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In a heap model, solid blocks, or pieces, pile up according to the Tetris game mechanism. An optimal schedule is an in nite sequence of pieces minimizing the asymptotic growth rate of the heap. In a heap model with two pieces, we prove that there always exists an optimal schedule which is balanced, either periodic or Sturmian. We also consider the model where the successive pieces are chosen at random, independently and with some given probabilities. We study the expected growth rate of the heap. For a model with two pieces, the rate is either computed explicitly or given as an in nite series. We show an application for a system of two processes sharing a resource, and we prove that a greedy schedule is not always optimal.

Introduction

Heap models have recently been studied as a pertinent model of discrete event systems, see Gaubert & Mairesse 18,[START_REF] Gaubert | Task resource models and (max,+) automata[END_REF] and Brilman & Vincent 11,12]. They provide a good compromise between modeling power and tractability. As far as modeling is concerned, heap models are naturally associated with trace monoids, see 30]. It was proved in 19] that the behavior of a timed onebounded Petri net can be represented using a heap model (an example appears in Figure 1). We can also mention the use of heap models in the physics of surface growth, see 5]. The tractability follows essentially from the existence of a representation of the dynamic of a heap model by a (max,+) automaton, see 12,[START_REF] Gaubert | Minimal (max,+) realization of convex sequences[END_REF].

A heap model is formed by a nite set of slots R and a nite set of pieces A. A piece is a solid block occupying a subset of the slots and having a polyomino shape. Given a ground whose shape is determined by a vector of R R and a word w = a 1 a n 2 A , we consider the heap obtained by piling up the pieces a 1 ; : : :; a n in this order, starting from the ground, and according to the Tetris game mechanism. That is, pieces are subject to vertical translations and occupy the lowest possible position above the ground and previously piled up pieces. Let y(w) be the height of the heap w. We de ne the optimal growth rate as min = lim inf n min w2A n y(w)=n. An optimal schedule is an in nite word u 2 A ! such that lim n y(u n])=n = min , where u n] is the pre x of length n of u. An optimal schedule exists under minimal conditions (Proposition 4). We can de ne similarly the quantity max and the notion of worst schedule. The problem of nding a worst schedule is completely solved, see [START_REF] Eilenberg | Automata, languages and machines[END_REF][START_REF] Gaubert | Minimal (max,+) realization of convex sequences[END_REF]. Finding an optimal schedule is more di cult, the reason being the non-compatibility of the minimization with the (max; +) dynamic of the model. [START_REF] Gaubert | Modeling and analysis of timed Petri nets using heaps of pieces[END_REF], it is proved that if the heights of the pieces are rational, then there exists a periodic optimal schedule. If we remove the rationality assumption, the problem becomes more complicated. Here we prove, and this is the main result of the paper, that in a heap model with two pieces, there always exists an optimal schedule which is balanced, either periodic or Sturmian. We characterize the cases where the optimal is periodic and the ones where it is Sturmian. The proof is constructive, providing an explicit optimal schedule.

As will be detailed below, a heap model can be represented using a speci c type of (max,+) automaton, called a heap automaton. A natural question is the following: Given a general (max,+) automaton over a two letter alphabet, does there always exist an optimal schedule which is balanced (for an automaton de ned by the triple ( ; ; ), set y(w) = (w) and de ne an optimal schedule as above)? The answer to this question is no, which emphasizes the speci city of heap automata among (max,+) automata. A counter-example is provided in Figure 4.

We also consider random words obtained by choosing successive pieces independently, with some given distribution. We denote by E the average growth rate of the heap. Computing E is in general even more di cult than computing min . [START_REF] Gaubert | Modeling and analysis of timed Petri nets using heaps of pieces[END_REF], E is explicitly computed if the heights of the pieces are rational and if no two pieces occupy disjoint sets of slots. Here, for models with two pieces, we obtain an explicit formula for E in all cases but one where E is given as an in nite series.

To further motivate this work, we present a manufacturing model studied by machine used in mutual exclusion. Each task is cyclic and a cycle is constituted by two successive activities: one that requires the machine (durations: 1 and 1 respectively) and one that does not (durations: 2 and 2 respectively). Think for instance of the two activities as being the processing and the packing. This jobshop can be represented by the timed one-bounded Petri net of Figure 1. The durations 1 ; 2 ; 1 and 2 are the holding times of the places. As detailed in 19], an equivalent description is possible using the heap model represented in Figure 1. The height of a heap a 1 a n ; a i 2 fa;bg; corresponds to the total execution time of the sequence of tasks a 1 ; : : : ; a n executed in this order. An in nite schedule is optimal if it minimizes the average height of the heap, or equivalently if it maximizes the throughput of the Petri net. We do not make any restriction on the schedules we consider. In particular we do not impose a frequency for tasks a and b. As a justi cation, imagine for instance that the two tasks correspond to two di erent ways of processing the same object. We prove in x7.4 that if 1 = 1 = 0; 2 > 0; 2 > 0; 2 = 2 6 2 Q, then there is a Sturmian optimal schedule; otherwise there exists a balanced periodic optimal schedule. We also show in x7.5 that the greedy schedule is not always optimal.

Assume now that in the model of Figure 1, the successive tasks to be executed are chosen at random, independently, and with some probabilities p(a) and p(b). If 1 or 1 is strictly positive, then we obtain an exact formula for E . It enables in particular to maximize the throughput over all possible choices for p(a) and p(b), see x8 for an example.

Let us compare the results of this paper with other cases where optimality is attained via balance. In Hajek 24], there is a ow of arriving customers to be dispatched between two queues and the problem is to nd the optimal behavior under a ratio constraint for the routings. The author introduces the notion of multimodularity, a discrete version of convexity, and proves that a multimodular objective function is minimized by balanced schedules. Variants and extensions to other open queueing or Petri net models have been carried out in 1,2], still using multimodularity. In a heap model however, one can prove that the heights are not multimodular. [START_REF] Gaubert | Performance evaluation of timed Petri nets using heaps of pieces[END_REF][START_REF] Silva | Optimal allocation sequences of two processes sharing a resource[END_REF], the authors consider the model of Figure 1. They study the optimal behavior and the optimal behavior under a frequency constraint for the letters. Balanced schedules are shown to be optimal and the proofs are based on various properties of these sequences. We consider a more general model. For the unconstrained problem, we prove in Theorem 14 that balanced schedules are again optimal. On the other hand, under frequency constraints, we show in x7.6 that optimality is not attained via balanced words anymore. Our methods of proof are completely di erent from the ones mentioned above.

The paper is organized as follows. In x2 and x3, we de ne precisely the model and the problems considered. We prove the existence of optimal schedules under some mild conditions in x3.1. In x4, we recall some properties of balanced words. We introduce in x5 the notions of completion of contours and completion of pieces in a heap model. We prove in x6 that it is always possible to study a heap model with two pieces by considering an associated model with at most 3 slots. We provide an enumeration of all the possible simpli ed models: there are 4 cases. In x7.1-7.4, we prove the result on optimal schedules, recalled above, by considering the four cases one by one. Greedy scheduling is discussed in x7.5, and ratio constraints in x7. [START_REF] Barabasi | Fractal Concepts in Surface Growth[END_REF]. In x8, we study the average growth rate.

Heap Model

Consider a nite set R of slots and a nite set A of pieces. A piece a 2 A is a rigid (possibly non-connected) \block" occupying a subset R(a) of the slots. It has a lower contour and an upper contour which are represented by two row vectors l(a) and u(a) in (R f?1g) R with the convention l(a) r = u(a) r = ?1 if r 6 2 R(a). They satisfy u(a) l(a). We assume that each piece occupies at least one slot, 8a 2 A;R(a) 6 = ;, and that each slot is occupied by at least one piece, 8r 2 R;9a 2 A;r 2 R(a). The shape of the ground is given by a vector I 2 R R . The 6-tuple H = (A; R;R;u;l;I) constitutes a heap model.

The mechanism of the building of heaps was described in the introduction. It is best understood visually and on an example.

Example 1 We consider the following heap model. A = fa;bg, R = f1;2;3g, I = (0; 0; 0); R(a) = f1;2g, R(b) = f2;3g; u(a) = ( 1 + 2 ; 1 ; ?1); l(a) = (0; 0; ?1); u(b) = (?1; 1 ; 1 + 2 ); l(b) = (?1; 0; 0), where 1 ; 2 ; 1 and 2 are strictly positive reals. We have represented, in Fig. 2, the heap associated with the word w = ababa. We recall some standard de nitions and notations. We denote by 1fAg the function which takes value 1 if A is true and 0 if A is false. We denote by R + the set of non-negative reals, and by N and R the sets Nnf0g and Rnf0g.

Let A be a nite set (alphabet). We denote by A the free monoid on A, that is, the set of ( nite) words equipped with concatenation. The empty word is denoted by e. The length of a word w is denoted by jwj and we write jwj a for the number of occurrences of the letter a in w. We denote by alph(w) the set of distinct letters appearing in w. An in nite word (or sequence) is a mapping u : N ! A. The set of in nite words is denoted by A ! . An in nite word u = u 1 u 2 is periodic if there exists l 2 N such that u i+l = u i ; 8i 2 N . In this case, we write u = (u 1 u l ) ! . We denote by u n] = u 1 u 2 u n the pre x of length n of u.

When A is the set of pieces of a heap model, (in nite) words will also be called (in nite) schedules. We also interpret a word w 2 A as a heap, i.e. as a sequence of pieces piled up in the order given by the word.

The upper contour of the heap w is a row vector x H (w) in R R , where x H (w) r is the height of the heap on slot r. By convention, x H (e) = I, the shape of the ground. The height of the heap w is y H (w) = max r2R x H (w) r :

(1)

We recall that a set K equipped with two operations and is a semiring if is associative and commutative, is associative and distributive with respect to , there is a zero element 0 (a 0 = a; a 0 = 0 a = 0) and a unit element 1 (a 1 = 1 a = a).

The set R max = (R f?1g;max;+) is a semiring, called the (max,+) semiring. From now on, we use the semiring notations: = max; = +; 0 = ?1 and 1 = 0. The semiring R min is obtained from R max by replacing max by min and ?1 by +1. The subsemiring B = (0; 1; ; ) is the Boolean semiring.

We use the matrix and vector operations induced by the semiring structure. For matrices A; B of appropriate sizes,

(A B) ij = A ij B ij = max(A ij ; B ij ), (A B) ij = L k A ik B kj = max k (A ik + B kj )
, and for a scalar a, (a A) ij = a A ij = a+A ij . We usually omit the sign, writing for instance AB instead of A B. On the other hand, the operations denoted by +; ?; and = always have to be interpreted in the conventional algebra. We de ne the `pseudonorm' jAj = max ij A ij . We denote by 0, resp. 1, the vector or matrix whose elements are all equal to 0, resp. 1 (with the dimension depending on the context).

For matrices A and B of appropriate sizes, the proof of the following inequality is immediate: jABj jAj jBj :

(2) For matrices U; V and A of appropriate sizes and such that all the entries of U; V; UA and V A are di erent from 0, the following non-expansiveness inequality holds: jUA ? V Aj jU ? V j :

(3) Given an alphabet A, a (max,+) automaton of dimension k is a triple ( ; ; ), where 2 R 1 k max , and 2 R k 1 max , are the initial and nal vectors and where : A ! R k k max is a monoid morphism. The morphism is entirely de ned by the matrices (a); a 2 A; and for w = w 1 w n , we have (w) = (w 1 ) (w n ) (product of matrices in R max ). The map y : A ! R max , y(w) = (w) is said to be recognized by the (max,+) automaton. A (max,+) automaton is a specialization to R max of the classical notion of an automaton with multiplicities, see [START_REF] Berstel | Recent results on Sturmian words[END_REF][START_REF] Cuninghame-Green | Describing industrial processes with interference and approximating their steady-state behaviour[END_REF]]. An automaton ( ; ; ) of dimension k over the alphabet A is represented graphically by a labelled digraph. The graph has k nodes; if (a) ij > 0 then there is an arc between nodes i and j with labels a and (a) ij ; if i > 0 then there is an ingoing arrow at node i with label i and if j > 0 then there is an outgoing arrow at node j with label j . Examples appear in Figures 9,10 or 11.

For each piece a of a heap model H, we de ne the matrix M(a) 2 R R max by M(a) sr = 8 > > < > > :

1 if s = r; r 6 2 R(a); u(a) r ? l(a) s if r 2 R(a); s 2 R(a); 0 otherwise. [START_REF] Arnoux | Complexity of sequences de ned by billiard in the cube[END_REF] Example 2 In the model considered in Figure 1 and Example 1, the matrices associated with the pieces are

M(a) = 0 B B B B B @ 1 2 1 0 1 2 1 0 0 0 1 1 C C C C C A ; M(b) = 0 B B B B B @ 1 0 0 0 1 1 2 0 1 1 2 1 C C C C C A :
The entries have to be interpreted in R max .

Variants of Theorem 3 are proved in 12,[START_REF] Gaubert | Minimal (max,+) realization of convex sequences[END_REF][START_REF] Gaubert | Task resource models and (max,+) automata[END_REF].

Theorem 3 Let H = (A; R;R;u;l;I) be a heap model. For a word w = w 1 w n , the upper contour and the height of the heap satisfy (products in R max )

x H (w) = IM(w 1 ) M(w n ) ; y H (w) = IM(w 1 ) M(w n )1 :

(

More formally, y H is recognized by the (max,+) automaton (I; M;1).

From now on, we identify the heap model and the associated (max,+) automaton, writing either H = (A; R;R;u;l;I) or H = (I; M;1). We also call H a heap automaton.

Asymptotic Behavior

Consider a (max,+) automaton U = ( ; ; ) and its recognized map y. We de ne the optimal growth rate (in R f?1g) as:

min (U) = lim inf n!+1 1 n min w2A n y(w) : (6) 
An optimal schedule is a word w 2 A ! such that lim n y(w n])=n = min (U).

We de ne the worst growth rate as max (U) = lim sup n!+1 max w2A n y(w)=n.

A worst schedule is de ned accordingly.

Consider a probability law fp(a);a 2 Ag (p(a) 2 0; 1]; P a2A p(a) = 1). Random words are built by choosing the successive letters independently and according to this law. Let p(w); jwj = n; be the probability for a random word of length n to be w. We have p(w) = p(w 1 ) p(w 2 ) p(w n ) if w = w 1 w 2 w n . When it exists, we de ne the average growth rate as:

E (U) = lim n!+1
1 n X w2A n p(w) y(w) : [START_REF] Baryshnikov | Complexity of trajectories in rectangular billiards[END_REF] The optimal problem consists in evaluating min (U) and nding an optimal schedule. The worst case problem consists in evaluating max (U) and nding a worst schedule. The average case problem consists in evaluating E (U).

When we consider a heap automaton H, the limits min (H); max (H) and E (H) correspond respectively to the minimal, maximal and average asymptotic growth rate of a heap.

Preliminary results

We consider the optimal problem rst. It follows from (2) that min jwj=n+m j (w)j min jwj=n j (w)j + min jwj=m j (w)j . As a consequence of the subadditive theorem, we have lim n 1 n min jwj=n j (w)j = inf n 1 n min jwj=n j (w)j = :

We also have for all w 2 A , j (w)j min i i min i i (w) j (w)j j j j j : (9) When i > 0; i > 0; 8i, we deduce that min (U) = and that the lim inf is a limit in [START_REF] Barabasi | Fractal Concepts in Surface Growth[END_REF].

Proposition 4 Let U = ( ; ; ) be a (max,+) automaton such that 8i; i > 0; i > 0. Then there exists an optimal schedule.

PROOF. It follows from (9) that the automata ( ; ; ) and (1; ; 1) have the same optimal schedules (if any). We assume that min 6 = 0. The case min = 0 is treated by slightly adapting the argument below. We deduce from (8) that for all k 2 N , there exists w(k) 2 A n feg such that jw(k)j min j (w(k))j jw(k)j ( min + 1 k ) :

By the subadditive inequality (2), we then have, for all l 2 N , jw(k) l j min j (w(k) l )j jw(k) l j ( min + 1 k ) : [START_REF] Berstel | Sturmian words[END_REF] Now de ne w(k) = w(k) kjw(k+1)j and consider the in nite word w = w(1) w(2) w(k) obtained by concatenation of the words w(k). We consider the pre x of length n of w for an arbitrary n 2 N . There exists k n 2 N such that

w n] = w(1) w(k n )w(k n + 1) l u ;

where 0 l < (k n + 1)jw(k n + 2)j and where u is a pre x of w(k n + 1). Using (2) and [START_REF] Berstel | Sturmian words[END_REF] 

Let us take care of the last term on the right-hand side of [START_REF] Bousch | Asymptotic height optimization for topical IFS, Tetris heaps, and the niteness conjecture[END_REF]. Note that juj jw(k n + 1)j and n = j w n]j j w(k n )j = k n jw(k n + 1)j. It implies that j (u)j n juj L a2A j (a)j n L a2A j (a)j k n :

Starting from [START_REF] Bousch | Asymptotic height optimization for topical IFS, Tetris heaps, and the niteness conjecture[END_REF] and using (12) and ( 13), we obtain that 8" > 0; 9N 2 N ; 8n N; min j ( w n])j n min + 2" :

It completes the proof.

We now consider the worst case problem. As above, if 8i; i > 0; i > 0, then the lim sup is a limit in the de nition of max . As opposed to the optimal case, the worst case problem is completely solved. We recall the main result; it is taken from 16] and it follows from the (max,+) spectral theorem (the most famous and often rediscovered result in the (max,+) semiring, see [START_REF] Carlier | Timed Petri net schedules[END_REF][START_REF] Arnoux | Complexity of sequences de ned by billiard in the cube[END_REF][START_REF] Lagarias | The niteness conjecture for the generalized spectral radius of a set of matrices[END_REF] and the references therein).

Proposition 5 Let U = ( ; ; ) be a trim (see x3.2) (max,+) automaton of dimension k. Then, max (U) is equal to max (M), the maximal eigenvalue of the matrix M = L a2A (a). That is

max (U) = M 1 l k M i 1 ;:::;i l (M i 1 i 2 M i l i 1 ) 1=l = max 1 l k max i 1 ;:::;i l M i 1 i 2 + + M i l i 1 l :
Let a ij be such that (a ij ) ij = max a2A (a) ij and let (i 1 ; : : : ; i l ) be such that (M i 1 i 2 + + M i l i 1 )=l = max (M) (we say that (i 1 ; : : : ; i l ) is a maximal mean weight circuit of M). Then (a i 1 i 2 a i l i 1 ) ! is a worst schedule.

In the case of a heap automaton, there exists a worst schedule of the form u ! , where the period u is such that 8a 2 A;juj a 1. For a heap automaton with two pieces (a and b), a worst schedule can always be found among a ! , b ! and (ab) ! . An example where the worst schedule is indeed (ab) ! appears in Figure 18.

Deterministic automaton

A (max,+) automaton ( ; ; ) is trim if for each state i; there exist words u and v such that (u) i > 0 and (v) i > 0. It is deterministic if there exists exactly one i such that i > 0; and if for all letter a and for all i, there exists at most one j such that (a) ij > 0. It is complete if for all letter a and for all i, there exists at least one j such that (a) ij > 0.

A heap automaton is deterministic if and only if there is a single slot. On the other hand, a heap automaton is obviously always trim and complete. In the course of the paper, we consider other types of (max,+) automata: Cayley and contour-completed automata. These automata will be deterministic, trim and complete.

Let U = ( ; ; ) be a deterministic and trim (max,+) automaton over the alphabet A. Let U 0 be the (min,+) automaton de ned by the same triple (with 0 = +1). Let y U and y U 0 be the maps recognized by U and U 0 respectively. Since U is deterministic, it follows that y U 0(w) = y U (w) if y U (w) 6 = ?1 and y U 0(w) = +1 if y U (w) = ?1. De ning the (min,+) matrix N = min a2A (a)

and applying the (min,+) version of Proposition 5 (replace max by min everywhere in the statement of the Proposition), we get that min (U) = min (U 0 ) = min (N) ; [START_REF] Carlier | Timed Petri net schedules[END_REF] the minimal eigenvalue of N. Also if (i 1 ; : : :; i l ) is a minimal mean weight circuit, then (a i 1 i 2 a i l i 1 ) ! is an optimal schedule.

Proposition 6 Let U = ( ; ; ) be a deterministic, complete and trim (max,+) automaton over the alphabet A. Assume that M = L a2A (a) is an irreducible matrix (i.e. 8i;j;9k;M k ij > 0). We de ne the (R + ; +; ) matrix P by P ij = P a2A p(a) 1f (a) ij > 0g. Let be the unique vector satisfying P = and P i (i) = 1. The expected growth rate is E (U) = P i (i) P j;a p(a) (a) ij 1f (a) ij > 0g (the products are the usual ones).

Proposition 6 is proved in 16]. It follows from standard results in Markov chain theory (P is the transition matrix and is the stationary distribution). A consequence of Proposition 6 is that E (U) can be written formally as a rational fraction of the probabilities of the letters. That is E (U) = R=S and R and S are real polynomials over the commuting indeterminates p(a); a 2 A.

More generally, it is possible, under the assumptions of Prop. 6, to obtain the formal power series s = P n2N ( P w2A n p(w) y(w))x n as a rational fraction (over the indeterminates x; p(a); a 2 A), see for instance 8].

Finitely distant automata. Two (max,+) automata U = ( ; ; ) and V = ( ; ; ) de ned over the same alphabet A are said to be nitely distant if 8 > < > :

(w) = 0 () (w) = 0 ; 9M < 1; sup w; (w) 6 =0 j (w) ? (w) j M : [START_REF] Cuninghame-Green | Describing industrial processes with interference and approximating their steady-state behaviour[END_REF] Two heap automata (I; M;1) and (I 0 ; M;1) are nitely distant. Indeed, according to (3), we have IM(w)1 ? I 0 M(w)1 jIM(w) ? I 0 M(w)j jI ? I 0 j :

The asymptotic problems are equivalent for two nitely distant automata U and V. That is E (U) = E (V), min (U) = min (V) and optimal schedules coincide.

Since most heap automata are not deterministic, we can not apply the results in [START_REF] Carlier | Timed Petri net schedules[END_REF] and Proposition 6 directly to them. We often use the following procedure: Given a (max,+) automaton, nd a deterministic, trim, and nitely distant automaton, then apply the above results to the new automaton.

Balanced Words

Balanced and Sturmian words appear under various names and in various areas like number theory and continued fractions 28], physics and quasi-crystals 23] or discrete event systems [START_REF] Grunbaum | Tiling and Patterns[END_REF][START_REF] Gaubert | Performance evaluation of timed Petri nets using heaps of pieces[END_REF]. For reference papers on the subject, see 7,9].

A nite word u is a factor of a ( nite or in nite) word w = w 1 w 2 if u is a nite subsequence of consecutive letters in w, i.e. u = w i w i+1 w i+n?1 for some i and n. A ( nite or in nite) word w is balanced if j juj a ? jvj a j 1 for all letter a and for all factors u; v of w such that juj = jvj. The balanced words are the ones in which the letters are the most regularly distributed. The shortest non-balanced word is aabb.

An in nite word u is ultimately periodic if there exist n 2 N and l 2 N such that u i+l = u i for all i n. A Sturmian word is an in nite word over a two letters alphabet which is balanced and not ultimately periodic.

We now de ne jump words. Let us consider 1 ; 2 2 R + and 2 R + ; < 2 . We label the points fn 1 ; n 2 N g by a, and the points fn 2 + ; n 2 N g by b.

Let us consider the set fn 1 ; n 2 N g fn 2 + ; n 2 N g in its natural order and the corresponding sequence of labels. Each time there is a double point, we choose to read a before b. We obtain the jump word with characteristics ( 1 ; 2 ; ). Jump words are balanced. If 1 = 2 is rational then w is periodic; if 1 = 2 is irrational then w is Sturmian. It is also possible to de ne words as above except that we read b before a whenever there is a double point. These words are still balanced and we still call them jump words (below, when necessary, we will precise what is the convention used for double points).

A more common but similar description of jump words uses cutting sequences.

There exists an explicit arithmetic formula to compute the n-th letter in a given jump word (using the so-called mechanical characterization, see 9]).

Optimal schedules and balanced words. We prove in Theorem 14 that in a heap model with two pieces, there always exist an optimal schedule which is balanced. If we still consider a two letter alphabet but a general (max,+) automaton, then this is not true anymore. The counter-example below was suggested to us by Thierry Bousch (personal communication, 1999). Consider the deterministic (max,+) automaton ( ; ; 1) represented in Figure 4. It is easy to check that min = 1 and that an optimal schedule is the non-balanced word (aabb) ! . No balanced word is optimal in this example. 5 Completion of Pro les and Pieces

Cayley automaton

Given A in R k l max , we de ne (A) in R k l max by (A) ij = A ij ? jAj if jAj 6 = 0 and (A) = A = 0 otherwise. We have j (A)j = 1 (except if A = 0). We say that (A) is the normalized matrix associated with A.

Let us consider a (max,+) automaton U = ( ; ; ) over the alphabet A. We de ne (U) = f ( (w)); w 2 A g : [START_REF] Eilenberg | Automata, languages and machines[END_REF] In the case of a heap automaton H, (H) is the set of normalized upper and u = u . It follows from this de nition that for w 2 A , (w) uv = ju (w)j if (u (w)) = v and (w) uv = 0 otherwise. Hence we have

(w) = ( ) (w) ( ) ( ( ) (w)) ( ( ) (w))
= j j j ( ) (w)j ( ( ) (w)) = j (w)j ( (w)) = (w) : [START_REF] Gaubert | Performance evaluation of (max,+) automata[END_REF] We just proved that the automaton U and its Cayley automaton recognize the same map (see also 16]).

The dimension of the Cayley automaton is in general much larger than the one of U. However, it is deterministic, complete, and assuming for instance that 8i; i > 0, it is also trim. In particular when H is a heap automaton and (H) is nite, then the Cayley automaton is deterministic, complete and trim.

The Cayley automaton is used in x7.2.

The procedure described above is similar to the classical determinization algorithm for Boolean automata. The di erence is of course that (U) is always nite in the Boolean case.

Contour-completed automaton

Given a heap model H, it is easy to see that (H) is in nite as soon as there exist two pieces a and b whose slots are not the same. This motivated the introduction in 20] of the re ned notion of normalized completed contours. In some cases, the set of such contours will be nite whereas (H) is in nite. Here, we recall only the results that will be needed. For details, and in particular for an algebraic de nition of completion in terms of residuation, see 20].

Let us consider a heap model H = (A; R;R;u;l;I), also described as the heap automaton H = (I; M;1). We associate with the piece a 2 A, the upper contour piece a and the lower contour piece a de ned as follows l(a) = u(a); u(a) = u(a); and l(a) = l(a); u(a) = l(a) :

We still denote by M(a);M(a), the matrices de ned as in (4) and associated with the new pieces a; a.

An example of upper and lower contour pieces is provided in Figure 5. For clarity, pieces of height 0 are represented by a thick line.

piece a piece a piece a Fig. 5. A piece and the associated upper and lower contour pieces.

Given a vector x 2 R R max , interpreted as the upper contour of a heap, we de ne the completed contour (x) 2 R R max as follows (x) i = min jxj ; min aji2R(a) xM(a) i ! :

The vector (x) can be loosely described as the maximal upper contour such that the height of a heap piled up on x is the same as the height of a heap piled up on (x). More precisely, we have 8w 2 A ; (x)M(w)1 = xM(w)1 : [START_REF] Gaubert | Task resource models and (max,+) automata[END_REF] For the sake of completeness, let us prove [START_REF] Gaubert | Task resource models and (max,+) automata[END_REF]. Given a word w = w 1 w n , we de ne

R(w) = R(w 1 ) R(w n ) : (20) 
We are going to prove the following results which put together imply [START_REF] Gaubert | Task resource models and (max,+) automata[END_REF] 8i 2 R(w);

(x)M(w) i = xM(w) i (21) 8i 6 2 R(w); xM(w) i (x)M(w) i jxM(w)j : (22) 
It follows from the de nition that ( 21) and ( 22) hold for the empty word e (setting R(e) = ;). Assume now that ( 21) and ( 22) hold for all words of length less or equal than n. We consider the word wa where w is of length n and a is a letter.

If i 6 2 R(a) and i 2 R(w), then Since obviously (x)M(w)M(a) i xM(w)M(a) i , we get that (x)M(w)M(a) i = xM(w)M(a) i . This concludes the proof of ( 21) and ( 22), hence of [START_REF] Gaubert | Task resource models and (max,+) automata[END_REF].

Given a contour x 2 R R max , we de ne the normalized completed contour '(x) = ( (x)). Let us de ne '(H) = f'(IM(w));w 2 A g : [START_REF] Gaujal | Allocation sequences of two processes sharing a resource[END_REF] Let us assume that '(H) is nite. Then we de ne the contour-completed automaton of H. It is a deterministic, complete and trim (max,+) automaton over the alphabet A, of dimension '(H). It is de ned by ( ; ; 1) where for x; y 2 '(H); a 2 A, The automaton H and its contour-completed automaton recognize the same map, i.e.

8w 2 A ; IM(w)1 = (w)1 :

The proof is analogous to the one of [START_REF] Gaubert | Performance evaluation of (max,+) automata[END_REF]. The contour-completed automaton is used several times in x7, see for instance Example 16.

Piece-completed heap automaton

After having de ned the completion of contours, we introduce in this section the completion of pieces.

We de ne the upper-completed pieces a ; a 2 A, and the lower-completed pieces a ; a 2 A; (u(a) j + l(x) i ? l(x) j ) ( 24) u(a ) = u(a); 8i 2 R(a); l(a ) i = max xji2R(x) min j2R(x) (l(a) j + u(x) i ? u(x) j ) : [START_REF] Hajek | Extremal splittings of point processes[END_REF] We check easily that u(a ) l(a ) and u(a ) l(a ), hence we have indeed de ned pieces. Let us comment on this de nition. Let x be a piece such that R(x) \ R(a) 6 = ;. Let a 0 be the piece obtained by piling up a and the part of the lower contour piece x corresponding to the slots R(x) \ R(a). The piece a 0 is such that the heaps a 0 x and ax are identical. Hence, the piece a can be interpreted as the piece with lower contour l(a) and with the largest possible upper contour such that the asymptotic behavior of a heap is not modi ed when replacing the occurrences of a by a . There is an analogous interpretation for the pieces a . An illustration of upper and lower completion is given in Example 8 and Figure 6.

With the heap automaton H = (I; M;1), we associate the heap automaton H = (I; M ; 1) de ned by M (a) = M(a ), and the heap automaton H = (I; M ; 1) de ned by M (a) = M(a ). Lemma 7 A heap automaton H is nitely distant from both the heap automaton H and the heap automaton H . We want to prove the following inequalities, for all w 2 A , 1 IM (w)1 ? IM(w)1 K [START_REF] Jean-Marie | Calcul de temps de cycle dans un syst eme (max,+) a deux matrices[END_REF] 1 IM (w)1 ? IM(w)1 K : To prove [START_REF] Maslov | Idempotent Analysis[END_REF], it is enough to remark that it follows from the de nition in (4) that: 8x 2 A ; 8i 6 2 R(x); M(x) ii = 1; 8i;j 6 2 R(x); i 6 = j; M(x) ij = 0.

We need another intermediary result: for any two pieces a; b 2 A, we have 8i 2 R(a); 8j 2 R(b); M(a b ) ij = M(ab ) ij : Furthermore, it is immediate that M(a b ) ij M(ab ) ij . This concludes the proof of [START_REF] Rauzy | Mots in nis en arithm etique[END_REF].

Obviously, the right inequality in [START_REF] Jean-Marie | Calcul de temps de cycle dans un syst eme (max,+) a deux matrices[END_REF] holds for words of length 1. Let us assume that it holds for all words of length n. Let w = w 1 w n+1 be a word of length n+1. Assume there exists i 2 f1; ng such that R(w i )\R(w i+1 ) = ;, then using [START_REF] Maslov | Idempotent Analysis[END_REF], we get M(w 1 w n+1 ) = M(w 1 w i?1 w i+1 w n+1 ) M(w 1 w i w i+2 w n+1 ) ;

with an analogous equality for M . Setting u = w 1 w i?1 w i+1 w n+1 and v = w 1 w i w i+2 w n+1 , we deduce that we have

IM (w)1 ? IM(w)1 = IM (u)1 IM (v)1 ? IM(u)1 IM(v)1 (IM (u)1 ? IM(u)1) (IM (v)1 ? IM(v)1) K ;
where the last inequality is obtained by applying the recurrence assumption to the words u and v which are of length n. Assume now that R(w i )\R(w i+1 ) 6 = ; for all i 2 f1;:::;ng. Let j be such that IM (w)1 = IM (w) j . Assume that j 6 2 R(w n+1 ), then IM (w)1 = IM (w 1 w n )1 and

IM (w)1 ? IM(w)1 = IM (w 1 w n )1 ? IM(w)1 IM (w 1 w n )1 ? IM(w 1 w n )1 K :
The case j 2 R(w n+1 ) remains to be treated. We obtain, using recursively [START_REF] Rauzy | Mots in nis en arithm etique[END_REF], that IM (w) j = IM(w 1 w n+1 ) j = IM(w 1 w n w n+1 ) j :

We conclude that IM (w)1 ? IM(w)1 IM(w 1 w n w n+1 ) j ? IM(w 1 w n w n+1 ) j K ; by de nition of K . This completes the proof.

We de ne the bi-completed pieces a ; a 2 A, as follows: R(a ) = R(a) and l(a ) = l(a ); 8i 2 R(a); u(a

) i = min xji2R(x) max j2R(x)
(u(a ) j + l(x ) i ? l(x ) j ) :

Here the pieces a ; a 2 A, are obtained by lower-completion rst and then upper-completion. We can also de ne pieces, say â ; a 2 A; by performing upper-completion rst and then lower-completion, that is: R(â ) = R(a) and u(â ) = u(a ); 8i 2 R(a); l(â

) i = max xji2R(x) min j2R(x)
(l(a ) j + u(x ) i ? u(x ) j ) :

In general, the pieces a and â are di erent, in other words the operations of upper and lower-completion do not commute. An example of bi-completion is provided in Figure 6. On this example, the pieces a and â (resp. b and b ) are di erent.

Example 8 Consider the heap automaton with pieces de ned by l(a) = (1; 1); u(a) = (1; 3); and l(b) = (1; 1); u(b) = (2; 3) :

It is simpler to obtain the completed pieces graphically, using the intuition described above. We have represented in Figure 6 the upper, lower and bicompleted pieces: fa ; b g;fa ; b g;fa ; b g and fâ ; b g. The heap automaton H = (I; M ; 1), over the alphabet A, de ned by M (a) = M(a ), is called the piece-completed heap automaton associated with H = (I; M;1). Lemma 9 A heap automaton H and the associated piece-completed automaton H are nitely distant. Given a set of pieces A, let us denote by A ; A , and A the upper-completed, lower-completed and bi-completed sets of pieces. Given two pieces a and b, we say that r is a contact slot for ab if M(ab) ij = M(a) ir M(b) rj ; 8i 2 R(a); j 2 R(b) (visually, a is in contact with b at slot r in the heap ab). Lemma 10 We have (A ) = A , (A ) = A and (A ) = A . In words, a set of lower-completed (resp. upper-completed or bi-completed) pieces is left unchanged by performing another lower (resp upper or bi) completion.

PROOF. By de nition, we have H = (H ) . By applying

PROOF. The arguments below are based on the following immediate remark:

Given a and b in the same set of pieces, if i is a contact slot of ab then l(b ) i = l(b) i and u(a ) i = u(a) i .

By de nition we have, 8a 2 A;8i 2 R(a); 9b 2 A;i 2 R(b); 9j(i) 2 R(b); l(a ) i = l(a) j(i) + u(b) i ? u(b) j(i) :

It implies that j(i) is a contact slot for ba and that both i and j(i) are contact slots for ba . Obviously, it implies that i is a contact slot for b a and we conclude that l((a ) ) i = l(a ) i . This completes the proof of (A ) = A . The proof of (A ) = A is similar.

Since i is a contact slot for b a , we also obtain that u(b It implies that l((a ) ) i = l(a ) i . We deduce that we have (a ) = a and we can prove in a similar way that (a ) = a . We conclude that (A ) = A .

Both the contour completion of x5.2 and the above piece completion are based on the idea of local transformations which do not modify the asymptotic behavior of heaps. However, they are di erent: the completed contours are not the upper contours of the heaps of completed pieces.

Minimal Realization

The goal of this section is to prove that given a heap automaton with two pieces, there exists a nitely distant one of dimension at most 3, Theorem 12.

A set of bi-complete pieces is a set A such that A = A. From now on, we always implicitly consider bi-complete pieces. Due to Lemma 9 and 10, we can make this assumption without loss of generality.

Let H = (I; M;1) be a heap automaton with set of slots R and let R be a subset of R. The heap model obtained by restriction of H to R is denoted by H j R and de ned by H j R = (I j R; M j R R; 1) (visually, the new pieces are the old ones restricted to R).

Lemma 11 Let H be a heap automaton on the alphabet A and with set of slots R. Let R be a subset of R. The automaton H j R is nitely distant from H if and only if R contains a contact slot for each word ab; a; b 2 A; such that R(a) \ R(b) 6 = ;.

PROOF. Let H = (I; M;1). Assume that R contains at least one contact slot for each ab such that R(a) \ R(b) 6 = ;. Let (a; b) be such a couple. We have, by de nition of a contact slot, M(ab

) j R R = M(a) j R RM(b) j R R = M j R R(ab) : (30) 
Let us consider a word w 2 A . Using repeatedly the equality in [START_REF] Maslov | Idempotent Analysis[END_REF], we obtain that M(w) = L v2I(w) M(v), where v belongs to I(w) if v is a subword of w and if two consecutive letters of v, say v i and v i+1 , are such that R(v i ) \ R(v i+1 ) 6 = ;. For each word v 2 I(w), we obtain by using repeatedly [START_REF] Sparrow | Optimal sequences in heap models[END_REF] that M(v) j R R = M j R R(v). We deduce that M(w) j R R = M j R R(w). We conclude easily that Hence, H j R is nitely distant from H. We have shown that the condition is su cient. Let us prove that it is necessary. Assume that ab; R(a) \ R(b) 6 = ;, has no contact slot in R. Let be the minimal gap between a and b in the heap ab over the slots R. Then we have jM(ab)j ? jM j R R(ab)j = > 0. It implies that jM((ab) n )j ? jM j R R((ab) n )j n , showing that H and H j R are not nitely distant. Theorem 12 Let H = (I; M;1) be a heap automaton with two pieces. Over the same alphabet, there exists a heap automaton H = ( Ĩ; M; 1) of dimension at most 3 and which is nitely distant from H.

PROOF. By choosing one contact slot for each one of the words aa; ab; ba and bb, we obtain a set R of cardinality at most 4 and such that the automaton H j R is nitely distant from H, see Lemma 11. We now prove that 3 slots are always enough. We de ne the application c : R ! P(A 2 ), where P(A 2 ) denotes the set of subsets of A 2 . The set c(r) contains xy if r is a contact slot of xy. Assume that R(a) \ R(b) 6 = ; and consider a slot r 2 R(a) \ R(b).

Let us prove that c(r) must contain words starting with a and b and words nishing with a and b. Assume for instance that c(r) does not contain any word starting with a. Then, according to [START_REF] Grunbaum | Tiling and Patterns[END_REF], there exists x 2 A such that u(a ) r = max j2R(x) u(a) j + l(x) r ? l(x) j : Since ax does not belong to c(r), the maximum above is attained for j 6 = r and we have u(a ) r > u(a) r . This contradicts the fact that A is a set of bi-complete pieces.

To summarize, we must have faa;bbg c(r) or fab;bag c(r) :

(31) If we have faa;bbg c(r) (resp. fab;bag c(r)), we complete the slot r with a contact slot for the heap ab and one for the heap ba (resp. for aa and bb). We have a set of at most 3 slots which satis es the required properties. Now assume that R(a)\R(b) = ;. It is enough for R to contain a contact slot of aa and one of bb, hence to be of cardinality 2, for H j R to be nitely distant from H. This completes the proof.

Performed on the original heap automaton, instead of the piece-completed one, the above argument would not work. Consider the heap model H of dimension 4 de ned by l(a) = (1; 1; 1; 0); u(a) = (3; 2; 3; 0); l(b) = (0; 1; 1; 1) and u(b) = (0; 3; 2; 3). There exists no proper subset R of R such that H j R is nitely distant from H.

Example 13 Let us illustrate Theorem 12. We consider the heap automaton H = (1; M;1) of dimension 4 and consisting of the two bi-complete pieces de ned by l(a) = (1; 3; 2; 0); u(a) = (4; 4; 5; 0); and l(b) = (0; 2; 3; 1); u(b) = (0; 5; 4; 4) :

We have c(1) = faag;c(2) = fab;bag;c(3) = fab;bag and c(4) = fbbg. Here, we can choose either R = f1;2;4g or f1;3;4g and the heap automaton H j R will be nitely distant from H. This can be `checked' on example, we do not always have 1M(w)1 = 1M j R R(w)1. However we can check that 1 1M(w)1 ? 1M j R R(w)1 1.

Lemma 11 and Theorem 12 are minimal realization type of results. Here is the generic problem of this kind: Given an automaton with multiplicities in a semiring, nd another automaton recognizing the same map and of minimal dimension.

In a commutative eld, the minimal realization problem is solved, see 8] for a proof and references. In R max , it is a well-known di cult and unsolved problem, see 17] for partial results and references. Here, our result is speci c in several ways. First, we look at a particular type of (max,+) automata, heap automata with two pieces. Second, we look for a realization by a heap automaton and not by an arbitrary (max,+) automaton. Third, we only require an approximate type of realization, see [START_REF] Cuninghame-Green | Describing industrial processes with interference and approximating their steady-state behaviour[END_REF].

Classi cation of heap models with two pieces

As a by-product of Theorem 12, to study heap automata with two pieces, it is enough to consider automata with bi-complete pieces and of dimension at most 3. We are going to show that there are only four cases which need to be treated (up to a renaming of pieces and slots) which are: (ii) Let us assume that R(a) = R(b). Let r be such that aa 2 c(r). Using (31), we have either faa;bbg c(r) or faa;ab;bag c(r). If we are in the second case, we complete r with a contact slot for bb. If we are in the rst case, let us consider a slot r 0 such that ab 2 c(r 0 ). We have, as before, either fab;bag c(r 0 ) or fab;aa;bbg c(r 0 ). If fab;bag c(r 0 ), then we select the slots fr;r 0 g. If fab;aa;bbg c(r 0 ), then we complete r 0 with a contact slot for ba. In all cases, we obtain a nitely distant heap model with at most two slots.

(iii) Let us assume that R(b) R(a); R(b) 6 = R(a). Let r be a slot such that bb 2 c(r). Since r 2 R(a) \ R(b), we must have either fbb;ab;bag c(r) or faa;bbg c(r). In the second case, we conclude as in (ii). In the rst case, we complete r with a slot r 0 such that aa 2 c(r 0 ). Compared with (ii), there is a new possible situation: two slots fr;r 0 g with R(a) = fr;r 0 g and R(b) = frg. (iv) Let us assume that R(a) \ R(b) 6 = ;;R(a)nR(b) 6 = ;;R(b)nR(a) 6 = ;. We consider a slot r 2 R(a) \ R(b) and such that ab 2 c(r). We have either fab;aa;bbg c(r) or fab;bag c(r). In the rst case, we complete r with a slot r 0 such that ba 2 c(r 0 ). In the second case, we complete r with a contact slot r a for aa and a contact slot r b for bb. Compared with the cases (ii) and (iii), there is a new possible situation: three slots fr;r a ; r b g with R(a) = fr;r a g and R(b) = fr;r b g.

Heap Models with Two Pieces: Optimal Case

Let H be a heap model with two pieces. To solve the optimal problem, it is su cient to consider the typical cases described in x6.1. Two situations need to be distinguished: H is `determinizable', i.e. there exists a nitely distant, trim, and determin-istic (max,+) automaton; H is `not-determinizable'.

For `determinizable' automata, there exists a periodic optimal schedule. We will see below that there are two cases where H is `not-determinizable'. In both cases, we are able to identify `visually' the optimal schedules. The resulting theorem can be stated as follows.

Theorem 14 Let us consider a heap model with two pieces. There exists an optimal schedule which is balanced, either periodic or Sturmian.

PROOF. We consider in x7.1-7.4 the four di erent cases described in x6.1.

For each case, we prove that the results of Theorem 14 hold. Furthermore we provide an explicit way to compute min (H) and an optimal schedule in each case.

In the sections below, we always denote the heap model considered by H = (A; R;R;u;l;I) with A = fa;bg and R = f1;2g or f1;2;3g. Viewed as a heap automaton, it is denoted by H = (I; M;1). We always implicitly assume that we are working with bi-complete pieces. We recall that by modifying the ground shape in a heap automaton, we obtain a nitely distant automaton. Below we choose the ground shape which is the most adapted to each case.

If one of the two pieces, say a, satis es l(a) = u(a), then the optimal problem becomes trivial. We have min (H) = 1 and a periodic optimal schedule is provided by a ! . From now on, we assume that l(a) 6 = u(a) and l(b) 6 = u(b). We assume that the ground shape is 1. We claim that the jump word u with characteristics (h a ; h b ; 0) (see x4) is optimal. Furthermore, we have min (H) = h a h b =(h a + h b ). An example is provided in Figure 8.

We now prove these assertions. Let us pile up the pieces according to the jump word u de ned by (h a ; h b ; 0). We have, by construction, j x H (u n]) 1 ? x H (u n]) 2 j max(h a ; h b ). Hence we have lim n x H (u n]) 1 =n = lim n x H (u n]) 2 =n. Now, as the heap is without any gap, it implies immediately that u is optimal. The optimal schedule u is balanced, periodic when h a =h b is rational and Sturmian when h a =h b is irrational, see x4. 

(H) = lim n x H (u n]) 1 n = lim n h a ju n]j a ju n]j a + ju n]j b = h a h b h a + h b :
To be complete, let us prove that it is not possible to nd a periodic optimal schedule in the case h a =h b irrational. Let v be a nite word and let us consider the schedule v ! . Since h a =h b is irrational, we have h a jvj a 6 = h b jvj b . Let us assume that h a jvj a > h b jvj b . It implies that jvj a > jvjh b =(h a + h b ). We obtain lim n y H (v n )=jv n j = lim n h a jv n j a =jv n j = h a jvj a =jvj > h a h b =(h a + h b ) : We have represented the pieces in Fig. 9. We check easily that (H) = f((1;?1);(?1;1)g (the ground shape being (1; ?1)). Let ( ; ; 1) be the Cayley automaton and let M = min( (a); (b)). We have = (1; 0) and

(a) = 0 B @ 2 0 3 0 1 C A ; (b) = 0 B @ 0 3 0 2 1 C A ; M = 0 B @ 2 3 3 2 1 C A :
The minimal eigenvalue of the R min matrix M is 2, the circuits of minimal This case could be reduced to the case R(a) = f1;2g;R(b) = f1;2g (the one in x7.4) by adding a third slot and setting R(b) = f2;3g and u(b) 3 = u(b) 2 ; l(b) 3 = l(b) 2 . We treat the case R(a) = f1;2g;R(b) = f2g separately in order to get more precise results. Let us set = l(a) 1 ? l(a) 2 . For u = (u 1 ; u 2 ) 2 R 2 , we obtain, see ( 18), (u) 1 = min(uM(a) 1 ; juj ) = min(u 1 u 2 ; u 1 u 2 ) (u) 2 = min(uM(a) 2 ; uM(b) 2 ; juj ) = u 2 :

Hence, we have

'(u) = 8 > > < > > : (1; 1) if u 1 u 2 u 2 ( ; 1) if u 1 u 2 u 2 (u 1 ; u 2 ) otherwise : (32) 
Assume that 0 and let the ground shape be equal to 1M(a). We have, 8u 2 R 2 ; '(uM(a)) = '(1M(a)). We deduce that '(H) = f'(1M(ab n )); n 2 Ng :

We also have 1M(ab n+1 )?1M(ab n ) = (1; h b ). By assumption, we have h b > 0.

Hence there exists a smallest integer m such that u(a) 2 + m h b u(a) 1 () 1M(ab m ) 2 ? 1M(ab m ) 1 0 :

It implies, using (32), that 8n m; '(1M(ab n )) = (1; 1). We conclude that '(H) = f'(1M(ab n )); n 2 f0;::: ; mgg :

We have proved that '(H) is nite. In the case 0, a similar analysis holds.

In all cases we can solve the optimal problem using the contour-completed automaton and the results of x3.2. We have represented in Figure 10, the contour-completed automaton in the case m 3 and 0 (without the multiplicities). There are exactly m + 2 simple circuits in this automaton with respective labels b and ab n ; 0 n m. For 0 n m ? 2, the multiplicity to go from '(1M(ab n )) to '(1M(ab n+1 )) is 1 while the one to go from '(1M(ab n+1 )) to '(1M(a)) is always equal to h a . Hence the circuits of label ab n ; 0 n m ? 2; are not of minimal mean weight. We conclude that an optimal schedule can be found among the schedules (ab m ) ! ,(ab m?1 ) ! or b ! (if m = 0, then either a ! or b ! is optimal). These schedules are balanced. Assume that there exists an in nite heap w with an in nite number of each piece and without any `gap' at slots 1 and 3. Now, we focus on the second slot of the heap w. The heights of the pieces a and b at slot 2 are given by fI 1 +l(a) 2 ?l(a) 1 +nh a ; n 2 Ng and fI 3 +l(b) 2 ?l(b) 3 +nh b ; n 2 Ng respectively.

We set the ground shape to be I = (h a ? l(a) 2 + l(a) 1 ; 1; h b ? l(b) 2 + l(b) 3 ) : The heights of the pieces at slot 2 are now given by fnh a ; n 2 N g and fnh b ; n 2 N g. Hence, the sequence of labels (read from bottom to top) at slot 2 is the jump word w de ned by (h a ; h b ; 0). Now, if we pile up the pieces according to w, we indeed obtain a heap without any gap on slots 1 and 3. An illustration is given in Figure 12. On slot 2, the pieces have been shortened to facilitate their identi cation. then w is balanced and periodic and otherwise it is Sturmian. If h a =h b is irrational, there does not exist any periodic optimal schedule. At last, we have min (H) = h a h b =(h a + h b ). The proof is exactly the same as in x7.1.

Case (ii): u(a) 2 > l(a) 2 Assume that u(a) 2 ? l(a) 2 > u(a) 1 ? l(a) 1 . Then u(a ) 1 = max(u(a) 1 ; u(a) 2 ? l(a) 2 + l(a) 1 ) = u(a) 2 ? l(a) 2 + l(a) 1 > u(a) 1 : (2) There is no gap at slots 1 and 3 and u 6 = x juj]. In this case, we must have u = x n]a m or u = x n]b m with m > 0; n l 1 + 1 (resp. m > 0; n l 2 + 1). Assume we have u = x n]b m , the case u = x n]a m being treated similarly. Since u 6 = x juj], in the heap x n]b m a, there is a contact at slot 2 between the last two pieces. We conclude that '(IM(abx n]b m )) = '(IM(b)) (resp. '(IM(bax n]b m )) = '(IM(b))). This case is illustrated in Figure 13-(iii) where '(IM(abbabbb)) = '(IM(b)).

0 (i) (ii) (iii)
(3) There is a gap somewhere in the heap at slot 1 or 3. This implies that we have in the heap u a contact at slot 2 between a piece a and a piece b, or between a piece b and a piece a. Considering the last couple (a; b) or (b; a) of pieces in contact at slot 2, we obtain (for abu, the case bau is treated similarly) '(IM(abu)) = '(IM(abv)); or '(IM(abu)) = '(IM(bav)) ;

where the heap abv, or bav, is such that there is no gap at slots 1 and 3. The heap abv, or bav, is in one of the two cases (1) or (2) above. Case (3) is illustrated in where '(IM(abbabab)) = '(IM(ab)), i.e. u = babab and v = e.

To summarize, we have proved that '(H) = fI;'(IM(a));'(IM(b))g f'(IM(abx n])); 0 n l 1 g f'(IM(bax n]));0 n l 2 g The set '(H) is nite, hence we can apply the results of x3.2 to the contourcompleted automaton. Now, let us assume that h a =h b is rational. We still consider the jump word x with characteristics (h a ; h b ; 0), which is now periodic, see x4. If the heap abx (or bax) has no gap on slots 1 and 3, then the schedule x is optimal (same argument as in x7.1). If the heaps abx and bax both have a gap somewhere on slot 1 or 3, the proof carries over exactly as in the case h a =h b 6 2 Q.

The structure of the countour-completed automaton can be deduced from the above proof. For simplicity, we denote the state '(IM(w)) by w, and we use the convention a 0 = b; b 0 = a. For 0 n l 1 ? 1, there is a transition abx n] x n+1 ?! abx n + 1] and a transition abx n] x 0 n+1 ?! x 0 n+1 . For 0 n l 2 ? 1, there is a transition bax n] x n+1 ?! bax n+1] and a transition bax n] x 0 n+1 ?! x 0 n+1 . In Figure 14, we have represented an outline of the contour-completed automaton in the case l 1 > 0; l 2 > 0 (ingoing and outgoing arrows as well as some arcs are missing, and the multiplicities have been omitted).

Using the above analysis, we can get the value of the multiplicities in the contour-completed automaton. Doing this, we obtain that there is a circuit of minimal mean weight in the contour-completed automaton of label either: a; b; abx l 1 ]; bax l 2 ], or abx l 1 ]bax l 2 ], with the conventions x 0] = e; abx ?1] = a; bax ?1] = b. Hence, one of the following schedules is optimal: fa ! ; b ! ; (abx l 1 ]) ! ; (bax l 2 ]) ! ; (abx l 1 ]bax l 2 ]) ! g. It remains to be proved that (abx l 1 ]) ! ; (bax l 2 ]) ! , and (abx l 1 ]bax l 2 ]) ! g are balanced.

We are going to prove that (bax l 2 ]abx l 1 ]) ! is balanced. We treat the case l 1 0 and l 2 0. If we have l 1 or l 2 equal to -1, the argument can be easily adapted. Due to the de nition of l 1 , the following intervals are all disjoint (visually, they correspond to the portions of the second column occupied by the pieces in the heap abx l 1 ]. We consider open intervals in I a and closed ones in I b in order to ensure that the rst interval in I a and I b are indeed disjoints): I a = f(nh a + l(a) 2 ? u(a) 2 ; nh a ); 0 n jx l 1 ]j a g; I b = f nh b ; nh b + u(b) 2 ? l(b) 2 ]; 0 n jx l 1 ]j b g :

In the same way, the following intervals are all disjoint (up to the minus sign, they correspond to the portions of the second column occupied by the pieces in the heap bax l 2 ]): I 0 a = f(?nh a + l(a) 2 ? u(a) 2 ; ?nh a ); 0 n jx l 2 ]j a g; If we read the sequence of labels from bottom to top, we obtain the word x l 2 ]abx l 1 ], where x l 2 ] is the mirror word of x l 2 ] (the mirror word of the word u = u 1 u 2 u n is the word ũ = u n u n?1 u 1 ). Setting n a = jx l 1 ]j a + 1; n b = jx l 1 ]j b + 1; n 0 a = jx l 2 ]j a + 1, and n 0 b = jx l 2 ]j b + 1, we have (by de nition of l 1 and l 2 )

(n a h a + l(a) 2 ? u(a) 2 ; n a h a ) \ n b h b ; n b h b + u(b) 2 ? l(b) 2 ] 6 = ;; (?n 0 a h a + l(a) 2 ? u(a) 2 ; ?n 0 a h a ) \ ?n 0 b h b ; ?n 0 b h b + u(b) 2 ? l(b) 2 ] 6 = ; : Let us choose t 2 (?n 0 a h a +l(a) 2 ?u(a) 2 ; ?n 0 a h a )\ ?n Hence, if we read the sequence of labels associated with S from bottom to top, we obtain x l 1 + l 2 + 2]. Also by construction, we have t + (n a + n 0 a )h a 2 (n a h a + l(a) 2 ? u(a) 2 ; n a h a ) and t + ( ) If > 0 then < nh a ? n 0 h b for each n; n 0 such that 1 n < m a ; 1 n 0 < m b ; nh a ? n 0 h b > 0. ( ) If < 0 then > nh a ? n 0 h b for each n; n 0 such that 1 n < m a ; 1 n 0 < m b ; nh a ? n 0 h b < 0.

(n b + n 0 b )h b 2 n b h b ; n b h b + u(b) 2 ? l(b) 2 ]. (i) (ii) (iii) (iv 
Let us assume that < 0 (the case of Figure 15-(iii)). The other case is treated similarly. Because of the property ( ), the sequence of a's and b's corresponding to S is the same as the one corresponding to ft + nh a ; 1 n m a ? 1g ft + nh b (m a h a )=(m b h b ); 1 n m b ? 1g :

Equivalently the jump words (h a ; h b ; 0) and (h a ; h b (m a h a )=(m b h b ); 0) = (h a ; h a m a =m b ; 0) have the same pre x of length l 1 + l 2 + 2. If we decide to read double points as ba (see x4), then the jump word z with characteristics (h a ; h a m a =m b ; 0) is a balanced and periodic word, which is equal to (x l 2 ]abx l 1 ]ba) ! : A palindrome is a word equal to its mirror word. The above construction shows that x l 2 ]abx l 1 ] is a palindrome (for instance, in Figure 15-(iv), the sequences of a's and b's read from bottom to top, and top to bottom, are the same). It implies that it is impossible to have l 1 = l 2 (since x l]abx l] is never a palindrome). By the same type of arguments, we can prove that x l 1 ] and x l 2 ] are also palindromes. Hence we have x l 2 ]abx l 1 ]ba = x l 2 ]abx l 1 ]ba and we conclude that (x l 2 ]abx l 1 ]ba) ! is balanced.

The fact that (abx l 1 ]) ! and (bax l 2 ]) ! are balanced is proved in a similar way.

Greedy scheduling

We treat completely an instance of the jobshop described in the introduction, see Figure 1. The durations of the activities are assumed to be 1 = 4 (= 4 ); 2 = ; 1 = and 2 = 1? . We assume that 1=15 < < 1=11. The respective mean weights are 5 ; 1; 1=2; 1=3 and 15=4 . Hence the label of the circuit of minimal mean weight is ba 2 if 4=45 and ba 3 if 4=45. We conclude that an optimal schedule is The greedy scheduling consists in always allocating the resource to the rst task which is ready to use it (i.e. w n + 1] = w n]a, resp. w n + 1] = w n]b, if we have x H (w n]) 1 < x H (w n]) 3 , resp. x H (w n]) 3 < x H (w n]) 1 ). Here the greedy schedule is always (ba 3 ) ! . We conclude that greedy scheduling is suboptimal in the case 2 (4=45; 1=11), see Figure 17. This is in sharp contrast with a result from 22] xIV. There, the optimal problem is studied for the model of Figure 1, but the authors consider a slightly di erent criterion: minimization of the idle time of the resource. They show that greedy schedules are indeed optimal for this criterion.

Ratio constraints

In 24,21,22], the authors were primarily interested in the following constrained optimal problem: Find w 2 A ! minimizing lim n y H (w n])=n while satisfying lim n jw n]j a =n = where 2 0; 1] is some given ratio constraint.

In a manufacturing model, the motivation is to maximize the throughput while meeting a given production ratio. For this constrained problem, and for the model of Figure 1, it is proved in [START_REF] Gaubert | Performance evaluation of timed Petri nets using heaps of pieces[END_REF][START_REF] Silva | Optimal allocation sequences of two processes sharing a resource[END_REF] that the optimal schedule is always the jump word (1 ? ; ; 0). Two points are worth being noticed. First, the optimal schedule is balanced and when 2 Q, it is of the form u ! where u is the shortest balanced word meeting the ratio constraint. Second, the optimal schedule does not depend on the timings of the model ( 1 ; 2 ; 1 and 2 in Figure 1).

These two properties depend heavily on the speci c shape of the pieces in the model of Figure 1. They are not satis ed in a general heap model with two pieces, as shown below.

Example 17 Consider the model of Example 15. We look at the constrained optimal problem with ratio 1=2. The optimal schedule of length 2n; n 2 N ; is a n b n (or b n a n ) as illustrated on Figure 18. A possible optimal schedule is aba 2 b 2 a n b n . No in nite balanced word with ratio 1=2 is optimal. Here, the schedule (ab) ! , whose period is the shortest balanced word meeting the constraint, is not an optimal but a worst case schedule! Examples in the same spirit appear in 13], xVI-1 and in 19], x5.1.

8 Heap Models with Two Pieces: Average Case In this section, products have to be interpreted in the eld (R; +; ). We still assume that l(a) 6 = u(a) and l(b) 6 = u(b), otherwise the average problem becomes trivial.

As in x7, the distinction between `determinizable' and `non-determinizable' automata is important. For the `determinizable' case, it is easy to check that the automata obtained in x7.1-7.4 are all irreducible. Hence we obtain E by applying Prop. 6. Below, we illustrate this case on one example. There are two cases where the heap automaton is `non-determinizable', see x7. In one case, we come up with an explicit formula for E and in the other case, we express it as an in nite series.

Determinizable automaton. We consider the heap automaton H of x7. Its stationary distribution is = (p(a) 3 ; 1 ? p(a); p(a) ? p(a) 2 ; p(a) 2 ? p(a) 3 ).

We conclude that we have, Prop. 6, E (H) = (?10 + 1)p(a) 4 + (15 ? 1)p(a) 3 ? p(a) + 1 : This formula is valid for 1=15 < < 1=11, see x7.5. For instance, in the case = 8=89 (the one of Figure 17), we have 9 Conclusion: Heap Models with Three or More Pieces

As recalled in the introduction, the optimal problem for a heap model with an arbitrary number of rational pieces (8a 2 A;u(a);l(a) 2 Q R max ) is solved

Fig. 1 .

 1 Fig. 1. One-bounded Petri net and the associated heap model.

Fig. 2 .

 2 Fig. 2. Heap associated with the word ababa.

Fig. 3 .

 3 Fig.3. Representation of the jump word ( 1 ; 2 ; ).

Fig. 4 .

 4 Fig. 4. (Max,+) automaton with no balanced optimal schedules.

  contours.Assume that (U) is nite. Then we de ne the Cayley automaton of U as follows. It is the deterministic (max,+) automaton ( ; ; ) of dimension (U) over the alphabet A, where for u; v 2 (U); a 2 A,

  (x)M(w)M(a) i = (x)M(w) i = xM(w) i = xM(w)M(a) i : If i 6 2 R(a) and i 6 2 R(w), then xM(w)M(a) i = x i (x) i = (x)M(w)M(a) ) j M(a) ji (x)M(a) i = M j2R(a)\R(w) xM(w) j M(a) ji xM(a) i = xM(w)M(a) i :

  as follows: R(a ) = R(a ) = R(a) and l(a ) = l(a); 8i 2 R(a); u(a ) i = min xji2R(x) max j2R(x)

PROOF

  ) ij ? M(a) ij :

  Since we have 8i;j; M (a) ij M(a) ij ; M (a) ij M(a) ij , the left-hand side inequalities in[START_REF] Jean-Marie | Calcul de temps de cycle dans un syst eme (max,+) a deux matrices[END_REF] and (27) follow immediately. Let us prove the right-hand side inequality in[START_REF] Jean-Marie | Calcul de temps de cycle dans un syst eme (max,+) a deux matrices[END_REF], the proof of the one in[START_REF] Lagarias | The niteness conjecture for the generalized spectral radius of a set of matrices[END_REF] being similar.First of all, for two words x and y over the alphabet A, we have (where R(x) and R(y) are de ned as in (20)) R(x) \ R(y) = ; =) M(x)M(y) = M(y)M(x) = M(x) M(y) :[START_REF] Maslov | Idempotent Analysis[END_REF] 

  If R(a) \ R(b) = ;, then M(a b ) ij = M(ab ) ij = 0. Otherwise we have M(a b ) ij = M k2R(a)\R(b) M(a ) ik M(b ) kj = M k2R(a)\R(b) u(a ) k ? l(a ) i + u(b ) j ? l(b ) k = M k2R(a)\R(b) u(a ) k ? l(a) i + u(b ) j ? l(b) a) l + l(b) k ? l(b) l ) ? l(a) i + u(b ) j ? l(b) k = M l2R(b) u(a) l ? l(a) i + u(b ) j ? l(b ) l = M l M(a) il M(b ) lj = M(ab ) ij :

Fig. 6 .

 6 Fig.6. Two pieces and the associated upper-completed, lower-completed and bi-completed pieces.

  ) i = u(b ) i . Hence, for all k, we have M(b ) ki = M(b ) ki . We also have that i is a contact slot for b a . Using this together with (29), we get that 8k 2 R(b); 8l 2 R(a), M(b a ) kl = M(b a ) kl = M(b ) ki M(a ) il = M(b ) ki M(a ) il :

Figure 7 Fig. 7 .

 77 Fig. 7. A heap automaton of dimension 4 and a nitely distant one of dimension 3.

H

  = (fa; bg; f1;2g;R;u;l;I) R(a) = f1g;R(b) = f2g R(a) = f1;2g;R(b) = f1;2g R(a) = f1;2g;R(b) = f2g H = (fa; bg; f1;2;3g;R;u;l;I) R(a) = f1;2g;R(b) = f2;3g :We recall that the function c(:) was de ned in the proof of Theorem 12.(i) If R(a)\R(b) = ;, we have seen in the proof of Theorem 12, that the heap model can be represented with two slots only, one for each piece.

  The case R(a) = f1g;R(b) = f2g

Fig. 8 .

 8 Fig. 8. The jump word (h a ; h b ; 0) is optimal.

  min

7. 2

 2 The case R(a) = f1;2g;R(b) = f1;2g As R(a) = R(b) = R, we have (xM(a)) = (yM(a)) and (xM(b)) = (yM(b)), for all x; y 2 R 2 . Let us choose the ground shape to be (1M(a)). We have (H) = f (IM(a)); (IM(b))g. Hence we can solve the optimal problem using the Cayley automaton, see x5.1. Applying the results of x3.2, it is always the case that one of the schedules a ! ; b ! or (ab) ! is optimal. These schedules are obviously balanced. Example 15 Consider the heap automaton H with pieces de ned by l(a) = (1; 1); u(a) = (3; 2); and l(b) = (1; 1); u(b) = (2; 3) :

Fig. 9 .

 9 Fig. 9. Heap model with two pieces and its Cayley automaton. mean weight are f2g and f3g and M 22 = (a) 22 ; M 33 = (b) 33 . We have min (H) = 2 and a ! and b ! are optimal schedules.

Fig. 10 .

 10 Fig. 10. Contour-completed automaton

Example 16 Fig. 11 .

 1611 Fig. 11. Heap model and its contour-completed automaton.following e ect: (m; n) = (m; n) if m n and (m; n) = (n; n) if m < n. Hence we have '(H) = f(1;1);(1;?1);(1;?2);(1;?3)g. Let ( ; ; 1) be the contour-completed automaton and let M = min( (a); (b)). The minimal eigenvalue of M is min (M) = 3=4 and the circuit of minimal mean weight is labelled by abbb. We conclude that min (H) = 3=4 and that an optimal schedule is (abbb) ! .

Fig. 12 .

 12 Fig.12. The optimal heap is the jump word babbaba .

Fig. 13 .

 13 Fig. 13. (i) Heap abx 3] = abbab, (ii) heap abbabab, (iii) heap abbabbb.

Fig. 14 .

 14 Fig. 14. Outline of the contour-completed automaton.

  I 0 b = f ?nh b ; ?nh b + u(b) 2 ? l(b) 2 ]; 0 n jx l 2 ]j b g : An illustration of the intervals in I a ; I b ; I 0 a and I 0 b is provided in Figure 15-(i)-(ii). Let us label the intervals in I a I 0 a by a and the ones in I b I 0 b by b.

  0 b h b ; ?n 0 b h b +u(b) 2 ?l(b) 2 ]. Let us consider the set S = ft + nh a ; 1 n n a + n 0 a ? 1g ft + nh b ; 1 n n b + n 0 b ? 1g : By construction, each real of S is in a di erent interval of I a ; I b ; I 0 a or I 0 b .

Fig. 15 .Figure 15 -

 1515 Fig. 15. Illustration of the proof; here x l 1 ] = bab and x l 2 ] = b.Let us set m a = n a + n 0 a and m b = n b + n 0 b . We de ne = m a h a ? m b h b , see. By construction, we have either ( ) or ( ):

Fig. 16 .

 16 Fig. 16. Contour-completed automaton.

(Fig. 17 .

 17 Fig. 17. Model with = 8=89, greedy schedule and optimal schedule.

Fig. 18 .

 18 Fig.[START_REF] Gaubert | Minimal (max,+) realization of convex sequences[END_REF]. Optimal and worst schedule of ratio 1/2 and length 4.

5 .

 5 Let fp(a);p(b)g be the probability distribution of the pieces. The contourcompleted automaton is represented in Figure16. The corresponding transi-tion matrix is (see Prop.

  a)3 ? p(a) + 1; min p(a) E (H) = 0:417 for p(a) = 0:849: Case R(a) = f1g;R(b) = f2g. Let ( ; F;P) be a probability space and let x n ; n 2 N ; be independent random variables such that Pfx n = ag = p(a)and Pfx n = bg = p(b). We set x H (n) = IM(x 1 x n ). The processes x H (n) 1 and x H (n) 2 are transient random walks with respective drifts p(a)h a and p(b)h b . We deduce immediately that E (H) = max(p(a)h a ; p(b)h b ).Case R(a) = f1;2g;R(b) = f2;3g. We consider the case R(a) = f1;2g;R(b) = f2;3g;u(a) 2 = l(a) 2 ; u(b) 2 = l(b) 2 and h a =h b 6 2 Q. A simple but lengthy computation provides the following formula (the details are available from the authors on request). Let us denote by u (= u 1 u 2 ) the jump word (h a ; h b ; 0). We use the convention a 0 = b; b 0 = a. We set (a) = h a =(h a + h b ), (b) = h b =(h a + h b ) and c n = p(a) bn (b)c p(b) bn (a)c =p(u n ). We haveE (H) = (h a + h b ) P 1 n=1 c n p(u 0 n ) (u 0 n ) (p(u n )b (u n )nc + 1) P 1 n=1 c n :(33)One can obtain approximations of E (H) by truncating the in nite sums.Computations of E for closely related models are carried out in 25].

This work was partially supported by the European Community Framework IV programme through the research network ALAPEDES (\The ALgebraic Approach to Performance Evaluation of Discrete Event Systems") Preprint submitted to Elsevier Preprint

Acknowledgements

The authors thank Thierry Bousch, St ephane Gaubert, Bruno Gaujal and Colin Sparrow for stimulating discussions on the subject. The detailed comments of an anonymous referee have also helped in improving the paper.

This contradicts the fact that a is bi-complete. We conclude that we have u(a) 2 ?l(a) 2 u(a) 1 ?l(a) 1 and in the same way u(b) 2 ?l(b) 2 u(b) 3 ?l(b) 3 . Given x; y 2 A , if there is a contact at slot 2 between the last two pieces of the heaps xab and yab (resp. xba and yba) then '(IM(xa)) = '(IM(ya)) (resp. '(IM(xb)) = '(IM(yb))). Given x 2 A , if there is a contact at slot 2 between the last two pieces of the heap xab (resp. xba) then it is also the case in the heap xaab (resp. xbba). It implies that '(IM(xaa)) = '(IM(xa)) (resp. '(IM(xbb)) = '(IM(xb))). Let us set the ground shape to be I = (?L; l(a) 2 ?u(a) 2 ; ?L) where the real L > 0 is assumed to be large enough to have IM(u) = (0; l(a) 2 ? u(a) 2 ; 0)M(u) for u = a or b (see Figure 13 for an illustration). It implies that the slot 2 is a contact slot for ab and ba; hence we have '(IM(aa)) = '(IM(a)) and '(IM(bb)) = '(IM(b)). We deduce that '(H) = f'(I);'(IM(a));'(IM(b))g f'(IM(abw));'(IM(baw));w 2 A g

We assume for the moment that h a =h b is irrational. Let x be the jump word (h a ; h b ; 0). Let us assume that the in nite heap abx has no gap on slots 1 and 3. Then, the heights of the pieces on slot 2 are: lower part of piece a: fnh a ? u(a) 2 + l(a) 2 ; n 2 Ng; upper part of piece a: fnh a ; n 2 Ng; lower part of piece b: fnh b ; n 2 Ng; upper part of piece b: fnh b + u(b) 2 ? l(b) 2 ; n 2 Ng. Since h a =h b is irrational, by density of the points fnh b (mod h a ); n 2 Ng in the interval 0; h a ], there exists a couple (p; q) 2 N 2 such that ph a ? u(a) 2 + l(a) 2 < qh b < ph a :

This is a violation of the piling mechanism, see Figure 13-(i) for an illustration. Hence we conclude that there are some gaps on slot 1 or 3 in the heap abx.

Let l 1 be such that there is no gap at slots 1 and 3 in the heap abx l 1 + 1] and there is a gap at slot 1 or 3 in the heap abx l 1 + 2]. In Figure 13-(i), we have l 1 = 3 and abx l 1 ] = abbab. Let l 2 be such that there is no gap at slots 1 and 3 in the heap bax l 2 + 1] and there is a gap at slot 1 or 3 in the heap bax l 2 + 2]. Note that we have l 1 ?1 and l 2 ?1, and that it is possible to have l 1 = ?1 and/or l 2 = ?1.

Let us consider a heap abu (resp. bau), u 2 A . There are three possible cases.

(1) There is no gap at slots 1 and 3 in the heap and u = x n]; n l 1 +1 (resp. u = x n]; n l 2 + 1). Let x n is the n-th letter of x. If u = x l 1 + 1], then '(IM(abx l 1 + 1])) = '(IM(x l 1 +1 )) if l 1 0 and '(IM(ab)) = '(IM(b)) otherwise. Similarly we have '(IM(bax l 2 + 1])) = '(IM(x l 2 +1 )) if l 2 0 and '(IM(ba)) = '(IM(a)) otherwise.

in 20]. In Theorem 14, the case of a heap model with two general pieces is treated. We recall the results in the table below.

max periodic or Sturmian ?

Characterizing optimal schedules is an open problem for models with three pieces or more. Generalized versions of jump words appear naturally in some models. Let A = fa 1 ; a 2 ; ; a k g be the alphabet. We consider i 2 R + ; i 2 R + ; i < i ; for i 2 f1;:::;kg. We label the points fn i + i ; n 2 N g by a i and we consider the set k i=1 fn i + i ; n 2 N g in its natural order. The in nite sequence of labels is called the (hypercubic) billiard sequence with characteristics ( i ; i ; i = 1; : : : ; k), see