variations as a function of x for $\text{Li}_{(1-2x)}\text{Ni}_x\text{TiO}(\text{PO}_4)$ ($0 \le x \le 0.25$), where progressive substitution of lithium by nickel provokes a decrease of $a_o(c_m)$ and an increase of $b_o(a_m)$ and $c_o(b_m)$. The decrease of $a_o(c_m)$ is due to the substitution of Li ($r_i = 0.76$ Å) by Ni ($r_i = 0.69$ Å) (Shannon, 1976). Figure 3 shows the structure of $\text{Li}_{0.60}\text{Ni}_{0.20}\text{TiO}(\text{PO}_4)$, the substitution of Li by Ni is taking

TABLE I. Results obtained from Rietveld's profile analysis method for $Li_{(1-2x)}Ni_xTiO(PO_4)$. Figures of merit M and F of the DICVOL program are also given.

Nominal composition	Orthorhombic phase %	Monoclinic phase Ni _{0.50} TiO(PO ₄) %	Orthorhombic phase formula and corresponding M and F factors	Unit cell parameters
LiTiO(PO ₄) Li _{0.80} Ni _{0.10} TiO(PO ₄)	100	0	$\begin{array}{l} \text{LiTiO}(\text{PO}_4) \\ \text{M}_{20} = 92.3, \\ \text{F}_{20} = 112.8(0.0047; 38) \\ \text{Li}_{0.80}\text{Ni}_{0.10}\text{TiO}(\text{PO}_4) \\ \text{M}_{20} = 45.8, \\ \text{F}_{20} = 62.8(0.0084; 38) \end{array}$	$a_o = 7.4015 (2) \text{ Å}$ $b_o = 6.3756 (2) \text{ Å}$ $c_o = 7.2350 (3) \text{ Å}$ $a_o = 7.3892 (2) \text{ Å}$ $b_o = 6.3832 (2) \text{ Å}$ $c_o = 7.2429 (2) \text{ Å}$
Nominal composition	Monoclinic phase %	Monoclinic phase Ni _{0.50} TiO(PO ₄) %	Monoclinic phase formula and corresponding M and F factors	
Li _{0.60} Ni _{0.20} TiO(PO ₄)	100	0	$\begin{array}{l} \text{Li}_{0.60}\text{Ni}_{0.20}\text{TiO}(\text{PO}_4) \\ M_{25} = 51.4, \\ \text{F}_{25} = 85.9(0.0057; 51) \end{array}$	$a_m = 6.3904 (2) \text{ Å}$ $b_m = 7.2532 (2) \text{ Å}$ $c_m = 7.3759 (3) \text{ Å}$ $\beta_m = 90.154 (2)^{\circ}$
Li _{0.50} Ni _{0.25} TiO(PO ₄)	100	0	$\begin{array}{l} \text{Li}_{0.50}\text{Ni}_{0.25}\text{TiO}(\text{PO}_4) \\ \text{M}_{20} = 60.1, \\ \text{F}_{20} = 93.6(0.0051; 42) \end{array}$	$a_m = 6.3954$ (2) Å $b_m = 7.2599$ (2) Å $c_m = 7.3700$ (3) Å $\beta_m = 90.266$ (2)°
$\begin{array}{c} Li_{0.33}Ni_{0.33}TiO(PO_4) \\ Li_{0.20}Ni_{0.40}TiO(PO_4) \end{array}$	68.67 38.42	31.33 61.58	$\begin{array}{l} Li_{0.50}Ni_{0.25}TiO(PO_4) \\ Li_{0.52}Ni_{0.24}TiO(PO_4) \end{array}$	

place in the sheet parallel to (100) plan for the orthorhombic phases and parallel to the (001) plan for the monoclinic phases; the $b_o(a_m)$ and $c_o(b_m)$ parameters increase with the strength of the Ni²⁺–Ni²⁺, Ni²⁺–Li⁺, O^{2–}–O^{2–} electrostatic repulsions.

The difference between the orthorhombic and monoclinic phases is that some calculated peaks in the orthorhombic system split into more peaks in the monoclinic system, for example, 121(Pnma) split into 211 and 21-1 (P2₁/c). As

TABLE III. Powder diffraction data of Li_{0.80}Ni_{0.10}TiO(PO_4) ($\lambda k \alpha_1 = 1.5406$ Å).

$2 \theta_{\rm obs}$	$2\theta_{\rm calc}$	$d_{\rm obs}$	d_{calc}	$100I/I_0$	h k 1	17 105
17.131	17.125	5.1719	5.1737	14	101	17.127
18.531	18.534	4.7842	4.7834	21	0 1 1	22.107
22.111	22.109	4.0170	4.0174	9	111	24.067
24.031	24.027	3.7002	3.7008	3	2 0 0	24.567
24.591	24.589	3.6172	3.6175	20	002	27.067
27.051	27.041	3.2936	3.2948	100	201	27.407
27.411	27.420	3.2512	3.2501	32	102	27.947
27.971	27.967	3.1873	3.1878	62	020	30.547
30.511	30.516	2.9275	2.9271	10	211	30.827
30.851	30.856	2.8960	2.8956	17	112	32.947
32.971	32.977	2.7145	2.7140	14	121	34.647
34.631	34.647	2.5881	2.5869	6	202	37.207
37.191	37.196	2.4156	2.4153	4	220	39.287
39.291	39.259	2.2912	2.2930	5	103	
	39.295		2.2910		221	39.527
39.571	39.568	2.2756	2.2758	21	122	39.887
39.931	39.936	2.2559	2.2557	12	013	41.187
41.131	41.134	2.1929	2.1927	3	311	41.787
41.831	41.832	2.1578	2.1577	7	113	44.327
44.391	44.392	2.0391	2.0390	14	031	
	44.410		2.0383		302	44.807
44.811	44.821	2.0209	2.0205	9	203	45.087
45.091	45.099	2.0090	2.0087	1	222	46.087
46.131	46.139	1.9661	1.9658	1	131	46.787
46.751	46.752	1.9415	1.9415	1	312	47.127
47.151	47.147	1.9260	1.9261	2	213	48.307
49.191	49.201	1.8508	1.8504	7	400	49.287
49.411	49.413	1.8430	1.8430	3	230	49.427

$2\theta_{\rm obs}$	$2\theta_{\rm calc}$	$d_{\rm obs}$	$d_{\rm calc}$	100 <i>I</i> / <i>I</i> ₀	h k l
17.127	17.129	5.1731	5.1725	9	101
18.507	18.513	4.7903	4.7888	24	011
22.107	22.102	4.0177	4.0186	9	111
24.067	24.068	3.6948	3.6946	2	$2 \ 0 \ 0$
24.567	24.562	3.6207	3.6214	16	002
27.067	27.072	3.2917	3.2911	100	201
27.407	27.405	3.2516	3.2519	30	102
27.947	27.933	3.1900	3.1916	52	020
30.547	30.536	2.9241	2.9252	11	2 1 1
30.827	30.834	2.8982	2.8976	18	1 1 2
32.947	32.951	2.7164	2.7161	18	121
34.647	34.657	2.5869	2.5862	7	202
37.207	37.197	2.4146	2.4152	7	220
39.287	39.225	2.2914	2.2949	7	103
	39.291		2.2912		221
39.527	39.532	2.2781	2.2778	22	122
39.887	39.89	2.2583	2.2582	13	013
41.187	41.181	2.1900	2.1903	3	311
41.787	41.794	2.1599	2.1596	6	113
44.327	44.337	2.0419	2.0414	13	031
	44.447		2.0366		302
44.807	44.809	2.0211	2.0210	10	203
45.087	45.084	2.0092	2.0093	1	222
46.087	46.091	1.9679	1.9676	1	131
46.787	46.782	1.9401	1.9403	1	312
47.127	47.13	1.9269	1.9268	2	213
48.307	48.298	1.8825	1.8829	1	321
49.287	49.289	1.8474	1.8473	7	400
49.427	49.388	1.8425	1.8438	3	230

TABLE IV. Powder diffraction data of $Li_{0.60}Ni_{0.20}TiO(PO_4)$ ($\lambda k \alpha_1$ = 1.5406 Å).

FABLE	V.	Powder	diffraction	data	of	Li _{0.50} Ni _{0.25} TiO(PO ₄)	$(\lambda k \alpha_1$
= 1.5406	Å).						

 d_{calc}

6.3953

5.1719

4.7988

4.0280

4.0150

3.6850

3.6299

3.2858

3.2564

3.1993

3.1976

3.1864

3.1569

2.9276

2.9178

2.9043

2.8994

2.7237

2.7159

2.5860

2.4207

2.4096

2.4001

2.3994

2.3270

2.2992

2.2964

2.2869

2.2839

2.2792

2.2633

2.1898

2.1837

2.1646

2.1626

2.0454

2.0345

2.0228

2.0140

1.9732

1.9686

1.9409

1.9366

1.9300

1.9297

1.9272

1.8855

1.8490

1.8425

1.8415

1.8382

 $100I/I_0$

5

2

21

1

19

1

13

100

30

50

1

3

5

4

9

7

12 17

11

5

3

1

1

1

2

3

11

10

12

4

6

14

4 9

2

1

1

1

1

1

6

1

h k 1

 $1 \ 0 \ 0$

 $0\ 1\ 1$

1 1 0

 $1 \ 1 \ -1$

 $1 \ 1 \ 1$

002

020

012

021

10 - 2

 $2 \ 0 \ 0$ $1 \ 0 \ 2$

120

 $1 \ 1 \ -2$

1 1 2

12 - 1

121 21 - 1

2 1 1

022 20 - 2

202

12 - 2

 $2\ 2\ 0$

013

031

21 - 2

212

22 - 1

 $2\ 2\ 1$

130 $1 \ 1 \ -3$

113

13 - 1

131

 $3\ 1\ 0$

023

032

22 - 2

31 - 1

311

12 - 3

123

13 - 2230

132

21 - 3

30 - 2 $0\ 0\ 4$

302

320

$2\theta_{\rm obs}$	$2\theta_{\rm calc}$	$d_{\rm obs}$	$d_{\rm calc}$	$100I/I_0$	h k l	$2 \theta_{\rm obs}$	$2\theta_{\rm calc}$	$d_{\rm obs}$
13.851	13.847	6.3885	6.3902	2	100	13.831	13.836	6.3976
17.131	17.132	5.1720	5.1716	4	0 1 1	17.131	17.131	5.1719
18.491	18.489	4.7945	4.7950	22	1 1 0	18.471	18.474	4.7996
22.071	22.073	4.0242	4.0238	1	$1 \ 1 \ -1$	22.051	22.05	4.0278
22.111	22.114	4.0171	4.0165	14	1 1 1	22.111	22.122	4.0170
24.111	24.112	3.6882	3.6880	1	002	24.131	24.132	3.6851
24.531	24.527	3.6260	3.6265	14	020	24.511	24.504	3.6289
27.111	27.103	3.2865	3.2874	100	012	27.111	27.116	3.2865
27.391	27.383	3.2535	3.2544	29	021	27.371	27.366	3.2558
27.891	27.877	3.1963	3.1979	51	10 - 2	27.871	27.864	3.1985
	27.901		3.1952		200		27.879	
28.271	28.272	3.1542	3.1541	1	120	27.951	27.979	3.1896
30.531	30.526	2.9257	2.9261	5	11 - 2	28.251	28.246	3.1564
	30.587		2.9204	4	112	30.511	30.51	2.9275
30.811	30.792	2.8997	2.9014	9	12 - 1	30.591	30.615	2.9201
	30.822		2.8987	7	121	30.751	30.761	2.9052
32.951	32.896	2.7161	2.7205	11	2.1 - 1	30.811	30.814	2.8997
	32 953		2 7159	15	211	32,851	32,856	2.7241
34 671	34 663	2 5852	2 5858	10	022	32 951	32 954	2 7161
37 151	37 151	2.3032	2.3030	4	20 - 2	34 651	34.66	2.7101
57.151	37.253	2.1101	2.1101	3	202	37 111	37.11	2.3000
37 471	37.465	2 3982	2.4117	1	12 - 2	37.291	37 287	2.1200
57.471	37.483	2.3702	2.3900	1	220	37.431	37.44	2.4004
	37.516		2.3973		1220	57.451	37.44	2.4007
29 621	29 627	2 2200	2.3934	1	0.1.2	29 651	28 662	2 2277
30.031	30.037	2.3200	2.3263	1	013	30.051	30.002	2.3277
39.231	20 241	2.2940	2.2974	5	21 2	20 101	20 109	2.2991
20.251	20.220	2 2970	2.2940	10	21 - 2	20 411	20.269	2.2900
39.331	39.339 20.467	2.2879	2.2003	10	212	39.411	39.308	2.2843
20 511	39.407	2 2700	2.2014	10	22 - 1	20 511	39.422	2 2700
39.511	39.510	2.2790	2.2787	10	221	39.511	39.506	2.2790
39.831	39.832	2.2014	2.2013	12	130	39.791	39.795	2.2030
41.191	41.196	2.1898	2.1895	3	11-3	41.191	41.19	2.1898
41.271	41.266	2.1870	2.1860	I z	113	41 601	41.312	0.1447
41.751	41.734	2.1617	2.1625	5	13-1	41.691	41.693	2.1647
	41.757	0.0405	2.1614		131		41.733	
44.291	44.283	2.0435	2.0438	14	310	44.251	44.246	2.0452
44.491	44.484	2.0347	2.0350	4	023	44.491	44.496	2.0347
44.791	44.787	2.0218	2.0220	9	032	44.771	44.768	2.0227
	45.024		2.0119		22 - 2		44.975	
46.011	46.013	1.9710	1.9709	1	31 - 1	45.951	45.957	1.9734
46.071	46.078	1.9686	1.9683	1	311	46.071	46.069	1.9686
46.771	46.781	1.9407	1.9403	1	12 - 3	46.771	46.766	1.9407
46.851	46.844	1.9376	1.9379	1	123		46.876	
47.091	47.083	1.9283	1.9286	1	13 - 2	47.051	47.046	1.9298
	47.098		1.9280		230		47.055	
	47.125		1.9270		132		47.119	
49.371	49.306	1.8444	1.8467	7	30 - 2	48.231	48.227	1.8853
	49.384		1.8440		004	49.251	49.242	1.8486
	49.429		1.8424		302		49.427	
							49.454	
						49.551	49.549	1.8381

described by Manoun et al. (Manoun et al., 2002), the atomic positions of the monoclinic phases are close to those of the orthorhombic phases with the following circular permutation:

Pnma-(8d) sites $[x_o, y_o, z_o]$ split into two P2₁/c-(4e) sites: $[x_m, y_m, z_m]$ and $[1/2-x_m, y_m, z_m]$, while Pnma-(4a) sites (0, 0, 0) are split into P2₁/c-(2a) (0, 0, 0) and (2b) (0, 1/2, 1/2)0) sites.

LiTiO(PO ₄),	Li _{0.60} Ni _{0.20} TiO(PO ₄),			
Li _{0.80} Ni _{0.10} TiO(PO ₄)	Li _{0.50} Ni _{0.25} TiO(PO ₄)			
Pnma	$P2_1/c$			
<i>x</i> ₀	$z_m \approx y_0$			
У0	$x_m \approx z_0$			
z_0	$y_m \approx x_0$			

IV. CONCLUSION

 $Li_{(1-2x)}Ni_xTiO(PO_4)$ oxyphosphates have been prepared and characterized by X-ray diffraction. This study shows the existence of a solid solution in the domain $0 \le x$

Figure 2. Cell parameter variations as a function of x for $\text{Li}_{(1-2x)}\text{Ni}_x\text{TiO}(\text{PO}_4)$ ($0 \le x \le 0.25$), where progressive substitution of lithium by nickel provokes a decrease of $a_o(c_m)$ and an increase of $b_o(a_m)$ and $c_o(b_m)$.

 ≤ 0.25 , with the orthorhombic symmetry for $0 \leq x \leq 0.10$ and with monoclinic symmetry for $0.10 < x \leq 0.25$. Compositions with 0.25 < x < 0.50 give a mixture of $\text{Li}_{0.50}\text{Ni}_{0.25}\text{TiO}(\text{PO}_4)$ and $\text{Ni}_{0.50}\text{TiO}(\text{PO}_4)$.

Figure 3. Structure of $Li_{0.60}Ni_{0.20}TiO(PO_4)$, Li^+ , and Ni^{2+} are distributed randomly. The substitution of Li by Ni is taking place in the sheet parallel to (100) for the orthorhombic phases and parallel to (001) for the monoclinic phases.

ACKNOWLEDGMENT

Bouchaib Manoun would like to thank the ICMCB Institute, France, for its support.

- Boultif, A., and Louër, D. (1991). "Indexing of powder diffraction patterns for low symmetry lattices by the successive dichotomy method," J. Appl. Crystallogr. 24, 987–993.
- Gravereau, P., Chaminade, J. P., Manoun, B., Krimi, S., and El Jazouli, A. (1999). "Ab initio and Rietveld refinement of the crystal structure of Ni_{0.50}TiO(PO₄)," Powder Diffr. 14, 10–15.
- Manoun, B., El Jazouli, A., Gravereau, P., Chaminade, J. P., and Bourre, F. (2002). "Determination and Rietveld refinement of the crystal structure of Li_{0.50}Ni_{0.25}TiO(PO₄) from powder X-ray and neutron diffraction," Powder Diffr. 17, 290–294.
- Manoun, B., El Jazouli, A., Gravereau, P., and Chaminade, J. P. (in progress, 2003). "Rietveld refinements of a new solid solution $Li_{(1-2x)}Ni_xTiO(PO_4)$ ($0 \le x \le 0.5$)."
- Nagornyi, P. G., Kapshuk, A. A., Stus', N. V., Slobodyanik, N. S., and Chernega, A. N. (1991). "Preparation and structure of the lithium titanium double phosphate LiTiOPO₄," Russ. J. Inorg. Chem. 36, 1551– 1552.
- Robertson, A., Fletcher, J. G., Skakle, J. M. S., and West, A. R. (**1994**). "Synthesis of LiTiPO₅ and LiTiAsO₅ with the α -Fe₂PO₅ structure," J. Solid State Chem. **109**, 53–59.
- Rodriguez-Carvajal, J. (1990). "FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis," in *Collected Abstracts of Powder Diffraction Meeting*, Toulouse, France, p. 127.
- Shannon, R. D. (1976). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751–767.