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Asymptotic Behavior in a Heap Model withTwo PiecesJean Mairesse and Laurent Vuillon 1LIAFA, CNRS-Universit�e Paris VII, case 7014, 2 place Jussieu, 75251 ParisCedex 05, France. Phone. +33 1 44 27 70 97; Fax. +33 1 44 27 68 49; e-mail:(Jean.Mairesse,Laurent.Vuillon)@liafa.jussieu.frAbstractIn a heap model, solid blocks, or pieces, pile up according to the Tetris game mech-anism. An optimal schedule is an in�nite sequence of pieces minimizing the asymp-totic growth rate of the heap. In a heap model with two pieces, we prove that therealways exists an optimal schedule which is balanced, either periodic or Sturmian.We also consider the model where the successive pieces are chosen at random, in-dependently and with some given probabilities. We study the expected growth rateof the heap. For a model with two pieces, the rate is either computed explicitly orgiven as an in�nite series. We show an application for a system of two processessharing a resource, and we prove that a greedy schedule is not always optimal.Key words: Optimal scheduling, timed Petri net, heap of pieces, Tetris game,(max,+) semiring, automaton with multiplicities, Sturmian word.1 IntroductionHeap models have recently been studied as a pertinent model of discrete eventsystems, see Gaubert & Mairesse [18,19] and Brilman & Vincent [11,12]. Theyprovide a good compromise between modeling power and tractability. As faras modeling is concerned, heap models are naturally associated with tracemonoids, see [30]. It was proved in [19] that the behavior of a timed one-bounded Petri net can be represented using a heap model (an example appearsin Figure 1). We can also mention the use of heap models in the physics of1 This work was partially supported by the European Community Framework IVprogramme through the research network ALAPEDES (\The ALgebraic Approachto Performance Evaluation of Discrete Event Systems")Preprint submitted to Elsevier Preprint 23 January 2001



surface growth, see [5]. The tractability follows essentially from the existenceof a representation of the dynamic of a heap model by a (max,+) automaton,see [12,18].A heap model is formed by a �nite set of slots R and a �nite set of piecesA. A piece is a solid block occupying a subset of the slots and having a poly-omino shape. Given a ground whose shape is determined by a vector of RRand a word w = a1 � � � an 2 A�, we consider the heap obtained by piling upthe pieces a1; : : : ; an in this order, starting from the ground, and according tothe Tetris game mechanism. That is, pieces are subject to vertical translationsand occupy the lowest possible position above the ground and previously piledup pieces. Let y(w) be the height of the heap w. We de�ne the optimal growthrate as �min = lim infnminw2An y(w)=n. An optimal schedule is an in�nite wordu 2 A! such that limn y(u[n])=n = �min, where u[n] is the pre�x of length n ofu. An optimal schedule exists under minimal conditions (Proposition 4). Wecan de�ne similarly the quantity �max and the notion of worst schedule. Theproblem of �nding a worst schedule is completely solved, see [16,18]. Findingan optimal schedule is more di�cult, the reason being the non-compatibilityof the minimization with the (max;+) dynamic of the model. In [20], it isproved that if the heights of the pieces are rational, then there exists a peri-odic optimal schedule. If we remove the rationality assumption, the problembecomes more complicated. Here we prove, and this is the main result of thepaper, that in a heap model with two pieces, there always exists an optimalschedule which is balanced, either periodic or Sturmian. We characterize thecases where the optimal is periodic and the ones where it is Sturmian. Theproof is constructive, providing an explicit optimal schedule.As will be detailed below, a heap model can be represented using a speci�ctype of (max,+) automaton, called a heap automaton. A natural question is thefollowing: Given a general (max,+) automaton over a two letter alphabet, doesthere always exist an optimal schedule which is balanced (for an automatonde�ned by the triple (�; �; �), set y(w) = ��(w)� and de�ne an optimalschedule as above)? The answer to this question is no, which emphasizes thespeci�city of heap automata among (max,+) automata. A counter-example isprovided in Figure 4.We also consider random words obtained by choosing successive pieces inde-pendently, with some given distribution. We denote by �E the average growthrate of the heap. Computing �E is in general even more di�cult than com-puting �min. In [20], �E is explicitly computed if the heights of the pieces arerational and if no two pieces occupy disjoint sets of slots. Here, for models withtwo pieces, we obtain an explicit formula for �E in all cases but one where �Eis given as an in�nite series.To further motivate this work, we present a manufacturing model studied by2



Gaujal & al [22,21]. There are two types of tasks to be performed on the same�2 a b�1 � 1+� 2� 1+� 2�2�1 �1a b �1Fig. 1. One-bounded Petri net and the associated heap model.machine used in mutual exclusion. Each task is cyclic and a cycle is constitutedby two successive activities: one that requires the machine (durations: �1 and�1 respectively) and one that does not (durations: �2 and �2 respectively).Think for instance of the two activities as being the processing and the packing.This jobshop can be represented by the timed one-bounded Petri net of Figure1. The durations �1; �2; �1 and �2 are the holding times of the places. Asdetailed in [19], an equivalent description is possible using the heap modelrepresented in Figure 1. The height of a heap a1 � � � an; ai 2 fa; bg; correspondsto the total execution time of the sequence of tasks a1; : : : ; an executed in thisorder. An in�nite schedule is optimal if it minimizes the average height of theheap, or equivalently if it maximizes the throughput of the Petri net. We donot make any restriction on the schedules we consider. In particular we do notimpose a frequency for tasks a and b. As a justi�cation, imagine for instancethat the two tasks correspond to two di�erent ways of processing the sameobject. We prove in x7.4 that if �1 = �1 = 0; �2 > 0; �2 > 0; �2=�2 62 Q,then there is a Sturmian optimal schedule; otherwise there exists a balancedperiodic optimal schedule. We also show in x7.5 that the greedy schedule isnot always optimal.Assume now that in the model of Figure 1, the successive tasks to be executedare chosen at random, independently, and with some probabilities p(a) andp(b). If �1 or �1 is strictly positive, then we obtain an exact formula for �E.It enables in particular to maximize the throughput over all possible choicesfor p(a) and p(b), see x8 for an example.Let us compare the results of this paper with other cases where optimalityis attained via balance. In Hajek [24], there is a 
ow of arriving customersto be dispatched between two queues and the problem is to �nd the optimalbehavior under a ratio constraint for the routings. The author introduces thenotion of multimodularity, a discrete version of convexity, and proves that amultimodular objective function is minimized by balanced schedules. Variantsand extensions to other open queueing or Petri net models have been carriedout in [1,2], still using multimodularity. In a heap model however, one can3



prove that the heights are not multimodular. In [21,22], the authors considerthe model of Figure 1. They study the optimal behavior and the optimalbehavior under a frequency constraint for the letters. Balanced schedules areshown to be optimal and the proofs are based on various properties of thesesequences. We consider a more general model. For the unconstrained problem,we prove in Theorem 14 that balanced schedules are again optimal. On theother hand, under frequency constraints, we show in x7.6 that optimality is notattained via balanced words anymore. Our methods of proof are completelydi�erent from the ones mentioned above.The paper is organized as follows. In x2 and x3, we de�ne precisely the modeland the problems considered. We prove the existence of optimal schedules un-der some mild conditions in x3.1. In x4, we recall some properties of balancedwords. We introduce in x5 the notions of completion of contours and comple-tion of pieces in a heap model. We prove in x6 that it is always possible tostudy a heap model with two pieces by considering an associated model withat most 3 slots. We provide an enumeration of all the possible simpli�ed mod-els: there are 4 cases. In x7.1-7.4, we prove the result on optimal schedules,recalled above, by considering the four cases one by one. Greedy schedulingis discussed in x7.5, and ratio constraints in x7.6. In x8, we study the averagegrowth rate.2 Heap ModelConsider a �nite set R of slots and a �nite set A of pieces. A piece a 2 A is arigid (possibly non-connected) \block" occupying a subset R(a) of the slots.It has a lower contour and an upper contour which are represented by two rowvectors l(a) and u(a) in (R[f�1g)R with the convention l(a)r = u(a)r = �1if r 62 R(a). They satisfy u(a) � l(a). We assume that each piece occupies atleast one slot, 8a 2 A; R(a) 6= ;, and that each slot is occupied by at leastone piece, 8r 2 R;9a 2 A; r 2 R(a). The shape of the ground is given by avector I 2 RR. The 6-tuple H = (A;R; R; u; l; I) constitutes a heap model.The mechanism of the building of heaps was described in the introduction. Itis best understood visually and on an example.Example 1 We consider the following heap model.� A = fa; bg, R = f1; 2; 3g, I = (0; 0; 0);� R(a) = f1; 2g, R(b) = f2; 3g;� u(a) = (�1 + �2; �1;�1); l(a) = (0; 0;�1);� u(b) = (�1; �1; �1 + �2); l(b) = (�1; 0; 0),where �1; �2; �1 and �2 are strictly positive reals. We have represented, in4



Fig. 2, the heap associated with the word w = ababa.
I a b aa bb aa a bFig. 2. Heap associated with the word ababa.We recall some standard de�nitions and notations. We denote by 1fAg thefunction which takes value 1 if A is true and 0 if A is false. We denote by R+the set of non-negative reals, and by N� and R� the sets Nnf0g and Rnf0g.Let A be a �nite set (alphabet). We denote by A� the free monoid on A, thatis, the set of (�nite) words equipped with concatenation. The empty word isdenoted by e. The length of a word w is denoted by jwj and we write jwja forthe number of occurrences of the letter a in w. We denote by alph(w) the setof distinct letters appearing in w. An in�nite word (or sequence) is a mappingu : N� ! A. The set of in�nite words is denoted by A!. An in�nite wordu = u1u2 � � � is periodic if there exists l 2 N� such that ui+l = ui;8i 2 N�. Inthis case, we write u = (u1 � � �ul)!. We denote by u[n] = u1u2 � � � un the pre�xof length n of u.When A is the set of pieces of a heap model, (in�nite) words will also becalled (in�nite) schedules. We also interpret a word w 2 A� as a heap, i.e. asa sequence of pieces piled up in the order given by the word.The upper contour of the heap w is a row vector xH(w) in RR, where xH(w)ris the height of the heap on slot r. By convention, xH(e) = I, the shape of theground. The height of the heap w isyH(w) = maxr2R xH(w)r : (1)We recall that a set K equipped with two operations � and 
 is a semiringif � is associative and commutative, 
 is associative and distributive withrespect to �, there is a zero element 0 (a� 0 = a; a
 0 = 0 
 a = 0) and aunit element 1 (a
 1 = 1
 a = a). 5



The set Rmax = (R[ f�1g;max;+) is a semiring, called the (max,+) semir-ing. From now on, we use the semiring notations: � = max;
 = +;0 = �1and 1 = 0. The semiring Rmin is obtained from Rmax by replacing max by minand �1 by +1. The subsemiring B = (0;1;�;
) is the Boolean semiring.We use the matrix and vector operations induced by the semiring structure.For matrices A;B of appropriate sizes, (A�B)ij = Aij�Bij = max(Aij; Bij),(A
B)ij = Lk Aik 
Bkj = maxk(Aik +Bkj), and for a scalar a, (a
A)ij =a
Aij = a+Aij. We usually omit the 
 sign, writing for instance AB insteadof A
B. On the other hand, the operations denoted by +;�;� and = alwayshave to be interpreted in the conventional algebra. We de�ne the `pseudo-norm' jAj� = maxij Aij. We denote by 0, resp. 1, the vector or matrix whoseelements are all equal to 0, resp. 1 (with the dimension depending on thecontext).For matricesA and B of appropriate sizes, the proof of the following inequalityis immediate: jABj� � jAj� 
 jBj� : (2)For matrices U; V and A of appropriate sizes and such that all the entriesof U; V; UA and V A are di�erent from 0, the following non-expansivenessinequality holds: jUA� V Aj� � jU � V j� : (3)Given an alphabet A, a (max,+) automaton of dimension k is a triple(�; �; �), where � 2 R1�kmax, and � 2 Rk�1max, are the initial and �nal vec-tors and where � : A� ! Rk�kmax is a monoid morphism. The morphism �is entirely de�ned by the matrices �(a); a 2 A; and for w = w1 � � �wn,we have �(w) = �(w1) � � ��(wn) (product of matrices in Rmax). The mapy : A� ! Rmax, y(w) = ��(w)� is said to be recognized by the (max,+) au-tomaton. A (max,+) automaton is a specialization to Rmax of the classicalnotion of an automaton with multiplicities, see [8,15].An automaton (�; �; �) of dimension k over the alphabet A is representedgraphically by a labelled digraph. The graph has k nodes; if �(a)ij > 0 thenthere is an arc between nodes i and j with labels a and �(a)ij; if �i > 0 thenthere is an ingoing arrow at node i with label �i and if �j > 0 then there isan outgoing arrow at node j with label �j. Examples appear in Figures 9,10or 11.For each piece a of a heap model H, we de�ne the matrixM(a) 2 RRmax by6



M(a)sr = 8>><>>:1 if s = r; r 62 R(a);u(a)r � l(a)s if r 2 R(a); s 2 R(a);0 otherwise. (4)Example 2 In the model considered in Figure 1 and Example 1, the matricesassociated with the pieces areM(a) = 0BBBBB@�1�2 �1 0�1�2 �1 00 0 11CCCCCA ; M(b) = 0BBBBB@ 1 0 00 �1 �1�20 �1 �1�21CCCCCA :The entries have to be interpreted in Rmax.Variants of Theorem 3 are proved in [12,18,19].Theorem 3 Let H = (A;R; R; u; l; I) be a heap model. For a word w =w1 � � �wn, the upper contour and the height of the heap satisfy (products inRmax) xH(w) = IM(w1) � � �M(wn) ;yH(w) = IM(w1) � � �M(wn)1 : (5)More formally, yH is recognized by the (max,+) automaton (I;M;1).From now on, we identify the heap model and the associated (max,+) au-tomaton, writing either H = (A;R; R; u; l; I) or H = (I;M;1). We also callH a heap automaton.3 Asymptotic BehaviorConsider a (max,+) automaton U = (�; �; �) and its recognized map y. Wede�ne the optimal growth rate (in R[ f�1g) as:�min(U) = lim infn!+1 1n minw2An y(w) : (6)An optimal schedule is a word w 2 A! such that limn y(w[n])=n = �min(U).We de�ne the worst growth rate as �max(U) = lim supn!+1maxw2An y(w)=n.A worst schedule is de�ned accordingly.Consider a probability law fp(a); a 2 Ag (p(a) 2 [0; 1]; Pa2A p(a) = 1).Random words are built by choosing the successive letters independently and7



according to this law. Let p(w); jwj = n; be the probability for a randomword of length n to be w. We have p(w) = p(w1) � p(w2) � � � � � p(wn) ifw = w1w2 � � �wn. When it exists, we de�ne the average growth rate as:�E(U) = limn!+1 1n Xw2An p(w)� y(w) : (7)The optimal problem consists in evaluating �min(U) and �nding an optimalschedule. The worst case problem consists in evaluating �max(U) and �ndinga worst schedule. The average case problem consists in evaluating �E(U).When we consider a heap automaton H, the limits �min(H); �max(H) and�E(H) correspond respectively to the minimal, maximal and average asymp-totic growth rate of a heap.3.1 Preliminary resultsWe consider the optimal problem �rst. It follows from (2) thatminjwj=n+m j�(w)j� � minjwj=n j�(w)j� +minjwj=m j�(w)j�. As a consequenceof the subadditive theorem, we havelimn 1n minjwj=n j�(w)j� = infn 1n minjwj=n j�(w)j� = � : (8)We also have for all w 2 A�,j�(w)j� 
mini �i 
mini �i � ��(w)� � j�(w)j� 
 j�j� 
 j�j� : (9)When �i > 0; �i > 0;8i, we deduce that �min(U) = � and that the lim inf is alimit in (6).Proposition 4 Let U = (�; �; �) be a (max,+) automaton such that 8i; �i >0; �i > 0. Then there exists an optimal schedule.PROOF. It follows from (9) that the automata (�; �; �) and (1; �;1) havethe same optimal schedules (if any). We assume that �min 6= 0. The case�min = 0 is treated by slightly adapting the argument below. We deduce from(8) that for all k 2 N�, there exists w(k) 2 A� n feg such thatjw(k)j � �min � j�(w(k))j� � jw(k)j � (�min + 1k ) :By the subadditive inequality (2), we then have, for all l 2 N�,jw(k)lj � �min � j�(w(k)l)j� � jw(k)lj � (�min + 1k ) : (10)8



Now de�ne ~w(k) = w(k)kjw(k+1)j and consider the in�nite word ~w =~w(1) ~w(2) � � � ~w(k) � � � obtained by concatenation of the words ~w(k). We con-sider the pre�x of length n of ~w for an arbitrary n 2 N�. There exists kn 2 N�such that ~w[n] = ~w(1) � � � ~w(kn)w(kn + 1)lu ;where 0 � l < (kn + 1)jw(kn + 2)j and where u is a pre�x of w(kn + 1). Using(2) and (10), we get�min � j�( ~w[n])j�n � knXi=1 j�( ~w(i))j�n + j�(w(kn + 1)l)j�n + j�(u)j�n� �min + knXi=1 j ~w(i)jni + jw(kn + 1)ljn(kn + 1) + j�(u)j�n : (11)Obviously, kn is an increasing function of n and limn!+1 kn = +1. Hence,we obtain that:8" > 0;9N 2 N�;8n � N; knXi=1 j ~w(i)jni + jw(kn + 1)ljn(kn + 1) � " : (12)Let us take care of the last term on the right-hand side of (11). Note thatjuj � jw(kn + 1)j and n = j ~w[n]j � j ~w(kn)j = knjw(kn + 1)j. It implies thatj�(u)j�n � jujLa2A j�(a)j�n � La2A j�(a)j�kn : (13)Starting from (11) and using (12) and (13), we obtain that8" > 0;9N 2 N�;8n � N; �min � j�( ~w[n])j�n � �min + 2" :It completes the proof.We now consider the worst case problem. As above, if 8i; �i > 0; �i > 0, thenthe lim sup is a limit in the de�nition of �max. As opposed to the optimal case,the worst case problem is completely solved. We recall the main result; it istaken from [16] and it follows from the (max,+) spectral theorem (the mostfamous and often rediscovered result in the (max,+) semiring, see [14,4,27]and the references therein).Proposition 5 Let U = (�; �; �) be a trim (see x3.2) (max,+) automaton ofdimension k. Then, �max(U) is equal to �max(M), the maximal eigenvalue of9



the matrix M = La2A �(a). That is�max(U) = M1�l�k Mi1;::: ;il(Mi1i2 � � �Mili1)1=l = max1�l�k maxi1;::: ;il Mi1i2 + � � �+Mili1l :Let aij be such that �(aij)ij = maxa2A �(a)ij and let (i1; : : : ; il) be such that(Mi1i2 + � � �+Mili1)=l = �max(M) (we say that (i1; : : : ; il) is a maximal meanweight circuit of M). Then (ai1i2 � � � aili1)! is a worst schedule.In the case of a heap automaton, there exists a worst schedule of the form u!,where the period u is such that 8a 2 A; juja � 1. For a heap automaton withtwo pieces (a and b), a worst schedule can always be found among a!, b! and(ab)!. An example where the worst schedule is indeed (ab)! appears in Figure18.3.2 Deterministic automatonA (max,+) automaton (�; �; �) is trim if for each state i; there exist words uand v such that ��(u)i > 0 and �(v)�i > 0. It is deterministic if there existsexactly one i such that �i > 0; and if for all letter a and for all i, there existsat most one j such that �(a)ij > 0. It is complete if for all letter a and for alli, there exists at least one j such that �(a)ij > 0.A heap automaton is deterministic if and only if there is a single slot. On theother hand, a heap automaton is obviously always trim and complete. In thecourse of the paper, we consider other types of (max,+) automata: Cayley andcontour-completed automata. These automata will be deterministic, trim andcomplete.Let U = (�; �; �) be a deterministic and trim (max,+) automaton over thealphabet A. Let U 0 be the (min,+) automaton de�ned by the same triple (with0 = +1). Let yU and yU 0 be the maps recognized by U and U 0 respectively.Since U is deterministic, it follows that yU 0(w) = yU (w) if yU (w) 6= �1 andyU 0(w) = +1 if yU (w) = �1. De�ning the (min,+) matrix N = mina2A �(a)and applying the (min,+) version of Proposition 5 (replace max by min ev-erywhere in the statement of the Proposition), we get that�min(U) = �min(U 0) = �min(N) ; (14)the minimal eigenvalue of N . Also if (i1; : : : ; il) is a minimal mean weightcircuit, then (ai1i2 � � � aili1)! is an optimal schedule.Proposition 6 Let U = (�; �; �) be a deterministic, complete and trim(max,+) automaton over the alphabet A. Assume that M = La2A �(a) is10



an irreducible matrix (i.e. 8i; j;9k;Mkij > 0). We de�ne the (R+;+;�) ma-trix P by Pij = Pa2A p(a) � 1f�(a)ij > 0g. Let � be the unique vec-tor satisfying � � P = � and Pi �(i) = 1. The expected growth rate is�E(U) = Pi �(i) �Pj;a p(a)�(a)ij1f�(a)ij > 0g� (the products are the usualones).Proposition 6 is proved in [16]. It follows from standard results in Markovchain theory (P is the transition matrix and � is the stationary distribution).A consequence of Proposition 6 is that �E(U) can be written formally as arational fraction of the probabilities of the letters. That is �E(U) = R=S andR and S are real polynomials over the commuting indeterminates p(a); a 2 A.More generally, it is possible, under the assumptions of Prop. 6, to obtain theformal power series s = Pn2N(Pw2An p(w) � y(w))xn as a rational fraction(over the indeterminates x; p(a); a 2 A), see for instance [8].Finitely distant automata. Two (max,+) automata U = (�; �; �) and V =(
; �; �) de�ned over the same alphabet A are said to be �nitely distant if8><>: ��(w)� = 0() 
�(w)� = 0 ;9M <1; supw;��(w)� 6=0 j��(w)� � 
�(w)�j �M : (15)Two heap automata (I;M;1) and (I 0;M;1) are �nitely distant. Indeed, ac-cording to (3), we haveIM(w)1� I 0M(w)1 � jIM(w)� I 0M(w)j� � jI � I 0j� :The asymptotic problems are equivalent for two �nitely distant automata Uand V. That is �E(U) = �E(V), �min(U) = �min(V) and optimal schedulescoincide.Since most heap automata are not deterministic, we can not apply the resultsin (14) and Proposition 6 directly to them. We often use the following pro-cedure: Given a (max,+) automaton, �nd a deterministic, trim, and �nitelydistant automaton, then apply the above results to the new automaton.4 Balanced WordsBalanced and Sturmian words appear under various names and in various areaslike number theory and continued fractions [28], physics and quasi-crystals [23]or discrete event systems [24,21]. For reference papers on the subject, see [7,9].A �nite word u is a factor of a (�nite or in�nite) word w = w1w2 � � � if u11



is a �nite subsequence of consecutive letters in w, i.e. u = wiwi+1 � � �wi+n�1for some i and n. A (�nite or in�nite) word w is balanced if j juja � jvjaj � 1for all letter a and for all factors u; v of w such that juj = jvj. The balancedwords are the ones in which the letters are the most regularly distributed. Theshortest non-balanced word is aabb.An in�nite word u is ultimately periodic if there exist n 2 N� and l 2 N� suchthat ui+l = ui for all i � n. A Sturmian word is an in�nite word over a twoletters alphabet which is balanced and not ultimately periodic.We now de�ne jump words. Let us consider �1; �2 2 R�+ and 
 2 R+; 
 < �2.We label the points fn�1; n 2 N�g by a, and the points fn�2+
; n 2 N�g by b.Let us consider the set fn�1; n 2 N�g [ fn�2+ 
; n 2 N�g in its natural orderand the corresponding sequence of labels. Each time there is a double point,we choose to read a before b. We obtain the jump word with characteristics(�1; �2; 
). Jump words are balanced. If �1=�2 is rational then w is periodic;if �1=�2 is irrational then w is Sturmian.
a

α1 2α

ab b b b b b bba a


 Fig. 3. Representation of the jump word (�1; �2; 
).It is also possible to de�ne words as above except that we read b before awhenever there is a double point. These words are still balanced and we stillcall them jump words (below, when necessary, we will precise what is theconvention used for double points).A more common but similar description of jump words uses cutting sequences.There exists an explicit arithmetic formula to compute the n-th letter in agiven jump word (using the so-called mechanical characterization, see [9]).Optimal schedules and balanced words. We prove in Theorem 14 that ina heap model with two pieces, there always exist an optimal schedule whichis balanced. If we still consider a two letter alphabet but a general (max,+)automaton, then this is not true anymore. The counter-example below wassuggested to us by Thierry Bousch (personal communication, 1999). Considerthe deterministic (max,+) automaton (�; �;1) represented in Figure 4. It iseasy to check that �min = 1 and that an optimal schedule is the non-balancedword (aabb)!. No balanced word is optimal in this example.12



1 a j 1b j 1 b j 1a j 1a j 2 a j 2b j 2b j 21 11Fig. 4. (Max,+) automaton with no balanced optimal schedules.5 Completion of Pro�les and Pieces5.1 Cayley automatonGiven A in Rk�lmax, we de�ne �(A) in Rk�lmax by �(A)ij = Aij � jAj� if jAj� 6= 0and �(A) = A = 0 otherwise. We have j�(A)j� = 1 (except if A = 0). We saythat �(A) is the normalized matrix associated with A.Let us consider a (max,+) automaton U = (�; �; �) over the alphabet A. Wede�ne �(U) = f�(��(w)); w 2 A�g : (16)In the case of a heap automaton H, �(H) is the set of normalized uppercontours.Assume that �(U) is �nite. Then we de�ne the Cayley automaton of U asfollows. It is the deterministic (max,+) automaton (�; �; 
) of dimension �(U)over the alphabet A, where for u; v 2 �(U); a 2 A,�u = 8<:j�j� if u = �(�)0 otherwise ; �(a)uv = 8<:ju�(a)j� if �(u�(a)) = v0 otherwise : ;and 
u = u�. It follows from this de�nition that for w 2 A�, �(w)uv =ju�(w)j� if �(u�(w)) = v and �(w)uv = 0 otherwise. Hence we have��(w)
= ��(�)�(w)�(�)�(�(�)�(w))
�(�(�)�(w))= j�j� j�(�)�(w)j� �(�(�)�(w))�= j��(w)j� �(��(w))� = ��(w)� : (17)We just proved that the automaton U and its Cayley automaton recognize thesame map (see also [16]). 13



The dimension of the Cayley automaton is in general much larger than theone of U . However, it is deterministic, complete, and assuming for instancethat 8i; �i > 0, it is also trim. In particular when H is a heap automaton and�(H) is �nite, then the Cayley automaton is deterministic, complete and trim.The Cayley automaton is used in x7.2.The procedure described above is similar to the classical determinization al-gorithm for Boolean automata. The di�erence is of course that �(U) is always�nite in the Boolean case.5.2 Contour-completed automatonGiven a heap model H, it is easy to see that �(H) is in�nite as soon as thereexist two pieces a and b whose slots are not the same. This motivated theintroduction in [20] of the re�ned notion of normalized completed contours. Insome cases, the set of such contours will be �nite whereas �(H) is in�nite. Here,we recall only the results that will be needed. For details, and in particularfor an algebraic de�nition of completion in terms of residuation, see [20].Let us consider a heap model H = (A;R; R; u; l; I), also described as theheap automaton H = (I;M;1). We associate with the piece a 2 A, the uppercontour piece a and the lower contour piece a de�ned as followsl(a) = u(a); u(a) = u(a); and l(a) = l(a); u(a) = l(a) :We still denote byM(a);M(a), the matrices de�ned as in (4) and associatedwith the new pieces a; a.An example of upper and lower contour pieces is provided in Figure 5. Forclarity, pieces of height 0 are represented by a thick line.
piece apiece apiece aFig. 5. A piece and the associated upper and lower contour pieces.Given a vector x 2 RRmax, interpreted as the upper contour of a heap, we de�ne14



the completed contour �(x) 2 RRmax as follows�(x)i = min jxj�; minaji2R(a)xM(a)i! : (18)The vector �(x) can be loosely described as the maximal upper contour suchthat the height of a heap piled up on x is the same as the height of a heappiled up on �(x). More precisely, we have8w 2 A�; �(x)M(w)1 = xM(w)1 : (19)For the sake of completeness, let us prove (19). Given a word w = w1 � � �wn,we de�ne R(w) = R(w1) [ � � � [R(wn) : (20)We are going to prove the following results which put together imply (19)8i 2 R(w); �(x)M(w)i = xM(w)i (21)8i 62 R(w); xM(w)i � �(x)M(w)i � jxM(w)j� : (22)It follows from the de�nition that (21) and (22) hold for the empty word e(setting R(e) = ;). Assume now that (21) and (22) hold for all words of lengthless or equal than n. We consider the word wa where w is of length n and ais a letter.If i 62 R(a) and i 2 R(w), then�(x)M(w)M(a)i = �(x)M(w)i = xM(w)i = xM(w)M(a)i :If i 62 R(a) and i 62 R(w), thenxM(w)M(a)i = xi � �(x)i = �(x)M(w)M(a)i� jxj� � jxM(w)M(a)j� :If i 2 R(a), then 15



�(x)M(w)M(a)i = Mj2R(a)�(x)M(w)jM(a)ji= Mj2R(a)\R(w)�(x)M(w)jM(a)ji � Mj2R(a);j 62R(w)�(x)M(w)jM(a)ji= Mj2R(a)\R(w)xM(w)jM(a)ji � Mj2R(a);j 62R(w)�(x)jM(a)ji� Mj2R(a)\R(w)xM(w)jM(a)ji � �(x)M(a)i= Mj2R(a)\R(w)xM(w)jM(a)ji � xM(a)i = xM(w)M(a)i :Since obviously �(x)M(w)M(a)i � xM(w)M(a)i, we get that�(x)M(w)M(a)i = xM(w)M(a)i. This concludes the proof of (21)and (22), hence of (19).Given a contour x 2 RRmax, we de�ne the normalized completed contour '(x) =�(�(x)). Let us de�ne '(H) = f'(IM(w)); w 2 A�g : (23)Let us assume that '(H) is �nite. Then we de�ne the contour-completed au-tomaton of H. It is a deterministic, complete and trim (max,+) automatonover the alphabet A, of dimension '(H). It is de�ned by (�; �;1) where forx; y 2 '(H); a 2 A,�x = 8<:j�(I)j� if x = '(I)0 otherwise ; �(a)xy = 8<:j�(xM(a))j� if '(xM(a)) = y0 otherwise :The automaton H and its contour-completed automaton recognize the samemap, i.e. 8w 2 A�; IM(w)1 = ��(w)1 :The proof is analogous to the one of (17). The contour-completed automatonis used several times in x7, see for instance Example 16.5.3 Piece-completed heap automatonAfter having de�ned the completion of contours, we introduce in this sectionthe completion of pieces.We de�ne the upper-completed pieces a�; a 2 A, and the lower-completed piecesa�; a 2 A; as follows: R(a�) = R(a�) = R(a) and16



l(a�) = l(a); 8i 2 R(a); u(a�)i = minxji2R(x) maxj2R(x)(u(a)j + l(x)i � l(x)j) (24)u(a�) = u(a); 8i 2 R(a); l(a�)i = maxxji2R(x) minj2R(x)(l(a)j + u(x)i � u(x)j) : (25)We check easily that u(a�) � l(a�) and u(a�) � l(a�), hence we have indeedde�ned pieces. Let us comment on this de�nition. Let x be a piece such thatR(x) \ R(a) 6= ;. Let a0 be the piece obtained by piling up a and the partof the lower contour piece x corresponding to the slots R(x) \ R(a). Thepiece a0 is such that the heaps a0x and ax are identical. Hence, the piece a�can be interpreted as the piece with lower contour l(a) and with the largestpossible upper contour such that the asymptotic behavior of a heap is notmodi�ed when replacing the occurrences of a by a�. There is an analogousinterpretation for the pieces a�. An illustration of upper and lower completionis given in Example 8 and Figure 6.With the heap automaton H = (I;M;1), we associate the heap automatonH� = (I;M�;1) de�ned by M�(a) =M(a�), and the heap automaton H� =(I;M�;1) de�ned by M�(a) =M(a�).Lemma 7 A heap automaton H is �nitely distant from both the heap automa-ton H� and the heap automaton H�.PROOF. Let us setK� = Ma2A Mi;j2R(a)M(a�)ij �M(a)ij; K� = Ma2A Mi;j2R(a)M(a�)ij �M(a)ij :We want to prove the following inequalities, for all w 2 A�,1� IM�(w)1� IM(w)1� K� (26)1� IM�(w)1� IM(w)1� K� : (27)Since we have 8i; j; M�(a)ij �M(a)ij; M�(a)ij �M(a)ij, the left-hand sideinequalities in (26) and (27) follow immediately. Let us prove the right-handside inequality in (26), the proof of the one in (27) being similar.First of all, for two words x and y over the alphabet A, we have (where R(x)and R(y) are de�ned as in (20))R(x) \R(y) = ; =) M(x)M(y) =M(y)M(x) =M(x)�M(y) : (28)To prove (28), it is enough to remark that it follows from the de�nition in (4)that: 8x 2 A�;8i 62 R(x);M(x)ii = 1; 8i; j 62 R(x); i 6= j;M(x)ij = 0.17



We need another intermediary result: for any two pieces a; b 2 A, we have8i 2 R(a);8j 2 R(b); M(a�b�)ij =M(ab�)ij : (29)If R(a) \R(b) = ;, then M(a�b�)ij =M(ab�)ij = 0. Otherwise we haveM(a�b�)ij = Mk2R(a)\R(b)M(a�)ikM(b�)kj= Mk2R(a)\R(b)u(a�)k � l(a�)i + u(b�)j � l(b�)k= Mk2R(a)\R(b)u(a�)k � l(a)i + u(b�)j � l(b)k� Mk2R(a)\R(b) Ml2R(b)(u(a)l + l(b)k � l(b)l)� l(a)i + u(b�)j � l(b)k= Ml2R(b)u(a)l � l(a)i + u(b�)j � l(b�)l=Ml M(a)ilM(b�)lj = M(ab�)ij :Furthermore, it is immediate that M(a�b�)ij �M(ab�)ij. This concludes theproof of (29).Obviously, the right inequality in (26) holds for words of length 1. Let usassume that it holds for all words of length n. Let w = w1 � � �wn+1 be a word oflength n+1. Assume there exists i 2 f1; � � �ng such that R(wi)\R(wi+1) = ;,then using (28), we getM(w1 � � �wn+1) =M(w1 � � �wi�1wi+1 � � �wn+1)�M(w1 � � �wiwi+2 � � �wn+1) ;with an analogous equality for M�. Setting u = w1 � � �wi�1wi+1 � � �wn+1 andv = w1 � � �wiwi+2 � � �wn+1, we deduce that we haveIM�(w)1� IM(w)1= IM�(u)1� IM�(v)1� IM(u)1� IM(v)1� (IM�(u)1� IM(u)1)� (IM�(v)1� IM(v)1)�K� ;where the last inequality is obtained by applying the recurrence assumption tothe words u and v which are of length n. Assume now that R(wi)\R(wi+1) 6= ;for all i 2 f1; : : : ; ng. Let j be such that IM�(w)1 = IM�(w)j. Assume thatj 62 R(wn+1), then IM�(w)1 = IM�(w1 � � �wn)1 andIM�(w)1� IM(w)1= IM�(w1 � � �wn)1� IM(w)1� IM�(w1 � � �wn)1� IM(w1 � � �wn)1 � K� :18



The case j 2 R(wn+1) remains to be treated. We obtain, using recursively(29), that IM�(w)j = IM(w�1 � � �w�n+1)j = IM(w1 � � �wnw�n+1)j :We conclude thatIM�(w)1� IM(w)1 � IM(w1 � � �wnw�n+1)j � IM(w1 � � �wnwn+1)j � K� ;by de�nition of K�. This completes the proof.We de�ne the bi-completed pieces a��; a 2 A, as follows: R(a��) = R(a) andl(a��) = l(a�); 8i 2 R(a); u(a��)i = minxji2R(x) maxj2R(x)(u(a�)j + l(x�)i � l(x�)j) :Here the pieces a��; a 2 A, are obtained by lower-completion �rst and thenupper-completion. We can also de�ne pieces, say â��; a 2 A; by performingupper-completion �rst and then lower-completion, that is: R(â��) = R(a) andu(â��) = u(a�); 8i 2 R(a); l(â��)i = maxxji2R(x) minj2R(x)(l(a�)j + u(x�)i � u(x�)j) :In general, the pieces a�� and â�� are di�erent, in other words the operations ofupper and lower-completion do not commute. An example of bi-completion isprovided in Figure 6. On this example, the pieces a�� and â�� (resp. b�� and b̂��)are di�erent.Example 8 Consider the heap automaton with pieces de�ned byl(a) = (1;1); u(a) = (1; 3); and l(b) = (1;1); u(b) = (2; 3) :It is simpler to obtain the completed pieces graphically, using the intuitiondescribed above. We have represented in Figure 6 the upper, lower and bi-completed pieces: fa�; b�g; fa�; b�g; fa��; b��g and fâ��; b̂��g.The heap automaton H�� = (I;M��;1), over the alphabet A, de�ned byM��(a) = M(a��), is called the piece-completed heap automaton associatedwith H = (I;M;1).Lemma 9 A heap automaton H and the associated piece-completed automa-ton H�� are �nitely distant.PROOF. By de�nition, we have H�� = (H�)�. By applying Lemma 7 twice,we get the result. 19



b� â��b� b��a��a�a�ab b̂��
Fig. 6. Two pieces and the associated upper-completed, lower-completed andbi-completed pieces.Given a set of pieces A, let us denote by A�;A�, and A�� the upper-completed,lower-completed and bi-completed sets of pieces. Given two pieces a and b, wesay that r is a contact slot for ab if M(ab)ij = M(a)irM(b)rj;8i 2 R(a); j 2R(b) (visually, a is in contact with b at slot r in the heap ab).Lemma 10 We have (A�)� = A�, (A�)� = A� and (A��)�� = A��. In words,a set of lower-completed (resp. upper-completed or bi-completed) pieces is leftunchanged by performing another lower (resp upper or bi) completion.PROOF. The arguments below are based on the following immediate remark:Given a and b in the same set of pieces, if i is a contact slot of ab thenl(b�)i = l(b)i and u(a�)i = u(a)i.By de�nition we have, 8a 2 A;8i 2 R(a);9b 2 A; i 2 R(b);9j(i) 2 R(b);l(a�)i = l(a)j(i) + u(b)i � u(b)j(i) :It implies that j(i) is a contact slot for ba and that both i and j(i) are contactslots for ba�. Obviously, it implies that i is a contact slot for b�a� and weconclude that l((a�)�)i = l(a�)i. This completes the proof of (A�)� = A�. Theproof of (A�)� = A� is similar.Since i is a contact slot for b�a�, we also obtain that u(b��)i = u(b�)i. Hence,for all k, we haveM(b��)ki =M(b�)ki. We also have that i is a contact slot forb�a��. Using this together with (29), we get that 8k 2 R(b);8l 2 R(a),M(b��a��)kl =M(b�a��)kl =M(b�)kiM(a��)il =M(b��)kiM(a��)il :It implies that l((a��)�)i = l(a��)i. We deduce that we have (a��)� = a�� and wecan prove in a similar way that (a��)� = a��. We conclude that (A��)�� = A��.20



Both the contour completion of x5.2 and the above piece completion are basedon the idea of local transformations which do not modify the asymptotic be-havior of heaps. However, they are di�erent: the completed contours are notthe upper contours of the heaps of completed pieces.6 Minimal RealizationThe goal of this section is to prove that given a heap automaton with twopieces, there exists a �nitely distant one of dimension at most 3, Theorem 12.A set of bi-complete pieces is a set A such that A�� = A. From now on, wealways implicitly consider bi-complete pieces. Due to Lemma 9 and 10, we canmake this assumption without loss of generality.Let H = (I;M;1) be a heap automaton with set of slots R and let ~R be asubset of R. The heap model obtained by restriction of H to ~R is denoted byHj ~R and de�ned by Hj ~R = (Ij ~R;Mj ~R� ~R;1) (visually, the new pieces are theold ones restricted to ~R).Lemma 11 Let H be a heap automaton on the alphabet A and with set ofslots R. Let ~R be a subset of R. The automaton Hj ~R is �nitely distant fromH if and only if ~R contains a contact slot for each word ab; a; b 2 A; such thatR(a) \R(b) 6= ;.PROOF. Let H = (I;M;1). Assume that ~R contains at least one contactslot for each ab such that R(a) \ R(b) 6= ;. Let (a; b) be such a couple. Wehave, by de�nition of a contact slot,M(ab)j ~R� ~R =M(a)j ~R� ~RM(b)j ~R� ~R =Mj ~R� ~R(ab) : (30)Let us consider a word w 2 A�. Using repeatedly the equality in (28), weobtain thatM(w) = Lv2I(w)M(v), where v belongs to I(w) if v is a subwordof w and if two consecutive letters of v, say vi and vi+1, are such that R(vi) \R(vi+1) 6= ;. For each word v 2 I(w), we obtain by using repeatedly (30)that M(v)j ~R� ~R = Mj ~R� ~R(v). We deduce that M(w)j ~R� ~R = Mj ~R� ~R(w). Weconclude easily that1� supw2A� nIM(w)1� Ij ~RMj ~R� ~R(w)1o= supw2A� nIM(w)1� IM(w)j ~R1o � jIj� 
 [Ma2A jM(a)j�]2 :21



Hence, Hj ~R is �nitely distant from H. We have shown that the condition issu�cient. Let us prove that it is necessary. Assume that ab;R(a) \ R(b) 6= ;,has no contact slot in ~R. Let � be the minimal gap between a and b in theheap ab over the slots ~R. Then we have jM(ab)j� � jMj ~R� ~R(ab)j� = � > 0.It implies that jM((ab)n)j� � jMj ~R� ~R((ab)n)j� � n� �, showing that H andHj ~R are not �nitely distant.Theorem 12 Let H = (I;M;1) be a heap automaton with two pieces. Overthe same alphabet, there exists a heap automaton ~H = (~I; ~M;1) of dimensionat most 3 and which is �nitely distant from H.PROOF. By choosing one contact slot for each one of the words aa; ab; ba andbb, we obtain a set ~R of cardinality at most 4 and such that the automatonHj ~R is �nitely distant from H, see Lemma 11. We now prove that 3 slotsare always enough. We de�ne the application c : R ! P(A2), where P(A2)denotes the set of subsets of A2. The set c(r) contains xy if r is a contactslot of xy. Assume that R(a) \R(b) 6= ; and consider a slot r 2 R(a) \R(b).Let us prove that c(r) must contain words starting with a and b and words�nishing with a and b. Assume for instance that c(r) does not contain anyword starting with a. Then, according to (24), there exists x 2 A such thatu(a�)r = maxj2R(x)u(a)j + l(x)r � l(x)j :Since ax does not belong to c(r), the maximum above is attained for j 6= r andwe have u(a�)r > u(a)r. This contradicts the fact that A is a set of bi-completepieces.To summarize, we must havefaa; bbg � c(r) or fab; bag � c(r) : (31)If we have faa; bbg � c(r) (resp. fab; bag � c(r)), we complete the slot r witha contact slot for the heap ab and one for the heap ba (resp. for aa and bb).We have a set of at most 3 slots which satis�es the required properties.Now assume that R(a)\R(b) = ;. It is enough for ~R to contain a contact slotof aa and one of bb, hence to be of cardinality 2, for Hj ~R to be �nitely distantfrom H. This completes the proof.Performed on the original heap automaton, instead of the piece-completedone, the above argument would not work. Consider the heap model H ofdimension 4 de�ned by l(a) = (1;1; 1;0); u(a) = (3; 2; 3;0); l(b) = (0; 1;1;1)and u(b) = (0; 3; 2; 3). There exists no proper subset ~R of R such that Hj ~R is�nitely distant from H. 22



Example 13 Let us illustrate Theorem 12. We consider the heap automatonH = (1;M;1) of dimension 4 and consisting of the two bi-complete piecesde�ned byl(a) = (1; 3; 2;0); u(a) = (4; 4; 5;0); and l(b) = (0; 2; 3;1); u(b) = (0; 5; 4; 4) :We have c(1) = faag; c(2) = fab; bag; c(3) = fab; bag and c(4) = fbbg. Here,we can choose either ~R = f1; 2; 4g or f1; 3; 4g and the heap automaton Hj ~Rwill be �nitely distant from H. This can be `checked' on Figure 7. In this
a b baFig. 7. A heap automaton of dimension 4 and a �nitely distant one of dimension 3.example, we do not always have 1M(w)1 = 1Mj ~R� ~R(w)1. However we cancheck that 1 � 1M(w)1� 1Mj ~R� ~R(w)1 � 1.Lemma 11 and Theorem 12 are minimal realization type of results. Here isthe generic problem of this kind: Given an automaton with multiplicities in asemiring, �nd another automaton recognizing the same map and of minimaldimension.In a commutative �eld, the minimal realization problem is solved, see [8] for aproof and references. InRmax, it is a well-known di�cult and unsolved problem,see [17] for partial results and references. Here, our result is speci�c in severalways. First, we look at a particular type of (max,+) automata, heap automatawith two pieces. Second, we look for a realization by a heap automaton and notby an arbitrary (max,+) automaton. Third, we only require an approximatetype of realization, see (15).6.1 Classi�cation of heap models with two piecesAs a by-product of Theorem 12, to study heap automata with two pieces, itis enough to consider automata with bi-complete pieces and of dimension at23



most 3. We are going to show that there are only four cases which need to betreated (up to a renaming of pieces and slots) which are:H = (fa; bg; f1; 2g; R; u; l; I) R(a) = f1g; R(b) = f2gR(a) = f1; 2g; R(b) = f1; 2gR(a) = f1; 2g; R(b) = f2gH = (fa; bg; f1; 2; 3g; R; u; l; I) R(a) = f1; 2g; R(b) = f2; 3g :We recall that the function c(:) was de�ned in the proof of Theorem 12.(i) If R(a)\R(b) = ;, we have seen in the proof of Theorem 12, that the heapmodel can be represented with two slots only, one for each piece.(ii) Let us assume that R(a) = R(b). Let r be such that aa 2 c(r). Using(31), we have either faa; bbg � c(r) or faa; ab; bag � c(r). If we are in thesecond case, we complete r with a contact slot for bb. If we are in the �rstcase, let us consider a slot r0 such that ab 2 c(r0). We have, as before, eitherfab; bag � c(r0) or fab; aa; bbg � c(r0). If fab; bag � c(r0), then we select theslots fr; r0g. If fab; aa; bbg � c(r0), then we complete r0 with a contact slot forba. In all cases, we obtain a �nitely distant heap model with at most two slots.(iii) Let us assume that R(b) � R(a); R(b) 6= R(a). Let r be a slot such thatbb 2 c(r). Since r 2 R(a) \ R(b), we must have either fbb; ab; bag � c(r) orfaa; bbg � c(r). In the second case, we conclude as in (ii). In the �rst case, wecomplete r with a slot r0 such that aa 2 c(r0). Compared with (ii), there is anew possible situation: two slots fr; r0g with R(a) = fr; r0g and R(b) = frg.(iv) Let us assume that R(a) \ R(b) 6= ;; R(a)nR(b) 6= ;; R(b)nR(a) 6= ;.We consider a slot r 2 R(a) \ R(b) and such that ab 2 c(r). We have eitherfab; aa; bbg � c(r) or fab; bag � c(r). In the �rst case, we complete r with aslot r0 such that ba 2 c(r0). In the second case, we complete r with a contactslot ra for aa and a contact slot rb for bb. Compared with the cases (ii) and(iii), there is a new possible situation: three slots fr; ra; rbg with R(a) = fr; ragand R(b) = fr; rbg.7 Heap Models with Two Pieces: Optimal CaseLet H be a heap model with two pieces. To solve the optimal problem, it issu�cient to consider the typical cases described in x6.1. Two situations needto be distinguished:� H is `determinizable', i.e. there exists a �nitely distant, trim, and determin-24



istic (max,+) automaton;� H is `not-determinizable'.For `determinizable' automata, there exists a periodic optimal schedule. Wewill see below that there are two cases whereH is `not-determinizable'. In bothcases, we are able to identify `visually' the optimal schedules. The resultingtheorem can be stated as follows.Theorem 14 Let us consider a heap model with two pieces. There exists anoptimal schedule which is balanced, either periodic or Sturmian.PROOF. We consider in x7.1-7.4 the four di�erent cases described in x6.1.For each case, we prove that the results of Theorem 14 hold. Furthermore weprovide an explicit way to compute �min(H) and an optimal schedule in eachcase.In the sections below, we always denote the heap model considered by H =(A;R; R; u; l; I) with A = fa; bg and R = f1; 2g or f1; 2; 3g. Viewed as aheap automaton, it is denoted by H = (I;M;1). We always implicitly assumethat we are working with bi-complete pieces. We recall that by modifying theground shape in a heap automaton, we obtain a �nitely distant automaton.Below we choose the ground shape which is the most adapted to each case.If one of the two pieces, say a, satis�es l(a) = u(a), then the optimal problembecomes trivial. We have �min(H) = 1 and a periodic optimal schedule isprovided by a!. From now on, we assume that l(a) 6= u(a) and l(b) 6= u(b).We set ha = Mi2R(a)u(a)i � l(a)i; hb = Mi2R(b)u(b)i � l(b)i :7.1 The case R(a) = f1g; R(b) = f2gWe assume that the ground shape is 1. We claim that the jump word u withcharacteristics (ha; hb; 0) (see x4) is optimal. Furthermore, we have �min(H) =hahb=(ha + hb). An example is provided in Figure 8.We now prove these assertions. Let us pile up the pieces accordingto the jump word u de�ned by (ha; hb; 0). We have, by construction,j xH(u[n])1 � xH(u[n])2 j � max(ha; hb). Hence we have limn xH(u[n])1=n =limn xH(u[n])2=n. Now, as the heap is without any gap, it implies immediatelythat u is optimal. The optimal schedule u is balanced, periodic when ha=hb isrational and Sturmian when ha=hb is irrational, see x4. We have25



bbbbbaaa hbha babbababFig. 8. The jump word (ha; hb; 0) is optimal.�min(H) = limn xH(u[n])1n = limn haju[n]jaju[n]ja+ ju[n]jb = hahbha + hb :To be complete, let us prove that it is not possible to �nd a periodic optimalschedule in the case ha=hb irrational. Let v be a �nite word and let us considerthe schedule v!. Since ha=hb is irrational, we have hajvja 6= hbjvjb. Let usassume that hajvja > hbjvjb. It implies that jvja > jvjhb=(ha + hb). We obtainlimn yH(vn)=jvnj = limn hajvnja=jvnj = hajvja=jvj > hahb=(ha + hb) :7.2 The case R(a) = f1; 2g; R(b) = f1; 2gAs R(a) = R(b) = R, we have �(xM(a)) = �(yM(a)) and �(xM(b)) =�(yM(b)), for all x; y 2 R2. Let us choose the ground shape to be �(1M(a)).We have �(H) = f�(IM(a)); �(IM(b))g. Hence we can solve the optimalproblem using the Cayley automaton, see x5.1. Applying the results of x3.2, itis always the case that one of the schedules a!; b! or (ab)! is optimal. Theseschedules are obviously balanced.Example 15 Consider the heap automaton H with pieces de�ned byl(a) = (1;1); u(a) = (3; 2); and l(b) = (1; 1); u(b) = (2; 3) :We have represented the pieces in Fig. 9. We check easily that �(H) =f((1;�1); (�1;1)g (the ground shape being (1;�1)). Let (�; �;1) be the Cayleyautomaton and let M = min(�(a); �(b)). We have � = (1;0) and�(a) = 0B@ 2 03 01CA ; �(b) = 0B@ 0 30 21CA ; M = 0B@ 2 33 21CA :The minimal eigenvalue of the Rmin matrix M is 2, the circuits of minimal26



ab 1 1 a j 3(1;�1)a j 2 b j 3 b j 21 (�1;1)Fig. 9. Heap model with two pieces and its Cayley automaton.mean weight are f2g and f3g and M22 = �(a)22;M33 = �(b)33. We have�min(H) = 2 and a! and b! are optimal schedules.7.3 The case R(a) = f1; 2g; R(b) = f2gThis case could be reduced to the case R(a) = f1; 2g; R(b) = f1; 2g (theone in x7.4) by adding a third slot and setting R(b) = f2; 3g and u(b)3 =u(b)2; l(b)3 = l(b)2. We treat the case R(a) = f1; 2g; R(b) = f2g separatelyin order to get more precise results. Let us set � = l(a)1 � l(a)2. For u =(u1; u2) 2 R2, we obtain, see (18),�(u)1=min(uM(a)1; juj�) = min(u1 � �u2; u1 � u2)�(u)2=min(uM(a)2; uM(b)2; juj�) = u2:Hence, we have '(u) = 8>><>>:(1;1) if u1 � u2 � �u2(�;1) if u1 � �u2 � u2�(u1; u2) otherwise : (32)Assume that � � 0 and let the ground shape be equal to 1M(a). We have,8u 2 R2; '(uM(a)) = '(1M(a)). We deduce that'(H) = f'(1M(abn)); n 2 Ng :We also have 1M(abn+1)�1M(abn) = (1; hb). By assumption, we have hb > 0.Hence there exists a smallest integer m such thatu(a)2 +m� hb � u(a)1 () 1M(abm)2 � 1M(abm)1 � 0 :27



It implies, using (32), that 8n � m;'(1M(abn)) = (1;1). We conclude that'(H) = f'(1M(abn)); n 2 f0; : : : ;mgg :We have proved that '(H) is �nite. In the case � � 0, a similar analysis holds.In all cases we can solve the optimal problem using the contour-completedautomaton and the results of x3.2. We have represented in Figure 10, the��(1M(ab)) ��(1M(a))a�(1; 1)b b b bb a aaa � � ���(1M(abm�1))Fig. 10. Contour-completed automatoncontour-completed automaton in the case m � 3 and � � 0 (without the mul-tiplicities). There are exactly m + 2 simple circuits in this automaton withrespective labels b and abn; 0 � n � m. For 0 � n � m � 2, the multiplic-ity to go from '(1M(abn)) to '(1M(abn+1)) is 1 while the one to go from'(1M(abn+1)) to '(1M(a)) is always equal to ha. Hence the circuits of labelabn; 0 � n � m � 2; are not of minimal mean weight. We conclude that anoptimal schedule can be found among the schedules (abm)!,(abm�1)! or b! (ifm = 0, then either a! or b! is optimal). These schedules are balanced.Example 16 We consider the heap automaton with pieces a and b de�ned byl(a) = (1;1); u(a) = (3;1); and l(b) = (0;1); u(b) = (0; 1) :The pieces are represented in Figure 11. The completion operation has thea 1b (1;�1)(1; 1) (1;�2) (1;�3)b j 1 b j 1 b j 1 a j 3b j 11 a j 3a j 3 a j 31 1 1Fig. 11. Heap model and its contour-completed automaton.following e�ect: �(m;n) = (m;n) if m � n and �(m;n) = (n; n) if m <n. Hence we have '(H) = f(1;1); (1;�1); (1;�2); (1;�3)g. Let (�; �;1) bethe contour-completed automaton and let M = min(�(a); �(b)). The minimaleigenvalue of M is �min(M) = 3=4 and the circuit of minimal mean weight islabelled by abbb. We conclude that �min(H) = 3=4 and that an optimal scheduleis (abbb)!. 28



7.4 The case R(a) = f1; 2g; R(b) = f2; 3gTwo situations need to be considered: (i) the case u(a)2 = l(a)2 andu(b)2 = l(b)2; (ii) the case u(a)2 > l(a)2 (with the case u(b)2 > l(b)2 beingtreated similarly).Case (i): u(a)2 = l(a)2 and u(b)2 = l(b)2Assume that there exists an in�nite heap w with an in�nite number of eachpiece and without any `gap' at slots 1 and 3. Now, we focus on the secondslot of the heap w. The heights of the pieces a and b at slot 2 are given byfI1+l(a)2�l(a)1+nha; n 2 Ng and fI3+l(b)2�l(b)3+nhb; n 2 Ng respectively.We set the ground shape to beI = (ha � l(a)2 + l(a)1;1; hb � l(b)2 + l(b)3) :The heights of the pieces at slot 2 are now given by fnha; n 2 N�g andfnhb; n 2 N�g. Hence, the sequence of labels (read from bottom to top)at slot 2 is the jump word w de�ned by (ha; hb; 0). Now, if we pile upthe pieces according to w, we indeed obtain a heap without any gap onslots 1 and 3. An illustration is given in Figure 12. On slot 2, the pieceshave been shortened to facilitate their identi�cation. If ha=hb is rationalbbbaaa babababbFig. 12. The optimal heap is the jump word babbaba � � � .then w is balanced and periodic and otherwise it is Sturmian. If ha=hb isirrational, there does not exist any periodic optimal schedule. At last, wehave �min(H) = hahb=(ha + hb). The proof is exactly the same as in x7.1.Case (ii): u(a)2 > l(a)2Assume that u(a)2 � l(a)2 > u(a)1 � l(a)1. Thenu(a�)1 = max(u(a)1; u(a)2 � l(a)2 + l(a)1) = u(a)2 � l(a)2 + l(a)1 > u(a)1 :29



This contradicts the fact that a is bi-complete. We conclude that we haveu(a)2� l(a)2 � u(a)1� l(a)1 and in the same way u(b)2� l(b)2 � u(b)3� l(b)3.Given x; y 2 A�, if there is a contact at slot 2 between the last two piecesof the heaps xab and yab (resp. xba and yba) then '(IM(xa)) = '(IM(ya))(resp. '(IM(xb)) = '(IM(yb))). Given x 2 A�, if there is a contact at slot2 between the last two pieces of the heap xab (resp. xba) then it is also thecase in the heap xaab (resp. xbba). It implies that '(IM(xaa)) = '(IM(xa))(resp. '(IM(xbb)) = '(IM(xb))). Let us set the ground shape to be I =(�L; l(a)2�u(a)2;�L) where the real L > 0 is assumed to be large enough tohave IM(u) = (0; l(a)2 � u(a)2;0)M(u) for u = a or b (see Figure 13 for anillustration). It implies that the slot 2 is a contact slot for ab and ba; hence wehave '(IM(aa)) = '(IM(a)) and '(IM(bb)) = '(IM(b)). We deduce that'(H) = f'(I); '(IM(a)); '(IM(b))g[ f'(IM(abw)); '(IM(baw)); w 2 A�gWe assume for the moment that ha=hb is irrational. Let x be the jump word(ha; hb; 0). Let us assume that the in�nite heap abx has no gap on slots 1 and3. Then, the heights of the pieces on slot 2 are:� lower part of piece a: fnha � u(a)2 + l(a)2; n 2 Ng;� upper part of piece a: fnha; n 2 Ng;� lower part of piece b: fnhb; n 2 Ng;� upper part of piece b: fnhb + u(b)2 � l(b)2; n 2 Ng.Since ha=hb is irrational, by density of the points fnhb (mod ha); n 2 Ng inthe interval [0; ha], there exists a couple (p; q) 2 N2 such thatpha � u(a)2 + l(a)2 < qhb < pha :This is a violation of the piling mechanism, see Figure 13-(i) for an illustration.Hence we conclude that there are some gaps on slot 1 or 3 in the heap abx.Let l1 be such that there is no gap at slots 1 and 3 in the heap abx[l1 + 1]and there is a gap at slot 1 or 3 in the heap abx[l1 + 2]. In Figure 13-(i), wehave l1 = 3 and abx[l1] = abbab. Let l2 be such that there is no gap at slots1 and 3 in the heap bax[l2 + 1] and there is a gap at slot 1 or 3 in the heapbax[l2+ 2]. Note that we have l1 � �1 and l2 � �1, and that it is possible tohave l1 = �1 and/or l2 = �1.Let us consider a heap abu (resp. bau), u 2 A�. There are three possible cases.(1) There is no gap at slots 1 and 3 in the heap and u = x[n]; n � l1+1 (resp.u = x[n]; n � l2 + 1). Let xn is the n-th letter of x. If u = x[l1 + 1], then'(IM(abx[l1 + 1])) = '(IM(xl1+1)) if l1 � 0 and '(IM(ab)) = '(IM(b))otherwise. Similarly we have '(IM(bax[l2 + 1])) = '(IM(xl2+1)) if l2 � 0and '(IM(ba)) = '(IM(a)) otherwise.30



0

(i) (ii) (iii)

ba ba I aaa bb ba bbb bba bbFig. 13. (i) Heap abx[3] = abbab, (ii) heap abbabab, (iii) heap abbabbb.(2) There is no gap at slots 1 and 3 and u 6= x[juj]. In this case, we musthave u = x[n]am or u = x[n]bm with m > 0; n � l1 + 1 (resp. m > 0; n �l2 + 1). Assume we have u = x[n]bm, the case u = x[n]am being treatedsimilarly. Since u 6= x[juj], in the heap x[n]bma, there is a contact at slot 2between the last two pieces. We conclude that '(IM(abx[n]bm)) = '(IM(b))(resp. '(IM(bax[n]bm)) = '(IM(b))). This case is illustrated in Figure 13-(iii) where '(IM(abbabbb)) = '(IM(b)).(3) There is a gap somewhere in the heap at slot 1 or 3. This implies thatwe have in the heap u a contact at slot 2 between a piece a and a piece b, orbetween a piece b and a piece a. Considering the last couple (a; b) or (b; a) ofpieces in contact at slot 2, we obtain (for abu, the case bau is treated similarly)'(IM(abu)) = '(IM(abv)); or '(IM(abu)) = '(IM(bav)) ;where the heap abv, or bav, is such that there is no gap at slots 1 and 3.The heap abv, or bav, is in one of the two cases (1) or (2) above. Case (3)is illustrated in Figure 13-(ii) where '(IM(abbabab)) = '(IM(ab)), i.e. u =babab and v = e.To summarize, we have proved that'(H)= fI; '(IM(a)); '(IM(b))g[f'(IM(abx[n])); 0� n � l1g [ f'(IM(bax[n]));0 � n � l2gThe set '(H) is �nite, hence we can apply the results of x3.2 to the contour-completed automaton.Now, let us assume that ha=hb is rational. We still consider the jump word xwith characteristics (ha; hb; 0), which is now periodic, see x4. If the heap abx(or bax) has no gap on slots 1 and 3, then the schedule x is optimal (same31



argument as in x7.1). If the heaps abx and bax both have a gap somewhere onslot 1 or 3, the proof carries over exactly as in the case ha=hb 62 Q.The structure of the countour-completed automaton can be deduced from theabove proof. For simplicity, we denote the state '(IM(w)) by w, and weuse the convention a0 = b; b0 = a. For 0 � n � l1 � 1, there is a transitionabx[n] xn+1�! abx[n+ 1] and a transition abx[n] x0n+1�! x0n+1. For 0 � n � l2 � 1,there is a transition bax[n] xn+1�! bax[n+1] and a transition bax[n] x0n+1�! x0n+1. Inbaaa a ab bbbax[l2 ] abx[l1 ]abb baFig. 14. Outline of the contour-completed automaton.Figure 14, we have represented an outline of the contour-completed automatonin the case l1 > 0; l2 > 0 (ingoing and outgoing arrows as well as some arcsare missing, and the multiplicities have been omitted).Using the above analysis, we can get the value of the multiplicities in thecontour-completed automaton. Doing this, we obtain that there is a cir-cuit of minimal mean weight in the contour-completed automaton of la-bel either: a; b; abx[l1]; bax[l2], or abx[l1]bax[l2], with the conventions x[0] =e; abx[�1] = a; bax[�1] = b. Hence, one of the following schedules is optimal:fa!; b!; (abx[l1])!; (bax[l2])!; (abx[l1]bax[l2])!g. It remains to be proved that(abx[l1])!; (bax[l2])!, and (abx[l1]bax[l2])!g are balanced.We are going to prove that (bax[l2]abx[l1])! is balanced. We treat the casel1 � 0 and l2 � 0. If we have l1 or l2 equal to -1, the argument can be easilyadapted. Due to the de�nition of l1, the following intervals are all disjoint(visually, they correspond to the portions of the second column occupied bythe pieces in the heap abx[l1]. We consider open intervals in Ia and closedones in Ib in order to ensure that the �rst interval in Ia and Ib are indeeddisjoints):Ia= f(nha + l(a)2 � u(a)2; nha); 0 � n � jx[l1]jag;Ib= f[nhb; nhb + u(b)2 � l(b)2]; 0 � n � jx[l1]jbg :In the same way, the following intervals are all disjoint (up to the minus sign,they correspond to the portions of the second column occupied by the piecesin the heap bax[l2]): 32



I 0a= f(�nha + l(a)2 � u(a)2;�nha); 0 � n � jx[l2]jag;I 0b= f[�nhb;�nhb + u(b)2 � l(b)2]; 0 � n � jx[l2]jbg :An illustration of the intervals in Ia;Ib;I 0a and I 0b is provided in Figure 15-(i)-(ii). Let us label the intervals in Ia [ I 0a by a and the ones in Ib [ I 0b byb. If we read the sequence of labels from bottom to top, we obtain the word~x[l2]abx[l1], where ~x[l2] is the mirror word of x[l2] (the mirror word of the wordu = u1u2 � � �un is the word ~u = unun�1 � � �u1). Setting na = jx[l1]ja + 1; nb =jx[l1]jb + 1; n0a = jx[l2]ja + 1, and n0b = jx[l2]jb + 1, we have (by de�nition of l1and l2) (naha + l(a)2 � u(a)2; naha) \ [nbhb; nbhb + u(b)2 � l(b)2] 6= ;;(�n0aha + l(a)2 � u(a)2;�n0aha) \ [�n0bhb;�n0bhb + u(b)2 � l(b)2] 6= ; :Let us choose t 2 (�n0aha+l(a)2�u(a)2;�n0aha)\[�n0bhb;�n0bhb+u(b)2�l(b)2].Let us consider the setS = ft+ nha; 1 � n � na + n0a � 1g [ ft+ nhb; 1 � n � nb + n0b � 1g :By construction, each real of S is in a di�erent interval of Ia;Ib;I 0a or I 0b.Hence, if we read the sequence of labels associated with S from bottom totop, we obtain x[l1 + l2 + 2]. Also by construction, we have t+ (na + n0a)ha 2(naha + l(a)2 � u(a)2; naha) and t+ (nb + n0b)hb 2 [nbhb; nbhb + u(b)2 � l(b)2].
(i) (ii) (iii) (iv)hb ha bbbb bbbbt hahb aa aa�0 Fig. 15. Illustration of the proof; here x[l1] = bab and x[l2] = b.Let us set ma = na + n0a and mb = nb + n0b. We de�ne � = maha �mbhb, seeFigure 15-(iii). By construction, we have either (�) or (��):(�) If � > 0 then � < nha � n0hb for each n; n0 such that 1 � n < ma; 1 �n0 < mb; nha � n0hb > 0.(��) If � < 0 then � > nha � n0hb for each n; n0 such that 1 � n < ma; 1 �n0 < mb; nha � n0hb < 0. 33



Let us assume that � < 0 (the case of Figure 15-(iii)). The other case istreated similarly. Because of the property (��), the sequence of a's and b'scorresponding to S is the same as the one corresponding toft+ nha; 1 � n � ma � 1g [ ft+ nhb(maha)=(mbhb); 1 � n � mb � 1g :Equivalently the jump words (ha; hb; 0) and (ha; hb(maha)=(mbhb); 0) =(ha; hama=mb; 0) have the same pre�x of length l1 + l2 + 2. If we decide toread double points as ba (see x4), then the jump word z with character-istics (ha; hama=mb; 0) is a balanced and periodic word, which is equal to(~x[l2]abx[l1]ba)!: A palindrome is a word equal to its mirror word. The aboveconstruction shows that ~x[l2]abx[l1] is a palindrome (for instance, in Figure 15-(iv), the sequences of a's and b's read from bottom to top, and top to bottom,are the same). It implies that it is impossible to have l1 = l2 (since ~x[l]abx[l] isnever a palindrome). By the same type of arguments, we can prove that x[l1]and x[l2] are also palindromes. Hence we have x[l2]abx[l1]ba = ~x[l2]abx[l1]baand we conclude that (x[l2]abx[l1]ba)! is balanced.The fact that (abx[l1])! and (bax[l2])! are balanced is proved in a similar way.7.5 Greedy schedulingWe treat completely an instance of the jobshop described in the introduction,see Figure 1. The durations of the activities are assumed to be �1 = �4(=4��); �2 = �; �1 = � and �2 = 1��. We assume that 1=15 < � < 1=11. Themodel corresponds to case (ii) in x7.4 above.The contour-completed automaton of H = (�(IM(a));M;1) is representedin Figure 16. The labels of the simple circuits are a; b; ba; ba2 and ba3. Theira j �51 1 b j 1a j 1 a j 11b j 1 1(� � 1;� � 1; 1) (�6 � 1;�5 � 1;1) 1 (�11 � 1; �10 � 1; 1)b j 1� �(1;��;��) a j �16 � 1b j 1Fig. 16. Contour-completed automaton.respective mean weights are �5; 1; 1=2; 1=3 and �15=4. Hence the label of thecircuit of minimal mean weight is ba2 if 4=45 � � and ba3 if � � 4=45. Weconclude that an optimal schedule is(ba3)! if 1=15 < � � 4=45; (ba2)! if 4=45 � � < 1=11 :34



abbba
aa ba ba baa a ba aa aa aaaFig. 17. Model with � = 8=89, greedy schedule and optimal schedule.The greedy scheduling consists in always allocating the resource to the �rst taskwhich is ready to use it (i.e. w[n + 1] = w[n]a, resp. w[n + 1] = w[n]b, if wehave xH(w[n])1 < xH(w[n])3, resp. xH(w[n])3 < xH(w[n])1). Here the greedyschedule is always (ba3)!. We conclude that greedy scheduling is suboptimalin the case � 2 (4=45; 1=11), see Figure 17.This is in sharp contrast with a result from [22] xIV. There, the optimalproblem is studied for the model of Figure 1, but the authors consider aslightly di�erent criterion: minimization of the idle time of the resource. Theyshow that greedy schedules are indeed optimal for this criterion.7.6 Ratio constraintsIn [24,21,22], the authors were primarily interested in the following constrainedoptimal problem: Find w 2 A! minimizing limn yH(w[n])=n while satisfyinglimn jw[n]ja=n = 
 where 
 2 [0; 1] is some given ratio constraint.In a manufacturing model, the motivation is to maximize the throughput whilemeeting a given production ratio. For this constrained problem, and for themodel of Figure 1, it is proved in [21,22] that the optimal schedule is alwaysthe jump word (1 � 
; 
; 0). Two points are worth being noticed. First, theoptimal schedule is balanced and when 
 2 Q, it is of the form u! where u isthe shortest balanced word meeting the ratio constraint. Second, the optimalschedule does not depend on the timings of the model (�1; �2; �1 and �2 inFigure 1).These two properties depend heavily on the speci�c shape of the pieces in themodel of Figure 1. They are not satis�ed in a general heap model with twopieces, as shown below. 35



Example 17 Consider the model of Example 15. We look at the constrainedoptimal problem with ratio 1=2. The optimal schedule of length 2n; n 2 N�;
a aabb babFig. 18. Optimal and worst schedule of ratio 1/2 and length 4.is anbn (or bnan) as illustrated on Figure 18. A possible optimal schedule isaba2b2 � � � anbn � � � . No in�nite balanced word with ratio 1=2 is optimal. Here,the schedule (ab)!, whose period is the shortest balanced word meeting theconstraint, is not an optimal but a worst case schedule! Examples in the samespirit appear in [13], xVI-1 and in [19], x5.1.8 Heap Models with Two Pieces: Average CaseIn this section, products have to be interpreted in the �eld (R;+;�). Westill assume that l(a) 6= u(a) and l(b) 6= u(b), otherwise the average problembecomes trivial.As in x7, the distinction between `determinizable' and `non-determinizable'automata is important. For the `determinizable' case, it is easy to check thatthe automata obtained in x7.1-7.4 are all irreducible. Hence we obtain �E byapplying Prop. 6. Below, we illustrate this case on one example. There are twocases where the heap automaton is `non-determinizable', see x7. In one case,we come up with an explicit formula for �E and in the other case, we expressit as an in�nite series.Determinizable automaton. We consider the heap automaton H of x7.5.Let fp(a); p(b)g be the probability distribution of the pieces. The contour-completed automaton is represented in Figure 16. The corresponding transi-36



tion matrix is (see Prop. 6):P = 0BBBBBBBB@ p(a) 1 � p(a) 0 00 1 � p(a) p(a) 00 1 � p(a) 0 p(a)p(a) 1 � p(a) 0 0 1CCCCCCCCA :Its stationary distribution is � = (p(a)3; 1 � p(a); p(a)� p(a)2; p(a)2 � p(a)3).We conclude that we have, Prop. 6,�E(H) = (�10� + 1)p(a)4 + (15� � 1)p(a)3 � p(a) + 1 :This formula is valid for 1=15 < � < 1=11, see x7.5. For instance, in the case� = 8=89 (the one of Figure 17), we have�E(H) = 989p(a)4 + 3189p(a)3 � p(a) + 1; minp(a) �E(H) = 0:417 for p(a) = 0:849:Case R(a) = f1g; R(b) = f2g. Let (
;F ; P ) be a probability space and letxn; n 2 N�; be independent random variables such that Pfxn = ag = p(a)and Pfxn = bg = p(b). We set xH(n) = IM(x1 � � � xn). The processes xH(n)1and xH(n)2 are transient random walks with respective drifts p(a)ha andp(b)hb. We deduce immediately that �E(H) = max(p(a)ha; p(b)hb).Case R(a) = f1; 2g; R(b) = f2; 3g.We consider the caseR(a) = f1; 2g; R(b) =f2; 3g; u(a)2 = l(a)2; u(b)2 = l(b)2 and ha=hb 62 Q. A simple but lengthycomputation provides the following formula (the details are available fromthe authors on request). Let us denote by u (= u1u2 � � � ) the jump word(ha; hb; 0). We use the convention a0 = b; b0 = a. We set �(a) = ha=(ha + hb),�(b) = hb=(ha + hb) and cn = p(a)bn�(b)cp(b)bn�(a)c=p(un). We have�E(H) = (ha + hb)P1n=1 cnp(u0n)�(u0n) (p(un)b�(un)nc+ 1)P1n=1 cn : (33)One can obtain approximations of �E(H) by truncating the in�nite sums.Computations of �E for closely related models are carried out in [25].9 Conclusion: Heap Models with Three or More PiecesAs recalled in the introduction, the optimal problem for a heap model withan arbitrary number of rational pieces (8a 2 A; u(a); l(a) 2 QRmax) is solved37



in [20]. In Theorem 14, the case of a heap model with two general pieces istreated. We recall the results in the table below.jAj = 2 jAj > 2QRmax periodic periodicRRmax periodic or Sturmian ?Characterizing optimal schedules is an open problem for models with threepieces or more. Generalized versions of jump words appear naturally in somemodels. Let A = fa1; a2; � � � ; akg be the alphabet. We consider �i 2 R�+; 
i 2R+; 
i < �i; for i 2 f1; : : : ; kg. We label the points fn�i + 
i; n 2 N�g byai and we consider the set [ki=1fn�i + 
i; n 2 N�g in its natural order. Thein�nite sequence of labels is called the (hypercubic) billiard sequence withcharacteristics (�i; 
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