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Abstract

In a heap model, solid blocks, or pieces, pile up according to the Tetris game mech-
anism. An optimal schedule is an infinite sequence of pieces minimizing the asymp-
totic growth rate of the heap. In a heap model with two pieces, we prove that there
always exists an optimal schedule which is balanced, either periodic or Sturmian.
We also consider the model where the successive pieces are chosen at random, in-
dependently and with some given probabilities. We study the expected growth rate
of the heap. For a model with two pieces, the rate is either computed explicitly or
given as an infinite series. We show an application for a system of two processes
sharing a resource, and we prove that a greedy schedule is not always optimal.

Key words: Optimal scheduling, timed Petri net, heap of pieces, Tetris game,
(max,+) semiring, automaton with multiplicities, Sturmian word.

1 Introduction

Heap models have recently been studied as a pertinent model of discrete event
systems, see Gaubert & Mairesse [18,19] and Brilman & Vincent [11,12]. They
provide a good compromise between modeling power and tractability. As far
as modeling is concerned, heap models are naturally associated with trace
monoids, see [30]. It was proved in [19] that the behavior of a timed one-
bounded Petri net can be represented using a heap model (an example appears
in Figure 1). We can also mention the use of heap models in the physics of

1 This work was partially supported by the European Community Framework IV
programme through the research network ALAPEDES (“The ALgebraic Approach
to Performance Evaluation of Discrete Event Systems”)
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surface growth, see [5]. The tractability follows essentially from the existence
of a representation of the dynamic of a heap model by a (max,+) automaton,

see [12,18].

A heap model is formed by a finite set of slots R and a finite set of pieces
A. A piece is a solid block occupying a subset of the slots and having a poly-
omino shape. Given a ground whose shape is determined by a vector of R*
and a word w = ay---a, € A*, we consider the heap obtained by piling up
the pieces ay, ..., a, in this order, starting from the ground, and according to
the Tetris game mechanism. That is, pieces are subject to vertical translations
and occupy the lowest possible position above the ground and previously piled
up pieces. Let y(w) be the height of the heap w. We define the optimal growth
rate as pmin = lim inf, min,ean y(w)/n. An optimal schedule is an infinite word
u € A¥ such that lim, y(u[n])/n = pmin, where u[n] is the prefix of length n of
u. An optimal schedule exists under minimal conditions (Proposition 4). We
can define similarly the quantity pmax and the notion of worst schedule. The
problem of finding a worst schedule is completely solved, see [16,18]. Finding
an optimal schedule is more difficult, the reason being the non-compatibility
of the minimization with the (max,+) dynamic of the model. In [20], it is
proved that if the heights of the pieces are rational, then there exists a peri-
odic optimal schedule. If we remove the rationality assumption, the problem
becomes more complicated. Here we prove, and this is the main result of the
paper, that in a heap model with two pieces, there always exists an optimal
schedule which is balanced, either periodic or Sturmian. We characterize the
cases where the optimal is periodic and the ones where it is Sturmian. The
proof is constructive, providing an explicit optimal schedule.

As will be detailed below, a heap model can be represented using a specific
type of (max,~+) automaton, called a heap automaton. A natural question is the
following: Given a general (max,+) automaton over a two letter alphabet, does
there always exist an optimal schedule which is balanced (for an automaton
defined by the triple (o, p, ), set y(w) = au(w)s and define an optimal
schedule as above)? The answer to this question is no, which emphasizes the
specificity of heap automata among (max,+) automata. A counter-example is
provided in Figure 4.

We also consider random words obtained by choosing successive pieces inde-
pendently, with some given distribution. We denote by pg the average growth
rate of the heap. Computing pg is in general even more difficult than com-
puting pmin- In [20], pg is explicitly computed if the heights of the pieces are
rational and if no two pieces occupy disjoint sets of slots. Here, for models with
two pieces, we obtain an explicit formula for pg in all cases but one where pgp
is given as an infinite series.

To further motivate this work, we present a manufacturing model studied by



Gaujal & al [22,21]. There are two types of tasks to be performed on the same
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ay + az
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—

Fig. 1. One-bounded Petri net and the associated heap model.

machine used in mutual exclusion. Each task is cyclic and a cycle is constituted
by two successive activities: one that requires the machine (durations: oy and
(1 respectively) and one that does not (durations: ay and By respectively).
Think for instance of the two activities as being the processing and the packing.
This jobshop can be represented by the timed one-bounded Petri net of Figure
1. The durations ay,ay, 31 and [y are the holding times of the places. As
detailed in [19], an equivalent description is possible using the heap model
represented in Figure 1. The height of a heap a1 - - - a,,, a; € {a,b}, corresponds
to the total execution time of the sequence of tasks ay,...,a, executed in this
order. An infinite schedule is optimal if it minimizes the average height of the
heap, or equivalently if it maximizes the throughput of the Petri net. We do
not make any restriction on the schedules we consider. In particular we do not
impose a frequency for tasks a and b. As a justification, imagine for instance
that the two tasks correspond to two different ways of processing the same
object. We prove in §7.4 that if oy = 81 = 0,2 > 0,0, > 0,02/0; € Q,
then there is a Sturmian optimal schedule; otherwise there exists a balanced
periodic optimal schedule. We also show in §7.5 that the greedy schedule is
not always optimal.

Assume now that in the model of Figure 1, the successive tasks to be executed
are chosen at random, independently, and with some probabilities p(a) and
p(b). If ay or By is strictly positive, then we obtain an exact formula for pg.
It enables in particular to maximize the throughput over all possible choices
for p(a) and p(b), see §8 for an example.

Let us compare the results of this paper with other cases where optimality
is attained via balance. In Hajek [24], there is a flow of arriving customers
to be dispatched between two queues and the problem is to find the optimal
behavior under a ratio constraint for the routings. The author introduces the
notion of multimodularity, a discrete version of convexity, and proves that a
multimodular objective function is minimized by balanced schedules. Variants
and extensions to other open queueing or Petri net models have been carried
out in [1,2], still using multimodularity. In a heap model however, one can



prove that the heights are not multimodular. In [21,22], the authors consider
the model of Figure 1. They study the optimal behavior and the optimal
behavior under a frequency constraint for the letters. Balanced schedules are
shown to be optimal and the proofs are based on various properties of these
sequences. We consider a more general model. For the unconstrained problem,
we prove in Theorem 14 that balanced schedules are again optimal. On the
other hand, under frequency constraints, we show in §7.6 that optimality is not
attained via balanced words anymore. Our methods of proof are completely
different from the ones mentioned above.

The paper is organized as follows. In §2 and §3, we define precisely the model
and the problems considered. We prove the existence of optimal schedules un-
der some mild conditions in §3.1. In §4, we recall some properties of balanced
words. We introduce in §5 the notions of completion of contours and comple-
tion of pieces in a heap model. We prove in §6 that it is always possible to
study a heap model with two pieces by considering an associated model with
at most 3 slots. We provide an enumeration of all the possible simplified mod-
els: there are 4 cases. In §7.1-7.4, we prove the result on optimal schedules,
recalled above, by considering the four cases one by one. Greedy scheduling
is discussed in §7.5, and ratio constraints in §7.6. In §8, we study the average
growth rate.

2 Heap Model

Consider a finite set R of slots and a finite set A of pieces. A piece a € Ais a
rigid (possibly non-connected) “block” occupying a subset R(a) of the slots.
It has a lower contour and an upper contour which are represented by two row
vectors [(a) and u(a) in (RU{—o00})” with the convention {(a), = u(a), = —c0
if r € R(a). They satisfy u(a) > I(a). We assume that each piece occupies at
least one slot, Va € A, R(a) # 0, and that each slot is occupied by at least
one piece, ¥r € R,Ja € A,r € R(a). The shape of the ground is given by a
vector [ € R®. The 6-tuple H = (A, R, R,u,l, I) constitutes a heap model.

The mechanism of the building of heaps was described in the introduction. It
is best understood visually and on an example.

Example 1 We consider the following heap model.
o A={a,b}, R=A{1,2,3}, I =(0,0,0);
e R(a) ={1,2}, R(b) = {2,3};
(a) = (o1 + ag, a1, —00), I(a) =(0,0,—00),
(b) = (_00751751 + ﬁ?)v l(b) = (_007070);

o U
o U

where ay, oy, 31 and By are strictly positive reals. We have represented, in



Fig. 2, the heap associated with the word w = ababa.

'

Fig. 2. Heap associated with the word ababa.

We recall some standard definitions and notations. We denote by 1{A} the
function which takes value 1 if A is true and 0 if A is false. We denote by R
the set of non-negative reals, and by N* and R* the sets N\{0} and R\{0}.
Let A be a finite set (alphabet). We denote by A* the free monoid on A, that
is, the set of (finite) words equipped with concatenation. The empty word is
denoted by e. The length of a word w is denoted by |w| and we write |w|, for
the number of occurrences of the letter @ in w. We denote by alph(w) the set
of distinct letters appearing in w. An infinite word (or sequence) is a mapping
u : N* — A. The set of infinite words is denoted by A“. An infinite word
u = uquy - -+ is pertodic if there exists [ € N* such that w,y; = u;, Ve € N*. In
this case, we write u = (uy - - - u;)¥. We denote by u[n] = ujus - - - u,, the prefix
of length n of w.

When A is the set of pieces of a heap model, (infinite) words will also be
called (infinite) schedules. We also interpret a word w € A* as a heap, i.e. as
a sequence of pieces piled up in the order given by the word.

The upper contour of the heap w is a row vector xx(w) in R®, where z#/(w),
is the height of the heap on slot r. By convention, x(e) = I, the shape of the
ground. The height of the heap w is

yn(w) = maxay(w), . (1)

We recall that a set K equipped with two operations & and @ is a semiring
if @ is associative and commutative, ® is associative and distributive with
respect to @, there is a zero element 0 (¢ 50 =0a,a @0 =0® a = 0) and a
unit element L (¢« @ 1 =1® a = a).



The set Riypax = (RU{—00}, max, +) is a semiring, called the (max,+) semir-
ing. From now on, we use the semiring notations: & = max,® = +,0 = —o0
and 1 = 0. The semiring R, is obtained from R .« by replacing max by min
and —oo by +oo. The subsemiring B = (0,1, 6, ®) is the Boolean semiring.

We use the matrix and vector operations induced by the semiring structure.
For matrices A, B of appropriate sizes, (A& B);; = Ai; & Bij = max(Ai;, Bij),
(A® B)ij = @, Air @ B; = maxy(Aix + Bg;), and for a scalar a, (a @ A);; =
a® A;; = a+ Aj;. We usually omit the @ sign, writing for instance AB instead
of A® B. On the other hand, the operations denoted by +, —, x and / always
have to be interpreted in the conventional algebra. We define the ‘pseudo-
norm’ |Alg = max;; A;;. We denote by 0, resp. 1, the vector or matrix whose
elements are all equal to O, resp. 1 (with the dimension depending on the
context).

For matrices A and B of appropriate sizes, the proof of the following inequality
is immediate:

|ABlg < |Alg @ |Blg . (2)

For matrices U,V and A of appropriate sizes and such that all the entries
of U,V,UA and V A are different from 0, the following non-expansiveness
inequality holds:

UA=VAlg < |U—=Vl]g. (3)

Given an alphabet A, a (max,+) automaton of dimension k is a triple
(a,it,3), where a € RX* and 3 € REXL are the initial and final vec-

max’ max’
tors and where p : A* — RE** is a monoid morphism. The morphism pu
is entirely defined by the matrices p(a),a € A, and for w = wy---w,,
we have p(w) = p(wy)---p(w,) (product of matrices in Rpyax). The map
y: A" = Ry, y(w) = ap(w)f is said to be recognized by the (max,+) au-
tomaton. A (max,+) automaton is a specialization to Ry of the classical
notion of an automaton with multiplicities, see [8,15].

An automaton (a, p,3) of dimension k over the alphabet A is represented
graphically by a labelled digraph. The graph has k nodes; if u(a);; > 0 then
there is an arc between nodes i and j with labels a and p(a),j; if a; > 0 then
there is an ingoing arrow at node ¢ with label a; and if 3; > 0 then there is
an outgoing arrow at node j with label 3;. Examples appear in Figures 9,10
or 11.

For each piece a of a heap model H, we define the matrix M(a) € RR

max

by



1 if s=r,r¢ R(a),
M(a)s = qula), —l(a)s ifr € R(a),s € R(a), (4)
0 otherwise.

Example 2 In the model considered in Figure 1 and Frample 1, the matrices
associated with the pieces are

arag ap O 10 0
M(a) = | aaya; 01, M(b) =10 61 6162
0 01 0 51 15

The entries have to be interpreted in R ax.
Variants of Theorem 3 are proved in [12,18,19].

Theorem 3 Let H = (AR, R,u,l, 1) be a heap model. For a word w =
wy -+ Wy, the upper contour and the height of the heap satisfy (products in

Rimax)
(5)

More formally, yy is recognized by the (max,+) automaton (I, M,1).

From now on, we identify the heap model and the associated (max,+) au-
tomaton, writing either H = (A, R, R,u,l,I) or H = (I, M, 1). We also call

H a heap automaton.

3 Asymptotic Behavior

Consider a (max,+) automaton U = (o, i, 3) and its recognized map y. We
define the optimal growth rate (in RU {—o00}) as:

1
Pmin(U) =liminf — min y(w). (6)

n—+o00 1 weEAT

An optimal schedule is a word w € A¥ such that lim, y(w[n])/n = pmn(U).

We define the worst growth rate as pmax(U) = limsup,,_, . max,ecan y(w)/n.
A worst schedule is defined accordingly.

Consider a probability law {p(a),a € A} (p(a) € [0,1], Ypeapla) = 1).

Random words are built by choosing the successive letters independently and



according to this law. Let p(w),|w| = n, be the probability for a random
word of length n to be w. We have p(w) = p(w;) x p(wz) X -+ x pw,) if
w = wywy - - - w,. When 1t exists, we define the average growth rate as:

ppUl) = Tim ~ Y plw) x y(w) (7)

n—+o0o 1 wEAT

The optimal problem consists in evaluating pmin(U) and finding an optimal
schedule. The worst case problem consists in evaluating pmax(A) and finding
a worst schedule. The average case problem consists in evaluating pg(U).

When we consider a heap automaton H, the limits pumin(H), pmax(H) and
pE(H) correspond respectively to the minimal, maximal and average asymp-
totic growth rate of a heap.

3.1 Preliminary results

We consider the optimal problem first. It follows from (2) that
Ny =g [(0)|e < minp=, [(w)|e + minp=m [p(w)|e. As a consequence
of the subadditive theorem, we have

1 1
lim — min [u(w)]g = inf — min [p(w)]s = p. (8)

n |lwl=n n |lwl=

We also have for all w € A*,
n0)ls @ mina; ©minf, < op(w)s < [p(w]e © lale ©[3la . (9)

When o; > 0, 3; > 0,Vi, we deduce that pmin(U) = p and that the liminf is a
limit in (6).

Proposition 4 Let U = (a, p,3) be a (max,+) automaton such that Vi, o; >
0, B; > 0. Then there exists an optimal schedule.

PROOF. [t follows from (9) that the automata (o, g, 3) and (1,x,1) have
the same optimal schedules (if any). We assume that pni, # 0. The case

pmin = O is treated by slightly adapting the argument below. We deduce from
(8) that for all k& € N*| there exists w(k) € A*\ {e} such that

1
K
By the subadditive inequality (2), we then have, for all [ € N*,

()] X pmin < |p(w0(k))]e < [w(k)] X (pmin +

1

[0(k)'] % panin < |(w(k) )& < Jo(k)] < (pmin + ) - (10)



Now define @w(k) = w(k)"* D and consider the infinite word @ =
w(1)w(2)---w(k)--- obtained by concatenation of the words w(k). We con-
sider the prefix of length n of @ for an arbitrary n € N*. There exists k,, € N*
such that

win] = w(1) - ok, )wk, + 1),

where 0 <[ < (k, + 1)|w(k, + 2)| and where u is a prefix of w(k, 4+ 1). Using
(2) and (10), we get

B 1 ) P P e F PO
o S Jlla b ) s

Obviously, k, is an increasing function of n and lim,,_, 4., k, = +oo. Hence,
we obtain that:

kn | %02 kn 11
Ve > 0,3N € N*,¥n > N, Z'“’@'Hw( + 1]

< e. 12
= n(k, + 1) = ¢ (12)

Let us take care of the last term on the right-hand side of (11). Note that
lu| < |w(k, +1)| and n = |@[r]| > |0(k,)| = ku|w(k, + 1)]. It implies that

|lu(u)|® < |u|@a€¢4 |lu(a)|® < @aEA |lu(a)|® ‘ (13)
n n k.,

Starting from (11) and using (12) and (13), we obtain that

\V/€>O,EIN€N*7\V/TLZN7 Pmin S Mgpmin+25-
n

It completes the proof.

We now consider the worst case problem. As above, if Vi, «; > 0, 3; > 0, then
the lim sup is a limit in the definition of ppax. As opposed to the optimal case,
the worst case problem is completely solved. We recall the main result; it is
taken from [16] and it follows from the (max,+) spectral theorem (the most
famous and often rediscovered result in the (max,+) semiring, see [14,4,27]
and the references therein).

Proposition 5 Let U = (a, p,3) be a trim (see §3.2) (max,+) automaton of
dimension k. Then, pmax(U) is equal to pmax(M), the maximal eigenvalue of



the matric M = @,c 4 p(a). That is

= L M i1i2 iy
potl) = D D (M Mas)' = g ma z
1Sl§k (AREETRIZ}
Let a;; be such that p(a;;)i; = maxgeap(a);; and let (iy,... 1) be such that

(Mg + -+ M)/l = pmax(M) (we say that (i1,...,1;) is @ maximal mean
weight circuit of M ). Then (a;,i, -+ - a5, ) is a worst schedule.

In the case of a heap automaton, there exists a worst schedule of the form u*,
where the period w is such that Va € A, |u|, < 1. For a heap automaton with
two pieces (a and b), a worst schedule can always be found among «*, b* and
(ab)*. An example where the worst schedule is indeed (ab)* appears in Figure

18.

3.2  Deterministic automaton

A (max,+) automaton (o, i, 3) is trim if for each state i, there exist words u
and v such that apu(u); > 0 and p(v)B; > 0. It is deterministic if there exists
exactly one ¢ such that a; > 0; and if for all letter a and for all i, there exists
at most one j such that p(a);; > 0. It is complete if for all letter a and for all
i, there exists at least one j such that u(a);; > 0.

A heap automaton is deterministic if and only if there is a single slot. On the
other hand, a heap automaton is obviously always trim and complete. In the
course of the paper, we consider other types of (max,+) automata: Cayley and
contour-completed automata. These automata will be deterministic, trim and
complete.

Let U = (a,p, 3) be a deterministic and trim (max,+) automaton over the
alphabet A. Let U’ be the (min,+) automaton defined by the same triple (with
0 = 400). Let yyy and yr be the maps recognized by U and U’ respectively.
Since U is deterministic, it follows that y(w) = yu(w) if yu(w) # —oo and
Yur(w) = 400 if yy(w) = —oo. Defining the (min,+) matrix N = mingea p(a)
and applying the (min,+) version of Proposition 5 (replace max by min ev-
erywhere in the statement of the Proposition), we get that

pmin(U) = pmin(U') = pmin(N) , (14)

the minimal eigenvalue of N. Also if (i1,...,%;) is a minimal mean weight
circuit, then (a;q, - -+ a;;,)* is an optimal schedule.

Proposition 6 Let U = (a,pu, ) be a deterministic, complete and trim
(max,+) automaton over the alphabet A. Assume that M = @,cqp(a) is

10



an irreducible matriz (i.e. ¥i,j, EIk,M;; > 0). We define the (Ry, 4+, x) ma-
triv P by Pj = Y,capla) x H{u(a); > 0}. Let m be the unique vee-
tor satisfying m x P = m and Y ;n(e) = 1. The expected growth rate is
peU) = ¥, 7(i) (Zmp(a)/,c(a)ijl{u(a)ij > (D}) (the products are the usual

ones).

Proposition 6 is proved in [16]. It follows from standard results in Markov
chain theory (P is the transition matrix and 7 is the stationary distribution).
A consequence of Proposition 6 is that pg(U) can be written formally as a
rational fraction of the probabilities of the letters. That is pg(U) = R/S and
R and S are real polynomials over the commuting indeterminates p(a),a € A.
More generally, it is possible, under the assumptions of Prop. 6, to obtain the
formal power series s = 3 cn(Pean p(w) X y(w))z™ as a rational fraction
(over the indeterminates x, p(a),a € A), see for instance [8].

Finitely distant automata. Two (max,+) automata U = (o, u, 5) and V =
(v,v,0) defined over the same alphabet A are said to be finitely distant if

au(w)B = 0 = q0(w)s = 0; )

IM <00, SUpy ayuyspo lap(w) G — yr(w)d| < M.

Two heap automata (I, M, 1) and (I', M, 1) are finitely distant. Indeed, ac-
cording to (3), we have

IM(w)l — I'M(w)l < [IM(w) — I'M(w)|e < T —T'|g .

The asymptotic problems are equivalent for two finitely distant automata i
and V. That is pp(d) = pe(V), pmn(d) = pmin(V) and optimal schedules

coincide.

Since most heap automata are not deterministic, we can not apply the results
in (14) and Proposition 6 directly to them. We often use the following pro-
cedure: Given a (max,+) automaton, find a deterministic, trim, and finitely
distant automaton, then apply the above results to the new automaton.

4 Balanced Words

Balanced and Sturmian words appear under various names and in various areas
like number theory and continued fractions [28], physics and quasi-crystals [23]
or discrete event systems [24,21]. For reference papers on the subject, see [7.,9].

A finite word u is a factor of a (finite or infinite) word w = wyws--- if u

11



is a finite subsequence of consecutive letters in w, 1.e. u = ww;pq - Witp_1
for some ¢ and n. A (finite or infinite) word w is balanced if | |u|, — |v].| <1
for all letter a and for all factors w,v of w such that |u| = |v|. The balanced
words are the ones in which the letters are the most regularly distributed. The
shortest non-balanced word is aabb.

An infinite word u is ultimately periodic if there exist n € N* and [ € N* such
that w;4; = w; for all « > n. A Sturmian word is an infinite word over a two
letters alphabet which is balanced and not ultimately periodic.

We now define jump words. Let us consider a;,a; € R} and v € Ry, vy < as.
We label the points {nay,n € N*} by a, and the points {nay+~,n € N*} by b.
Let us consider the set {nay,n € N*} U {nas+~v,n € N*} in its natural order
and the corresponding sequence of labels. Each time there is a double point,
we choose to read a before b. We obtain the jump word with characteristics
(a1, a2, 7y). Jump words are balanced. If oy /ay is rational then w is periodic;
if oy /g is irrational then w is Sturmian.

Fig. 3. Representation of the jump word (a1, az, 7).

It is also possible to define words as above except that we read b before a
whenever there is a double point. These words are still balanced and we still
call them jump words (below, when necessary, we will precise what is the
convention used for double points).

A more common but similar description of jump words uses cutting sequences.
There exists an explicit arithmetic formula to compute the n-th letter in a
given jump word (using the so-called mechanical characterization, see [9]).

Optimal schedules and balanced words. We prove in Theorem 14 that in
a heap model with two pieces, there always exist an optimal schedule which
is balanced. If we still consider a two letter alphabet but a general (max,+)
automaton, then this is not true anymore. The counter-example below was
suggested to us by Thierry Bousch (personal communication, 1999). Consider
the deterministic (max,+) automaton (d,u,1) represented in Figure 4. It is
easy to check that pp;, = 1 and that an optimal schedule is the non-balanced
word (aabb)”. No balanced word is optimal in this example.

12



b2 b2

e () all 1

b1 all
1 1
- <—<( —
<> b|ﬂ
al2 al2

Fig. 4. (Max,+) automaton with no balanced optimal schedules.

5 Completion of Profiles and Pieces

5.1 Cayley automaton

Given A in R¥X! "we define 7(A) in R¥XL by m(A);; = A;; — |Alg if [Ala # 0

and m(A) = A = 0 otherwise. We have |1(A)|s = 1 (except if A =0). We say

that m(A) is the normalized matrix associated with A.

Let us consider a (max,+) automaton & = (o, i, 3) over the alphabet A. We
define

7(tl) = {w(ap(w)),w € A7) (16)

In the case of a heap automaton H, m(H) is the set of normalized upper
contours.

Assume that w(U) is finite. Then we define the Cayley automaton of U as
follows. It is the deterministic (max,+) automaton (4, r,~) of dimension 7(U)
over the alphabet A, where for u,v € 7(U),a € A,

(@) = \

5. — {|oz|@ if u=m(a)

0 otherwise

{qu(a)lea if w(up(a)) = v

0 otherwise .

and v, = uf. It follows from this definition that for w € A*, v(w),, =
lup(w)|e if m(up(w)) = v and v(w)y,, = 0 otherwise. Hence we have

S (W)Y = (o) (W) r(a) m(m(a)a(w)) V(@) ()
= laly |m(e)p(w)|e m(r(a)u(w))s
= |ap(w)|s T(ap(w))d = ap(w)s . (17)

We just proved that the automaton ¢/ and its Cayley automaton recognize the
same map (see also [16]).
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The dimension of the Cayley automaton is in general much larger than the
one of U. However, it is deterministic, complete, and assuming for instance
that Vi, 3; > 0, it is also trim. In particular when H is a heap automaton and
m(H) is finite, then the Cayley automaton is deterministic, complete and trim.
The Cayley automaton is used in §7.2.

The procedure described above is similar to the classical determinization al-
gorithm for Boolean automata. The difference is of course that (/) is always
finite in the Boolean case.

5.2 Contour-completed automaton

Given a heap model H, it is easy to see that 7(H) is infinite as soon as there
exist two pieces a and b whose slots are not the same. This motivated the
introduction in [20] of the refined notion of normalized completed contours. In
some cases, the set of such contours will be finite whereas 7(7#) is infinite. Here,
we recall only the results that will be needed. For details, and in particular
for an algebraic definition of completion in terms of residuation, see [20].

Let us consider a heap model H = (A, R, R,u,l,I), also described as the
heap automaton H = (I, M, 1). We associate with the piece a € A, the upper
contour piece @ and the lower contour piece a defined as follows

[(@) = u(a),u(@) = u(a), and l(a) = l(a),u(a) = (a) .

We still denote by M(@), M(a), the matrices defined as in (4) and associated
with the new pieces @, a.

An example of upper and lower contour pieces is provided in Figure 5. For
clarity, pieces of height 0 are represented by a thick line.

piece @

piece a

piece a

fr——

Fig. 5. A piece and the associated upper and lower contour pieces.

Given a vector x € R%,_, interpreted as the upper contour of a heap, we define

max’

14



the completed contour ¢(x) € RE__as follows

max

é(x); = min (|:1;|@, min :L'M(Q)i) . (18)

alt€R(a)

The vector ¢(x) can be loosely described as the maximal upper contour such
that the height of a heap piled up on x is the same as the height of a heap
piled up on ¢(x). More precisely, we have

Vwe A", ¢(e)M(w)l = zM(w)l . (19)

For the sake of completeness, let us prove (19). Given a word w = wy - - - w,,
we define

R(w) = R(wy) U--- U R(w,) . (20)

We are going to prove the following results which put together imply (19)

Vi € R(w), oz )M(w); = aM(w); (21)
Vi g R(w), aM(w); < ¢(x)M(w); < JaM(w)|g . (22)

It follows from the definition that (21) and (22) hold for the empty word e
(setting R(e) = 0). Assume now that (21) and (22) hold for all words of length
less or equal than n. We consider the word wa where w is of length n and «
is a letter.

If i € R(a) and ¢ € R(w), then

If i € R(a) and ¢ ¢ R(w), then

eM(w)M(a); = z; < d(z); = ¢(a)M(w)M(a);

2o < [eM(w)M(a)lg -

IA A

If i € R(a), then

15



= D )M M(a)is D dla)M(w);M(a);

JER(a)NR(w) JER(a),j¢R(w)

= @ e M(w);M(a);i @ @ o(x);M(a)j

JER(a)NR(w) J€R(a),jgR(w)
< D eMw)M(a); @ ¢(x) M(a);
JER(a)NR(w)
= @ x/\/l(w)j./\/l(a)ﬁ D J?M(G)Z = l’M(U))M(a)Z .

JER(a)NR(w)

Since obviously ¢(x)M(w)M(a); > aM(w)M(a);, we get that
oz )Mw)M(a); = aM(w)M(a);. This concludes the proof of (21)
and (22), hence of (19).

Given a contour € R we define the normalized completed contour ¢(z) =

max’

m(¢(x)). Let us define
p(H) = {p(IM(w)),w e A} . (23)

Let us assume that ¢(H) is finite. Then we define the contour-completed au-
tomaton of H. It is a deterministic, complete and trim (max,+) automaton
over the alphabet A, of dimension ¢(H). It is defined by (4,r,1) where for
z,y € o(H),a € A,

0 otherwise 0 otherwise

51,:{'45“)'@ if o= (1) V(a)w:{w(w(am@ if (e M(a)) =

The automaton H and its contour-completed automaton recognize the same
map, 1.e.

Yw e A", IM(w)l = dv(w)l.

The proof is analogous to the one of (17). The contour-completed automaton
is used several times in §7, see for instance Example 16.

5.3  Piece-completed heap automaton

After having defined the completion of contours, we introduce in this section
the completion of pieces.

We define the upper-completed pieces a®,a € A, and the lower-completed pieces

ao,a € A, as follows: R(a°) = R(a,) = R(a) and
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[(a®) =1l(a), Yi€ R(a), u(a®); = min max (u(a); +(x); —l(x);) (24)

sli€R(x) jER(w)
u(ao) = u(a), Yié€ R(a), l(a); = gglgl(el%)((x)jg]l%ia)(l(a)j +u(x); —u(x);). (25)

We check easily that u(a®) > {(a®) and u(a,) > l(a,), hence we have indeed
defined pieces. Let us comment on this definition. Let & be a piece such that
R(z) N R(a) # 0. Let a’' be the piece obtained by piling up « and the part
of the lower contour piece z corresponding to the slots R(x) N R(a). The
piece @’ is such that the heaps a’x and ax are identical. Hence, the piece a°
can be interpreted as the piece with lower contour [(a) and with the largest
possible upper contour such that the asymptotic behavior of a heap is not
modified when replacing the occurrences of a by a°. There is an analogous
interpretation for the pieces a,. An illustration of upper and lower completion
is given in Example 8 and Figure 6.

With the heap automaton H = (I, M, 1), we associate the heap automaton
H® = (I, M° 1) defined by M°(a) = M(a®), and the heap automaton H, =
(I, M., 1) defined by M,(a) = M(a,).

Lemma 7 A heap automaton 'H is finitely distant from both the heap automa-
ton H° and the heap automaton H,.

PROOF. Let us set

K° = @ @ M(a®)ij — M(a)y, Ko = @ @ M(ao)ij — M(a)ij .

a€Ai,jER(a) a€Ai,jER(a)
We want to prove the following inequalities, for all w € A*,
1< IM°(w)l — IM(w)l< K° (26)
1< IMo(w)l — IM(w)1< K, . (27)
Since we have Vi, j, M°(a);; > M(a);;, Mo(a);j > M(a);;, the left-hand side
inequalities in (26) and (27) follow immediately. Let us prove the right-hand

side inequality in (26), the proof of the one in (27) being similar.

First of all, for two words @ and y over the alphabet A, we have (where R(x)
and R(y) are defined as in (20))

R(z) N R(y) =0 = M(zx)M(y) = M(y)M(z) = M(z) D M(y) . (28)

To prove (28), it is enough to remark that it follows from the definition in (4)
that: Vo € A*, Vi & R(x), M(x)y; =1, Vi,j ¢ R(x),i # j, M(x);; = 0.
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We need another intermediary result: for any two pieces a,b € A, we have
V1 € R(a),\V/] € R(b), M(aobo)ij = M(abo)ij . (29)

If R(a)N R(b) =0, then M(a°0°);; = M(ab®);; = 0. Otherwise we have

M(a®b%);; = (6)9 ()M(a°)z’k/\4(b°)kj
= D ()u(ao)k—l(ao)i—l—u(bo)j—l(bo)k

u(a®)y —l{a); +u(b); — L(b)

kER
kER

kER IER(b)
= @ u(a)r = la) +u(d®); = 1(6°);

- @ M Z[M ) = M(abo)ij .

)i+ 1(b)k — (b)) — l(a)i + u(b®); — 1(D):

(a)NR
D
(a)NR(b)
D
(a)NR(b)

Furthermore, it is immediate that M (a°b°);; > M(ab®);;. This concludes the
proof of (29).

Obviously, the right inequality in (26) holds for words of length 1. Let us
assume that it holds for all words of length n. Let w = wy - - - w,, 11 be a word of
length n+ 1. Assume there exists i € {1,---n} such that R(w;) N R(w;41) =0,
then using (28), we get

M(wy - wpgr) = M(wy - wim Wiy - Wigr) & M(wr - wwigg - Woy )
with an analogous equality for M°. Setting v = wy - - - w;_jw;y1 - - - W,y and

V= Wy WiWigg - Wy, We deduce that we have

IM°(w0)l — IM(w)L=ITM°(u)L & IM°(v)l — IM(u)L & IM(v)L
(

(u)l — IM(u)l) & (IM°(v)L — IM(v)1)

I/\ IA ||

where the last inequality is obtained by applying the recurrence assumption to
the words u and v which are of length n. Assume now that R(w;)NR(w;41) # 0
for all ¢ € {1,...,n}. Let j be such that IM°(w)l = IM°(w);. Assume that
J & R(wp41), then IM°(w)l = IM°(w; -+ w,)1 and

IM° ()l — IM(w)Ll=TM°(wy - w,)1 — IM(w)L
< IM(wy -+ wy)L — IM(wy - w,)L < K°.
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The case j € R(w,41) remains to be treated. We obtain, using recursively

(29), that
IMo(w); = IM(wy - wy y); = IM(w; - wpwg ) -
We conclude that
IMP(w)l — IM(w)L < IM(wy - - wpw)y )y — IM(wy - wpwny); < K°

by definition of K°. This completes the proof.

We define the bi-completed pieces al,a € A, as follows: R(a3) = R(a) and

la)) =1l(as), Vi€ R(a), u(ay); = min  max (u(ao); + {(x0); — l(20);) .
(02) = I(ac), ¥ € Rla), u(ad) = min s (u(aa); + lac)s ~ 1(22),)
Here the pieces a2,a € A, are obtained by lower-completion first and then
upper-completion. We can also define pieces, say a,a € A, by performing
upper-completion first and then lower-completion, that is: R(a3) = R(a) and

(@) = u(a®), Vi€ R() 1) = max  min (a”), +u(a) = u(a?),).

In general, the pieces ag and ag are different, in other words the operations of
upper and lower-completion do not commute. An example of bi-completion is
provided in Figure 6. On this example, the pieces a2 and ag (resp. b3 and ISg)
are different.

Example 8 Consider the heap automaton with pieces defined by
() = (4,1), u(a) = (1,3), and 1(b) = (1,1), u(b) = (2,3).

It is simpler to obtain the completed pieces graphically, using the intuition
described above. We have represented in Figure 6 the upper, lower and bi-

completed pieces: {a°,b°}, {ao, b}, {a2, b2} and {a°, b2}

The heap automaton HS = (I, M2, 1), over the alphabet A, defined by
M(a) = M(a?), is called the piece-completed heap automaton associated

o

with H = (1, M, 1).

Lemma 9 A heap automaton H and the associated piece-completed automa-
ton Hg are finitely distant.

PROOF. By definition, we have HS = (H,)°. By applying Lemma 7 twice,

we get the result.
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Fig. 6. Two pieces and the associated upper-completed, lower-completed and
bi-completed pieces.

Given a set of pieces A, let us denote by A°, A,, and A2 the upper-completed,
lower-completed and bi-completed sets of pieces. Given two pieces a and b, we
say that r is a contact slot for ab if M(ab);; = M(a);; M(b),;,¥i € R(a),j €
R(b) (visually, a is in contact with b at slot r in the heap ab).

Lemma 10 We have (A°)° = A°, (As)e = As and (A2)S = AZ. In words,
a set of lower-completed (resp. upper-completed or bi-completed) pieces is left
unchanged by performing another lower (resp upper or bi) completion.

PROOF. The arguments below are based on the following immediate remark:
Given a and b in the same set of pieces, if ¢ is a contact slot of ab then

[(bo); = I(b); and u(a®); = u(a);.
By definition we have, Ya € A,Vi € R(a),3b € A,i € R(b),35(z) € R(b),
lao)s = Ua)giy + u(b)i — u(b)q -

It implies that j(¢) is a contact slot for ba and that both ¢ and j(7) are contact
slots for ba,. Obviously, it implies that ¢ is a contact slot for b,a, and we
conclude that {((as)s)i = l(as);. This completes the proof of (A,), = A,. The
proof of (A°)° = A° is similar.

Since ¢ is a contact slot for bya,, we also obtain that w(b2); = u(b,);. Hence,
for all k, we have M(b3)r; = M (bs)ri. We also have that ¢ is a contact slot for
boal. Using this together with (29), we get that Vk € R(b),VI € R(a),

M(byag)u = M(boag ) = M(bo)riM(ag)a = M(b3)riM(ag)i -

It implies that [((al)o); = l(al);. We deduce that we have (a2), = af and we

can prove in a similar way that (a?)° = a3. We conclude that (A2)S = AS.
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Both the contour completion of §5.2 and the above piece completion are based
on the idea of local transformations which do not modify the asymptotic be-
havior of heaps. However, they are different: the completed contours are not
the upper contours of the heaps of completed pieces.

6 Minimal Realization

The goal of this section is to prove that given a heap automaton with two
pieces, there exists a finitely distant one of dimension at most 3, Theorem 12.

A set of bi-complete pieces is a set A such that A2 = A. From now on, we
always implicitly consider bi-complete pieces. Due to Lemma 9 and 10, we can
make this assumption without loss of generality.

Let H = (I, M, 1) be a heap automaton with set of slots R and let R be a
subset of R. The heap model obtained by restriction of H to R is denoted by
H and defined by Hlﬁ = (g, Mzyz,1) (visually, the new pieces are the
old ones restricted to R).

Lemma 11 Let ‘H be a heap automaton on the alphabet A and with set of
slots R. Let R be a subset of R. The automaton Mz ts finitely distant from
H if and only if R contains a contact slot for each word ab,a,b € A, such that
R(a) N R(b) # 0.

PROOF. Let H = (I, M,1). Assume that R contains at least one contact
slot for each ab such that R(a) N R(b) # 0. Let (a,b) be such a couple. We

have, by definition of a contact slot,
M(ab)jpyr = M(a)jzez M (b)jryr = Mpyr(abd). (30)

Let us consider a word w € A*. Using repeatedly the equality in (28), we
obtain that M(w) = @,ez(.) M(v), where v belongs to Z(w) if v is a subword
of w and if two consecutive letters of v, say v; and v;41, are such that R(v;) N
R(vit1) # 0. For each word v € Z(w), we obtain by using repeatedly (30)
that M(U)Uixﬁ = M|7ix7i(v)' We deduce that ./\/l(w)mxﬁ = M|7ix7i(w)' We

conclude easily that

1< sup {[./\/l(w)]l — [|7iM|7ix7i(w)]l}

wEA*
:535*{1M<w>1—fﬂ4<w>m1} < |ls® [@4|M(a)|@]2.
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Hence, H 3 is finitely distant from #H. We have shown that the condition is
sufficient. Let us prove that it is necessary. Assume that ab, R(a) N R(b) #£ 0,
has no contact slot in R. Let § be the minimal gap between a and b in the
heap ab over the slots R. Then we have |M(ab)|q — Mz (ab)le =6 > 0.
It implies that |[M((ab)")|s — | Mg,z ((ab)")|[e = n x 4, showing that H and
Hr are not finitely distant.

Theorem 12 Let H = (I, M, 1) be a heap automaton with two pieces. Over
the same alphabet, there exists a heap automaton H = (I, M, 1) of dimension
at most 3 and which is finitely distant from H.

PROOF. By choosing one contact slot for each one of the words aa, ab, ba and
bb, we obtain a set R of cardinality at most 4 and such that the automaton
Mz is finitely distant from H, see Lemma 11. We now prove that 3 slots
are always enough. We define the application ¢ : R — P(A?), where P(.A?%)
denotes the set of subsets of A The set ¢(r) contains ay if r is a contact
slot of xy. Assume that R(a) N R(b) # () and consider a slot r € R(a) N R(b).
Let us prove that ¢(r) must contain words starting with ¢ and b and words
finishing with ¢ and b. Assume for instance that ¢(r) does not contain any
word starting with a. Then, according to (24), there exists # € A such that

la®), = s ula) + ), — 1),
Since ax does not belong to ¢(r), the maximum above is attained for j # r and

we have u(a®), > u(a),. This contradicts the fact that A is a set of bi-complete
pieces.

To summarize, we must have
{aa,bb} C ¢(r) or {ab,ba} C c(r). (31)

If we have {aa,bb} C ¢(r) (vesp. {ab,ba} C ¢(r)), we complete the slot r with
a contact slot for the heap ab and one for the heap ba (resp. for aa and bb).
We have a set of at most 3 slots which satisfies the required properties.

Now assume that R(a) R(b) = 0. It is enough for R to contain a contact slot
of aa and one of bb, hence to be of cardinality 2, for H 3 to be finitely distant
from H. This completes the proof.

Performed on the original heap automaton, instead of the piece-completed
one, the above argument would not work. Consider the heap model H of
dimension 4 defined by I(a) = (1,1,1,0),u(a) = (3,2,3,0),{(b) = (0,1,1,1)
and u(b) = (0,3,2,3). There exists no proper subset R of R such that Hp is
finitely distant from H.
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Example 13 Let us illustrate Theorem 12. We consider the heap automaton
H = (L, M, 1) of dimension 4 and consisting of the two bi-complete pieces
defined by

l(a) =(1,3,2,0), u(a) = (4,4,5,0), and [(b) = (0,2,3,1), u(b) = (0,5,4,4).
We have c(1) = {aa}, c(2) = {ab,ba}, c(3) = {ab,ba} and c(4) = {bb}. Here,

we can choose either R = {1,2,4} or {1,3,4} and the heap automaton Hir
will be finitely distant from H. This can be ‘checked’ on Figure 7. In this

e s ey R N N

Fig. 7. A heap automaton of dimension 4 and a finitely distant one of dimension 3.

example, we do not always have IM(w)L = 1Mz, z(w)L. However we can
check that 1 < IM(w)l — ILMUQXﬁ(w)]l <1.

Lemma 11 and Theorem 12 are minimal realization type of results. Here is
the generic problem of this kind: Given an automaton with multiplicities in a
semiring, find another automaton recognizing the same map and of minimal
dimension.

In a commutative field, the minimal realization problem is solved, see [8] for a
proof and references. In R ., it is a well-known difficult and unsolved problem,
see [17] for partial results and references. Here, our result is specific in several
ways. First, we look at a particular type of (max,+) automata, heap automata
with two pieces. Second, we look for a realization by a heap automaton and not
by an arbitrary (max,+) automaton. Third, we only require an approximate
type of realization, see (15).

6.1 Classification of heap models with two pieces

As a by-product of Theorem 12, to study heap automata with two pieces, it
is enough to consider automata with bi-complete pieces and of dimension at

23



most 3. We are going to show that there are only four cases which need to be
treated (up to a renaming of pieces and slots) which are:

H = ({a,b},{1,2}, R,u,l,I)  R(a) = {1}, R(b) = {2}
R(a) = {1,2}, R(b) = {1,2}
R(a) = {1.2}, R(b) = {2}

H = ({a,b},{1,2,3}, Rou, 1, 1) R(a)={1,2}, R(b) = {2,3} .

)
)
)
)

We recall that the function ¢(.) was defined in the proof of Theorem 12.

(i) If R(a)N R(b) = 0, we have seen in the proof of Theorem 12, that the heap
model can be represented with two slots only, one for each piece.

(ii) Let us assume that R(a) = R(b). Let r be such that aa € ¢(r). Using
(31), we have either {aa,bb} C ¢(r) or {aa,ab,ba} C ¢(r). If we are in the
second case, we complete r with a contact slot for bb. If we are in the first
case, let us consider a slot ' such that ab € ¢(r'). We have, as before, either
{ab,ba} C ¢(r") or {ab,aa,bb} C c(r'). If {ab,ba} C c(r'), then we select the
slots {r,r'}. If {ab, aa,bb} C ¢(r'), then we complete r’ with a contact slot for
ba. In all cases, we obtain a finitely distant heap model with at most two slots.

(iii) Let us assume that R(b) C R(a), R(b) # R(a). Let r be a slot such that
bb € ¢(r). Since r € R(a) N R(b), we must have either {bb, ab,ba} C ¢(r) or
{aa,bb} C ¢(r). In the second case, we conclude as in (ii). In the first case, we

complete r with a slot ' such that aa € ¢(r’). Compared with (ii), there is a
new possible situation: two slots {r, '} with R(a) = {r,r'} and R(b) = {r}.

(iv) Let us assume that R(a) N R(b) # 0, R(a)\R(b) # 0, R(b)\R(a) # 0.
We consider a slot r € R(a) N R(b) and such that ab € ¢(r). We have either
{ab,aa,bb} C ¢(r) or {ab,ba} C ¢(r). In the first case, we complete r with a
slot " such that ba € ¢(r'). In the second case, we complete r with a contact
slot r, for aa and a contact slot r, for bb. Compared with the cases (ii) and
(iii), there is a new possible situation: three slots {r, r,,r} with R(a) = {r,r,}

and R(b) = {r,r}.

7 Heap Models with Two Pieces: Optimal Case

Let H be a heap model with two pieces. To solve the optimal problem, it is
sufficient to consider the typical cases described in §6.1. Two situations need
to be distinguished:

o 7 is ‘determinizable’; i.e. there exists a finitely distant, trim, and determin-
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istic (max,+) automaton;
e H is ‘not-determinizable’.

For ‘determinizable” automata, there exists a periodic optimal schedule. We
will see below that there are two cases where H is ‘not-determinizable’. In both
cases, we are able to identify ‘visually’ the optimal schedules. The resulting
theorem can be stated as follows.

Theorem 14 Let us consider a heap model with two pieces. There exists an
optimal schedule which is balanced, either periodic or Sturmian.

PROOF. We consider in §7.1-7.4 the four different cases described in §6.1.
For each case, we prove that the results of Theorem 14 hold. Furthermore we
provide an explicit way to compute pmin(H) and an optimal schedule in each
case.

In the sections below, we always denote the heap model considered by H =
(AR, R,u,l,I) with A = {a,b} and R = {1,2} or {1,2,3}. Viewed as a
heap automaton, it is denoted by H = (I, M, 1). We always implicitly assume
that we are working with bi-complete pieces. We recall that by modifying the
ground shape in a heap automaton, we obtain a finitely distant automaton.
Below we choose the ground shape which is the most adapted to each case.

If one of the two pieces, say «, satisfies [(a) = u(a), then the optimal problem
becomes trivial. We have ppmin(H) = 1 and a periodic optimal schedule is
provided by «“. From now on, we assume that [(a) # u(a) and [(b) # u(b).
We set

ha = @ U(G)Z — l(a)i, hb = @ u(b)Z — l(b)Z .

i€R(a) i€R(b)
7.1 The case R(a) = {1}, R(b) = {2}

We assume that the ground shape is 1. We claim that the jump word u with
characteristics (hg, hy, 0) (see §4) is optimal. Furthermore, we have puyin(H) =
hohy/(he + hy). An example is provided in Figure 8.

We now prove these assertions. Let us pile up the pieces according
to the jump word w defined by (h4,hs,0). We have, by construction,
| 2n(u[n])1 — xnu(uln])2 | < max(hgy, hy). Hence we have lim, x4 (u[n])i/n =
lim,, 2% (u[n])2/n. Now, as the heap is without any gap, it implies immediately
that w is optimal. The optimal schedule u is balanced, periodic when h, /hy is
rational and Sturmian when h,/h; is irrational, see §4. We have
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Fig. 8. The jump word (hq, hs, 0) is optimal.

l’y(U[n])l — lim ha|u[n]|a — hahb ‘
n »fuln]la 4+ fuln]ls ha + he

pmin(H) = h%ﬂ

To be complete, let us prove that it is not possible to find a periodic optimal
schedule in the case h,/hy irrational. Let v be a finite word and let us consider
the schedule v¥. Since h,/h; is irrational, we have h,|v|, # hy|v]p. Let us
assume that hg|v|, > hp|vlp. It implies that |v]|, > |v|hs/(hae + hs). We obtain

limys (v")/[0"] = lim Ay [v"[o/[0"] = ha|v]a/[v] > hahs/(ha + hy) .
7.2 The case R(a) = {1,2}, R(b) = {1,2}

As R(a) = R(b) = R, we have m(zM(a)) = m(yM(a)) and (a2 M(d)) =
T(yM(D)), for all z,y € R% Let us choose the ground shape to be m(1M/(a)).
We have n(H) = {n(IM(a)),7(IM(b))}. Hence we can solve the optimal
problem using the Cayley automaton, see §5.1. Applying the results of §3.2, it
is always the case that one of the schedules a*,b* or (ab)* is optimal. These
schedules are obviously balanced.

Example 15 Consider the heap automaton H with pieces defined by
l(a) = (1,1), w(a) = (3,2), and () = (1,1), u(b) = (2,3)
We have represented the pieces in Fig. 9. We check easily that w(H) =

{((L,=1),(=1,1)} (the ground shape being (1,—1)). Let (e, p, 1) be the Cayley
automaton and let M = min(u(a),u(b)). We have o = (1,0) and

20 03 23
30 02 32

The minimal eigenvalue of the Ry, matriz M is 2, the circuits of minimal
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Fig. 9. Heap model with two pieces and its Cayley automaton.

mean weight are {2} and {3} and My = p(a)z, Mss = p(b)ss. We have
Pmin(H) = 2 and a* and b* are optimal schedules.

7.3 The case R(a) = {1,2}, R(b) = {2}

This case could be reduced to the case R(a) = {1,2},
one in §7.4) by adding a third slot and setting R(b) =
u(b)s, 1(b)s = (b)y. We treat the case R(a) = {1,2}, R
in order to get more precise results. Let us set § = [(a
(u1,us) € R? we obtain, see (18),

) = {1,2} (the
3} and wu(b)s =
b) = {2} separately
)1 — l(a)z. For u =

R(b
{2,

d(u) =min(uM(a)1, |u|e) = min (ug B duz, ug & ug)
Hu)s = min(uM (@) M8} Juls) = s

Hence, we have

(]]. ) lf U1 S U2 S (SUQ

7T(u1, ugy) otherwise

Assume that 6 > 0 and let the ground shape be equal to 1M(a). We have,
Vu € R% p(uM(a)) = p(1M(a)). We deduce that

p(H) = {p(IM(ab")),n € N} .

We also have 1M (ab"t')—1M(ab™) = (1, h;). By assumption, we have h; > 0.

Hence there exists a smallest integer m such that

u(a)g +m x hy > ula), <= IM(ab™)y — IM(ad™); > 0.
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It implies, using (32), that ¥Yn > m, (LM (ab”)) = (1,1). We conclude that
p(H) = {p(IM(ab")),n € {0,...,m}} .

We have proved that ¢(H) is finite. In the case § < 0, a similar analysis holds.
In all cases we can solve the optimal problem using the contour-completed
automaton and the results of §3.2. We have represented in Figure 10, the

6/
mp(LM(a))

4 "
& TR
b b b b
b
Fig. 10. Contour-completed automaton

contour-completed automaton in the case m > 3 and 6 > 0 (without the mul-
tiplicities). There are exactly m + 2 simple circuits in this automaton with
respective labels b and ab™,0 < n < m. For 0 < n < m — 2, the multiplic-
ity to go from (1M /(ab™)) to @(1M(ab™*')) is 1 while the one to go from
e(IM(ab™t1)) to p(1M(a)) is always equal to h,. Hence the circuits of label
ab”,0 < n < m — 2, are not of minimal mean weight. We conclude that an
optimal schedule can be found among the schedules (ab™)“,(ab™~ 1)~ or b (if
m = 0, then either a* or b is optimal). These schedules are balanced.

Example 16 We consider the heap automaton with pieces a and b defined by
l(a) = (1,1),u(a) = (3,1), and [(b)=(0,1),u(b)=(0,1).

The pieces are represented in Figure 11. The completion operation has the

b

Fig. 11. Heap model and its contour-completed automaton.

following effect: p(m,n) = (m,n) if m > n and ¢(m,n) = (n,n) if m <
n. Hence we have o(H) = {(1,1),(1,—1),(1,—2),(1,-3)}. Let (a,p, 1) be
the contour-completed automaton and let M = min(u(a), u(b)). The minimal
eigenvalue of M is pmin(M) = 3/4 and the circuit of minimal mean weight is
labelled by abbb. We conclude that pmin(H) = 3/4 and that an optimal schedule
is (abbb)®.
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7.4 The case R(a) ={1,2}, R(b) = {2,3}

Two situations need to be considered: (i) the case wu(a), = I(a)y and
u(b)y = [(b)g; (ii) the case u(a)y > l(a)z (with the case u(b)y > [(b)z being

treated similarly).

Case (i): u(a)z = l(a)z and u(b)y = I(b)2

Assume that there exists an infinite heap w with an infinite number of each
piece and without any ‘gap’ at slots 1 and 3. Now, we focus on the second
slot of the heap w. The heights of the pieces a and b at slot 2 are given by
{li+(a);—(a)1+nh,,n € N} and {I3+{(b)2—[(b)3+nhy, n € N} respectively.
We set the ground shape to be

I'=(hye—l(a)y+1(a),L,hy —1(b)y +1(D)3) .

The heights of the pieces at slot 2 are now given by {nh,,n € N*} and
{nhy,n € N*}. Hence, the sequence of labels (read from bottom to top)
at slot 2 is the jump word w defined by (hq,hs,0). Now, if we pile up
the pieces according to w, we indeed obtain a heap without any gap on
slots 1 and 3. An illustration is given in Figure 12. On slot 2, the pieces
have been shortened to facilitate their identification. If h,/h;, is rational

Fig. 12. The optimal heap is the jump word babbaba - - -.

then w is balanced and periodic and otherwise it is Sturmian. If h,/h, is
irrational, there does not exist any periodic optimal schedule. At last, we

have pmin(H) = hohy/(hqe + hy). The proof is exactly the same as in §7.1.

Case (ii): u(a); > l(a);
Assume that u(a)s — l(a)2 > u(a); — {(a);. Then

u(a®); = max(u(a), u(a)y —l(a)y + (a)) = u(a)g — l(a)2 + 1(a); > u(a); .
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This contradicts the fact that a is bi-complete. We conclude that we have
u(a)s —l(a)y < u(a); —l(a); and in the same way u(b)y —(b)2 < u(b)s —I(b)s.

Given z,y € A*, if there is a contact at slot 2 between the last two pieces
of the heaps zab and yab (resp. xba and yba) then p(IM(za)) = @(IM(ya))
(resp. @(IM(ab)) = (IM(yb))). Given x € A*, if there is a contact at slot
2 between the last two pieces of the heap xab (resp. xba) then it is also the
case in the heap zaab (resp. xbba). It implies that p(IM(zaa)) = p(IM(za))
(resp. @(IM(xbb)) = @(IM(xb))). Let us set the ground shape to be [ =
(=L,l(a)y —u(a)z, —L) where the real L > 0 is assumed to be large enough to
have IM(u) = (0,l(a)y — u(a)z, 0)M(u) for u = a or b (see Figure 13 for an
illustration). It implies that the slot 2 is a contact slot for ab and ba; hence we

have p(IM(aa)) = p(IM(a)) and @(IM(bb)) = (IM(b)). We deduce that
p(H) = A{o(l), p(IM(a)), o(IM(b))} U {p(IM(abw)), o(IM(baw)), w € A"}

We assume for the moment that h,/hy is irrational. Let « be the jump word
(hayhs,0). Let us assume that the infinite heap abx has no gap on slots 1 and
3. Then, the heights of the pieces on slot 2 are:

e lower part of piece a: {nh, — u(a)z + l(a)2,n € N};

e upper part of piece a: {nh,,n € N};

e lower part of piece b: {nhy,n € N};

e upper part of piece b: {nhy + u(b)y — (b)s,n € N}.

Since hy/hy is irrational, by density of the points {nh; (mod h,),n € N} in
the interval [0, i,], there exists a couple (p,q) € N? such that

pha —u(a)y +l(a)2 < qhy < phy .

This is a violation of the piling mechanism, see Figure 13-(i) for an illustration.
Hence we conclude that there are some gaps on slot 1 or 3 in the heap abx.
Let 1 be such that there is no gap at slots 1 and 3 in the heap abz[l; + 1]
and there is a gap at slot 1 or 3 in the heap abx[l; 4+ 2]. In Figure 13-(i), we
have {; = 3 and abz[l;] = abbab. Let l; be such that there is no gap at slots
1 and 3 in the heap bax[ly + 1] and there is a gap at slot 1 or 3 in the heap
bax[ly + 2]. Note that we have l; > —1 and {; > —1, and that it is possible to
have [; = —1 and/or [ = —1.

Let us consider a heap abu (resp. bau), u € A*. There are three possible cases.

(1) There is no gap at slots 1 and 3 in the heap and v = x[n],n <13 +1 (resp.
u = x[n],n < Iy +1). Let x, is the n-th letter of x. If v = «[l; + 1], then
(I M(abally + 1)) = (M (a1, ) i L > 0 and o(IM(ab)) = o(IM(B)
otherwise. Similarly we have p(IM(bax[ly + 1])) = e(IM(x41)) if 5 >0
and p(IM(ba)) = o(IM(a)) otherwise.
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(i) (iii)
Fig. 13. (i) Heap abz[3] = abbabd, (ii) heap abbabab, (iii) heap abbabbb.

(2) There is no gap at slots 1 and 3 and u # z[|u|]. In this case, we must
have v = x[n]a™ or v = x[n]b™ with m > 0,n < I3 + 1 (resp. m > 0,n <
[y + 1). Assume we have u = z[n]b™, the case u = z[n]a” being treated
similarly. Since u # z[|ul], in the heap x[n]b™a, there is a contact at slot 2
between the last two pieces. We conclude that (I M(abx[n]b™)) = @(IM(b))
(resp. @(IM(bax[n]b™)) = @(IM(b))). This case is illustrated in Figure 13-
(iii) where @(I M (abbabbb)) = (1M (b)).

(3) There is a gap somewhere in the heap at slot 1 or 3. This implies that
we have in the heap u a contact at slot 2 between a piece a and a piece b, or
between a piece b and a piece a. Considering the last couple (a,b) or (b, a) of
pieces in contact at slot 2, we obtain (for abu, the case bau is treated similarly)

e(IM(abu)) = e(IM(abv)), or @(IM(abu)) = (I M(bav)),

where the heap abv, or bav, is such that there is no gap at slots 1 and 3.
The heap abv, or bav, is in one of the two cases (1) or (2) above. Case (3)
is illustrated in Figure 13-(ii) where (I M (abbabab)) = (I M(ab)), i.e. u =

babab and v = e.
To summarize, we have proved that
p(H)= {1, p(IM(a)),p(IM(D))}
U{p(IM(abx[n])),0 <n <} U {p(IM(bax[n])),0 <n <[}

The set @(H) is finite, hence we can apply the results of §3.2 to the contour-
completed automaton.

Now, let us assume that h,/h, is rational. We still consider the jump word «
with characteristics (hq, hy, 0), which is now periodic, see §4. If the heap abx
(or bax) has no gap on slots 1 and 3, then the schedule x is optimal (same
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argument as in §7.1). If the heaps abx and bax both have a gap somewhere on
slot 1 or 3, the proof carries over exactly as in the case h,/hy € Q.

The structure of the countour-completed automaton can be deduced from the
above proof. For simplicity, we denote the state (I M(w)) by w, and we
use the convention ¢’ = b,/ = a. For 0 < n < [; — 1, there is a transition

abz[n] =5 abx[n 4 1] and a transition abz[n] i z) - For 0 <m < 1p —1,

there is a transition baz[n] =5 baxz[n 4 1] and a transition baz[n] i z),-In

Fig. 14. Outline of the contour-completed automaton.

Figure 14, we have represented an outline of the contour-completed automaton
in the case [y > 0,/ > 0 (ingoing and outgoing arrows as well as some arcs
are missing, and the multiplicities have been omitted).

Using the above analysis, we can get the value of the multiplicities in the
contour-completed automaton. Doing this, we obtain that there is a cir-
cuit of minimal mean weight in the contour-completed automaton of la-
bel either: a,b, abx[l1], bax[ls], or abx[l1]bax|[l3], with the conventions x[0] =
e, abx[—1] = a,bax[—1] = b. Hence, one of the following schedules is optimal:
{a®“, b, (abx[l1])¥, (bax[ls]), (abx[l1]bax[l2])“}. Tt remains to be proved that
(aba[l1]), (bax[ly))*, and (abx[l1)bax[ly))} are balanced.

“ is balanced. We treat the case

We are going to prove that (bax|[ly]abxz[l4])
[y > 0 and [y > 0. If we have [; or l; equal to -1, the argument can be easily
adapted. Due to the definition of [y, the following intervals are all disjoint
(visually, they correspond to the portions of the second column occupied by
the pieces in the heap abz[l;]. We consider open intervals in Z, and closed
ones in 7 in order to ensure that the first interval in 7, and 7, are indeed

disjoints):
Ia = {(nha + Z(Q)Q - u(a)%nha)v 0<n< |x[l1]|a}v
Ty ={[nhp, nhy + u(b)y — 1(b)s], 0 < n < |z[li]]s}.

In the same way, the following intervals are all disjoint (up to the minus sign,
they correspond to the portions of the second column occupied by the pieces
in the heap bax[ls]):
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I(; = {(_nha + Z(Q)Q - u(a)% _nha)v 0<n< |$[l2]|a},
T, = {[—nhy, —nhy + u(b)z — 1(b)2], 0 < n < |x[l]|s}

An illustration of the intervals in Z,,7;,7! and Zj is provided in Figure 15-
(i)-(ii). Let us label the intervals in Z, UZ! by a and the ones in Z, U Z; by
b. If we read the sequence of labels from bottom to top, we obtain the word
T[ly]abx[ly], where Z[l3] is the mirror word of x[l5] (the mirror word of the word
U = Uy - - Uy 18 the word @ = wpty,—q -+ - uy). Setting n, = |x[li]|o + 1,7 =
|e[la]]s + 1, 0!, = |z[la]| + 1, and nj = |2[ls]]s + 1, we have (by definition of {4
and [y)

(nahe +1(a)y — ula)a, nghy) N [nphy, nphy + w(b)y — 1(b)2] £ 0,
(—nlha +1U(a)y — u(a)z, —nlha) O [—nyhp, —nphy + u(b)y — 1(b)2] £ 0 .

Let us choose t € (—nl h,+{(a)s—u(a)y, —nlha)N[—nyhy, —nphe+u(b)2—1(b)2].

Let us consider the set
S={t4+nhs, 1 <n<n,+n, =1} U{t+nhy,1 <n<ny+n,—1}.

By construction, each real of S is in a different interval of Z,,7,,7 or Ij.
Hence, if we read the sequence of labels associated with § from bottom to
top, we obtain z[l; + [z + 2]. Also by construction, we have ¢ + (n, + n/,)h, €
(nghq + l(a)s — u(a)z, nehy) and t + (ny + ny)he € [nphp, nphy + u(b)2 — 1(b)2].

(i) (ii) (iii) (iv)
Eimz oA AT
b
| — b |
— a g | “
[ 2 |
ha
hb@ b b
0 p— h@: -------- : S
b ha
—i . L
e

Fig. 15. Hlustration of the proof; here z[l1] = bab and z[l3] = b.

Let us set m, = n, + n/, and m; = n, + n;. We define A = m,h, — myhy, see
Figure 15-(iii). By construction, we have either (*) or (sx):

(%) If A > 0 then A < nh, —n’hy for each n,n' such that 1 <n < m,,1 <
n' < my,nhy —n'hy > 0.

(#x) If A < 0 then A > nh, — n’hy, for each n,n’ such that 1 <n < mg,,1 <
n' < my,nhy, —n'hy <0.
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Let us assume that A < 0 (the case of Figure 15-(iii)). The other case is
treated similarly. Because of the property (#%), the sequence of a’s and b’s
corresponding to S is the same as the one corresponding to

{t +nhy,1 <n <m, — 1Y U{t+nhe(maha)/(mphy), 1 <n <my —1}.

Equivalently the jump words (hqg,hs,0) and (hg, he(mohe)/(msyhs),0)

(hayhoma/my,0) have the same prefix of length Iy + 5 4+ 2. If we decide to
read double points as ba (see §4), then the jump word z with character-
istics (hq, hamg/msp,0) is a balanced and periodic word, which is equal to
(Z[lz)aba[l1)ba)”. A palindrome is a word equal to its mirror word. The above
construction shows that #[lz]abx[l1] is a palindrome (for instance, in Figure 15-
(iv), the sequences of a’s and b’s read from bottom to top, and top to bottom,
are the same). It implies that it is impossible to have [; =[5 (since Z[{]abx[l] is
never a palindrome). By the same type of arguments, we can prove that x[/4]
and z[l] are also palindromes. Hence we have z[ly]abz[l1]ba = Z[l3]abz[l;]ba

and we conclude that (z[ly]abz[l1]ba)¥ is balanced.

The fact that (abxz[l1])* and (bax[ls])* are balanced is proved in a similar way.
7.5  Greedy scheduling

We treat completely an instance of the jobshop described in the introduction,
see Figure 1. The durations of the activities are assumed to be a; = a'(=

dxa),ay =a,0; =aand fy =1 —a. We assume that 1/15 < o < 1/11. The
model corresponds to case (i7) in §7.4 above.

The contour-completed automaton of H = (w(IM(a)), M, 1) is represented
in Figure 16. The labels of the simple circuits are a, b, ba, ba? and ba®. Their

1
! /blixé !
6((111 1,010 _1,1)

(1 —a, —a) ?(a—la—lﬂ) O(a—la—ljl)

1 all all

alab

alal®—1
Fig. 16. Contour-completed automaton.

respective mean weights are o®, 1,1/2,1/3 and a'®/*. Hence the label of the
circuit of minimal mean weight is ba? if 4/45 < a and ba® if o < 4/45. We
conclude that an optimal schedule is

(ba®)” if 1/15 < a <4/45, (ba*)” if 4/45 <a < 1/11.
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Fig. 17. Model with o = 8/89, greedy schedule and optimal schedule.

The greedy scheduling consists in always allocating the resource to the first task
which is ready to use it (i.e. w[n + 1] = w[n]a, resp. wn + 1] = wnlb, if we
have zy(w[n]); < xy(wln])s, resp. xy(wln])s < xy(w(n])1). Here the greedy
schedule is always (ba®)”. We conclude that greedy scheduling is suboptimal
in the case o € (4/45,1/11), see Figure 17.

This is in sharp contrast with a result from [22] §IV. There, the optimal
problem is studied for the model of Figure 1, but the authors consider a
slightly different criterion: minimization of the idle time of the resource. They
show that greedy schedules are indeed optimal for this criterion.

7.6 Ratio constraints

In [24,21,22], the authors were primarily interested in the following constrained
optimal problem: Find w € A* minimizing lim, yx(w[n])/n while satisfying
lim,, |w[n]|./n =~ where v € [0,1] is some given ratio constraint.

In a manufacturing model, the motivation is to maximize the throughput while
meeting a given production ratio. For this constrained problem, and for the
model of Figure 1, it is proved in [21,22] that the optimal schedule is always
the jump word (1 — ~,v,0). Two points are worth being noticed. First, the
optimal schedule is balanced and when v € Q, it is of the form u* where u is
the shortest balanced word meeting the ratio constraint. Second, the optimal
schedule does not depend on the timings of the model (aq, as, 5y and By in
Figure 1).

These two properties depend heavily on the specific shape of the pieces in the
model of Figure 1. They are not satisfied in a general heap model with two
pieces, as shown below.
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Example 17 Consider the model of Example 15. We look at the constrained
optimal problem with ratio 1/2. The optimal schedule of length 2n,n € N*,

L
S B o8

Fig. 18. Optimal and worst schedule of ratio 1/2 and length 4.

is a"b" (or b"a™) as illustrated on Figure 18. A possible optimal schedule is
aba?b? -+ a"b" - - - . No infinite balanced word with ratio 1/2 is optimal. Here,
the schedule (ab)*, whose period is the shortest balanced word meeting the
constraint, is not an optimal but a worst case schedule! Examples in the same

spirit appear in [13], §VI-1 and in [19], §5.1.

8 Heap Models with Two Pieces: Average Case

In this section, products have to be interpreted in the field (R, +, x). We
still assume that {(a) # u(a) and I(b) # u(b), otherwise the average problem
becomes trivial.

As in §7, the distinction between ‘determinizable’ and ‘non-determinizable’
automata is important. For the ‘determinizable’ case, it is easy to check that
the automata obtained in §7.1-7.4 are all irreducible. Hence we obtain pg by
applying Prop. 6. Below, we illustrate this case on one example. There are two
cases where the heap automaton is ‘non-determinizable’, see §7. In one case,
we come up with an explicit formula for pg and in the other case, we express
it as an infinite series.

Determinizable automaton. We consider the heap automaton H of §7.5.
Let {p(a),p(b)} be the probability distribution of the pieces. The contour-
completed automaton is represented in Figure 16. The corresponding transi-
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tion matrix is (see Prop. 6):

pla) 1 —=pla) 0 0
_| 0 1=pla)pla) O
0 1—=pla) 0 pla)
pla) 1 —=pla) 0 0

Its stationary distribution is 7 = (p(a)*, 1 — p(a), p(a) — p(a)?, p(a)® — p(a)?).
We conclude that we have, Prop. 6,

pe(H) = (=10a + 1)p(a)* + (15a — 1)p(a)® — p(a) + 1 .

This formula is valid for 1/15 < a < 1/11, see §7.5. For instance, in the case
a = 8/89 (the one of Figure 17), we have

9 31

= @p(a)4 + ()’ — p(a)+ 1, minpg(H)=0.417 for p(a) = 0.849.

PE(H) @p o)

Case R(a) = {1}, R(b) = {2}. Let (2, F, P) be a probability space and let
tn,n € N*, be independent random variables such that P{x, = a} = p(a)
and P{x, = b} = p(b). We set a(n) = IM(x1---x,). The processes xy(n);
and xy(n)y are transient random walks with respective drifts p(a)h, and

p(b)hy. We deduce immediately that pp(H) = max(p(a)ha, p(b)hs).

Case R(a) ={1,2}, R(b) ={2,3}. We consider the case R(a) = {1,2}, R(b) =
{2,3},u(a)y = l(a)s,u(b)y = [(b)y and h,/hy ¢ Q. A simple but lengthy
computation provides the following formula (the details are available from
the authors on request). Let us denote by u (= wjugy---) the jump word
(hayhs, 0). We use the convention a’ = b,0' = a. We set §(a) = hy/(ha + hp),
3(b) = hy/(hy + hy) and ¢, = p(a)L”S(b)Jp(b) [né(a)] /p(uy). We have

Yot b, )(wy,) (p(wn ) [6(un)n] + 1)
2 one1 Cn '

pE(H) = (ha + ) (33)

One can obtain approximations of pg(#H) by truncating the infinite sums.
Computations of pg for closely related models are carried out in [25].

9 Conclusion: Heap Models with Three or More Pieces

As recalled in the introduction, the optimal problem for a heap model with
an arbitrary number of rational pieces (Va € A, u(a),l(a) € QF,.) is solved
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in [20]. In Theorem 14, the case of a heap model with two general pieces is
treated. We recall the results in the table below.

Al =2 Al > 2
QF periodic periodic
RX | periodic or Sturmian ?

Characterizing optimal schedules is an open problem for models with three
pieces or more. Generalized versions of jump words appear naturally in some
models. Let A = {ay,az,--- ,a;} be the alphabet. We consider o; € R%,4; €
Ry,vi < ag, for ¢ € {1,...,k}. We label the points {na; + v;,n € N*} by
a; and we consider the set UY_ {na; + v;,n € N*} in its natural order. The
infinite sequence of labels is called the (hypercubic) billiard sequence with
characteristics (a;,7;,1 = 1,...,k), see [3,6]. Now let us consider the heap
model H = (A {l,....k + 1}, Ru,l,1) with R(a;) = {0,k + 1}, u(a;); —
l(a;); = h; > 0 and w(a;)k+1 = l(a@;)k+1. Using an argument similar to the
one in §7.4, we obtain that the billiard sequence with characteristics (h;, 0,7 =
1,...,k)is an optimal schedule. A similar result is obtained for the heap model

(A {L,... k}, Ryu,l,1) with R(a;) = 1.

Further research. During the reviewing process of this work, alternative
proofs of Theorem 14 as well as further developments have been proposed in
[29,10]. The methods in [10] also enable to refute the Lagarias-Wang finiteness
conjecture [26].
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